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Abstract. This paper shows that chameleon hash functions and Sigma protocols are
equivalent. We provide a transform of any suitable Sigma protocol to a chameleon hash
function, and also show that any chameleon hash function is the result of applying our
transform to some suitable Sigma protocol. This enables us to unify previous designs
of chameleon hash functions, seeing them all as emanating from a common paradigm,
and also obtain new designs that are more efficient than previous ones. In particular, via
a modified version of the Fiat–Shamir protocol, we obtain the fastest known chameleon
hash function with a proof of security based on the standard factoring assumption. The
increasing number of applications of chameleon hash functions, including on-line/off-
line signing, chameleon signatures, designated-verifier signatures and conversion from
weakly-secure to fully-secure signatures, make our work of contemporary interest.
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1. Introduction

The failure of popular hash functions MD5 and SHA-1 [55,56] lends an impetus to the
search for new ones. The contention of our paper is that there will be a “niche” market
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for as-fast-as-possible hash functions proven secure under standard assumptions. We
provide a general paradigm that yields such functions.

The hash functions we get are chameleon [30] and we extend the treatment to get a
characterization of chameleon hash functions, on the one hand unifying and clarifying
previous constructs and on the other hand yielding new and more efficient ones. Let us
now look at all this in more detail.

The Need for Proven-Secure Hashing Suppose an important document has been
signed with a typical hash-then-sign scheme such as PKCS#1 [29]. If collisions are
found in the underlying hash function, the public key needs to be revoked and the sig-
nature can no longer be accepted. Yet there are instances in which we want a public key
and signatures under it to survive for twenty or more years. This might be the case for
a central and highly disseminated certificate or an important contract. Revocation of a
widely disseminated public key is simply too costly and error-prone. In such a case, we
want to be able to trust that collisions in our hash function will not be found even twenty
years down the line.

Given the failure of MD5 and SHA-1, it would be understandable, from this twenty-
year perspective, to feel uncertain about any hash function designed by “similar” meth-
ods. On the other hand, we may be very willing to pay a (reasonable!) computational
price for security because documents or certificates of the ultra-importance we are con-
sidering may not need to be signed often. In this case, hash functions with proven se-
curity are interesting, and the faster they are the better. Our contribution is a general
transform that yields a plurality of such hash functions, not only providing new ones
but “explaining” or improving old ones.

From Σ to Hash We show how to construct a collision-resistant hash function from
any (suitable) Σ -protocol. Recall that Σ -protocols are a class of popular 3-move iden-
tification schemes. Canonical examples are the Schnorr [46], Fiat–Shamir [21] and GQ
[23] protocols, but there are many others as well [10,24,35,37–39,44]. Briefly, the pro-
tocols achieve a strong form of the usual honest-verifier zero-knowledge property, and
our hash function is defined using the simulator. (We stress that the computation of the
hash is deterministic even though the simulator is randomized.) The collision-resistance
stems from strong special soundness [8], a well-studied property of Σ -protocols. The
advantage of our approach is that there is a rich history in constructing proven-secure
Σ -protocols and we can now leverage this to get collision-resistant hash functions. For
future reference let us refer to a hash function derived from our approach as a Σ -hash
function.

Damgård [19] and Cramer, Damgård and MacKenzie [16] have previously shown
that it is possible to design commitment schemes based on Σ -protocols, but prior to our
work it has not been observed that one can design collision-resistant hash functions from
Σ -protocols. Note that secure commitment is not known to imply collision-resistant
hashing and in fact is unlikely to do so because the former can be based on one-way
functions [36] and the latter probably not [49]. Perhaps as a consequence, our construc-
tion requires slightly stronger properties from the Σ -protocols than do the constructions
of [16,19].
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Pre H -Da H -ST H -SFS

0 1 0.22 2
2048 1 0.33 4
16384 1 2 8

Fig. 1. Performance of factoring-based hash functions. The modulus and output size are 1024 bits and the
block size is 512 bits. “Pre” is the amount of pre-computation, in number of group elements stored. The table
entry is the rate defined as the average number of bits of data hashed per modular multiplication.

Specific Designs The Schnorr [46] and GQ [23] schemes are easily shown to meet
our conditions, yielding collision-resistant Σ-hash functions H -Sch and H -GQ based,
respectively, on discrete log and RSA. More interesting is the Fiat–Shamir proto-
col FS [21]. It does not satisfy strong special soundness, but we modify it to a protocol
SFS (strong FS ) that we prove does under the factoring assumption, thereby obtaining a
Σ-hash function H -SFS . From a modified version of the Micali–Shamir protocol [35]
we obtain a Σ-hash function H -SMS with security based on the SRPP (Square Roots of
Prime Products) assumption of [35]. We also obtain a Σ-hash H -Oka from Okamoto’s
protocol [38] and a pairing-based Σ-hash H -HS from an identification protocol of [9]
derived from the identity-based signature scheme of Hess [24].

How Fast? One question we consider interesting is: How fast can one hash while
maintaining a proof of security under the standard factoring assumption? Figure 1 com-
pares H -SFS to the fastest known factoring-based functions and shows that the former
emerges as the winner. (VSH, the Very Smooth Hash function of [14], is faster than
all these, but is based on a non-standard assumption related to the difficulty of extract-
ing modular square roots of products of small primes. We will discuss VSH, and our
improvement to it, in a bit.) In Fig. 1, H -Da is the most efficient factoring-based in-
stantiation known of Damgård’s claw-free permutation-based hash function [17,22,30].
H -ST is the hash function of Shamir and Tauman [48]. The table entries are the rate
defined as the average number of bits of data hashed per modular multiplication in MD
mode with a block size of 512 bits and a modulus and output size of 1024 bits. The
figure shows that without pre-computation, H -SFS is twice as fast as H -Da and 9 times
as fast as H -ST . But H -SFS is amenable to pre-computation-based speedup and H -Da
is not, so the gap in their rates increases swiftly with storage. H -ST is also amenable
to pre-computation-based speedup but H -SFS remains a factor 4 faster for any given
amount of storage. We also remark that additionally H -SFS is amenable to paralleliza-
tion, unlike the other functions. We remark that H -SMS is faster than H -SFS but based
on a stronger assumption. In Sect. 6 we recall H -Da and H -ST and justify the numbers
in Fig. 1. We also discuss implementation results.

Additional Features Σ-hash functions are keyed. While one can, of course, simply
hardwire into the code a particular key to get an unkeyed function in the style of MD5
or SHA-1, it is advantageous, as explained in [6], to allow each user to choose their own
key. The reason is that damage from a collision is now limited to the user whose key
is involved, and the attacker must reinvest resources to attack another key. This slows
down the rate of attacks and gives users time to get patches in place or revoke keys.
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The reductions underlying the security proofs of Σ-hash functions are tight, so that
the proven security guarantees hold with standard values of the security parameters.

Σ -Hash Functions are Chameleon Krawczyk and Rabin [30] introduced chameleon
hash functions. The over 150 citations to date to their paper (as per Google Scholar) are
an indication of the popularity and utility of the primitive.

Krawczyk and Rabin [30] presented two example constructions of chameleon hash
functions, and others were found by [2,3,48]. The analyses, however, are ad hoc. We, in
contrast, show a general result, namely, that any Σ-hash is chameleon (cf. Theorem 5.1).
As a consequence, we immediately obtain that H -GQ , H -SFS, H -SMS, H -Oka and
H -HS are chameleon. In particular, in H -SFS , we obtain the fastest known chameleon
hash function under the standard factoring assumption.

Shamir and Tauman used chameleon hash functions to build on-line/off-line signature
schemes [48]. (The concept is due to [20].) This means that when one uses a Σ -hash
one can completely eliminate the on-line cost of signing. (This cost is shifted entirely to
the off-line phase.) Another application is chameleon signatures [30], which provides a
recipient with a non-repudiable signature of a message without allowing it to prove to
a third party that the signer signed this message. As explained in [30], this is an impor-
tant tool for privacy-respecting authenticity in the signing of contracts and agreements.
Chameleon hash functions are also used in designated-verifier signatures to achieve
privacy [28,50]. Finally, chameleon hashing can be used to transform a weakly-secure
signature scheme into a fully-secure one. This is used in many places [11,25,30,47] and
a full statement and proof were provided by Hohenberger and Waters [26] whose design
of RSA-based signatures made crucial use of this transform. By adding new and more
efficient chameleon hash functions to the pool of existing ones we enable new and more
efficient ways to implement all the different applications.

Reverse Connection As indicated above, we show that Σ-hash functions are chame-
leon. To complement this, we show that the converse is true as well, namely, all
chameleon hash functions are Σ-hash functions (cf. Theorem 5.2). We prove this by
associating with any chameleon hash function H a Σ-protocol SP such that applying
our Σ2H (Σ-to-hash) transform to SP returns H . We thereby have a characterization of
chameleon hash functions as Σ-hash functions, which, as we discuss below, allows us
to unify previous work.

We also obtain numerous new Σ-protocols, and thus identification protocols and, via
[16,19], commitment schemes, from existing chameleon hash functions such as H -Da
[17] and H -ST [48]. However, we are not aware of any practical benefit of these con-
structs over known ones.

Unifying Previous Work H -Sch turns out to be exactly the classical hash function of
Chaum, Van Heijst and Pfitzmann [13], which was shown to be chameleon by [30].
H -Oka is an extension thereof [13]. H -GQ is a special case of a chameleon hash func-
tion proposed by Ateniese and de Medeiros [2,3]. (Our other hash functions H -SFS ,
H -SMS and H -HS are new.) The re-derivation of these hash functions as Σ -hashes
sheds new light on the designs and shows how the Σ paradigm explains and unifies
previous constructs.
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Finally we make a connection between VSH [14] and H -SMS , the Σ -hash function
emanating from the protocol of Micali and Shamir [35]. The latter is a more efficient
version of the Fiat–Shamir protocol in which the public key, rather than consisting of
random quadratic residues, consists of small primes. Interestingly, H -SMS turns out to
be the VSH compression function [14] modulo some details. We suggest that this pro-
vides some intuition for the VSH design. It turns out that we can exploit this connection
to get some improvements to VSH.

VSH∗ In number-theoretic hashing there is (as elsewhere) a trade-off between speed
and assumptions. We saw above that H -SFS is the fastest known hash function un-
der the standard factoring assumption. We now turn to non-standard factoring-related
assumptions. Here the record-holder is VSH (Very Smooth Hash), a construct of Con-
tini, Lenstra and Steinfeld [14] which has a proof of collision-resistance based on the
VSSR assumption of the same paper [14]. We provide a modification VSH∗ whose
compression function, unlike that of the original, is collision-resistant, leading to better
performance for short messages. (Our implementations show that VSH∗ is up to 5 times
faster than VSH on short messages. On long messages they have the same performance.)
This is important because short messages are an important case in practice. (For exam-
ple, most Internet packets are short.) VSH∗ remains provably collision-resistant under
the same VSSR assumption as VSH. A different collision-resistant modification of the
compression function of VSH is provided by [51].

We provide analogous improvements for the Fast-VSH variant of VSH provided
by [14]. Again, we can provide Fast-VSH∗ whose underlying compression function (un-
like that of Fast-VSH) is proven collision-resistant, leading to speedups in hashing short
messages. However, the speed gains are smaller than in the previous case.

Overall we believe that, even putting performance aside, having a collision-resistant
compression function underlying a hash function is a plus since it can be used directly
and makes the hash function more misuse-resistant.

What Σ -Hash Functions Are Not Some recent work [1,5,15] suggests that general-
purpose hash functions should have extra properties like pseudo-randomness. Σ -hash
functions are merely collision-resistant and chameleon; they do not offer these extra
attributes. But as indicated above, Σ -hash functions are not intended to be general pur-
pose. The envisaged applications are chameleon hashing and proven-secure, reasonable-
cost (purely) collision-resistant hashing.

2. Related Work

Damgård [17] presents a construction of collision-resistant hash functions from claw-
free permutation pairs [22]. As noted above, his factoring-based instantiation, based
on [22] and also considered in [30,48], is slower than our H -SFS .

Ishai, Kushilevitz and Ostrovsky [27] show how to transform homomorphic encryp-
tion (or commitment) schemes into collision-resistant hash functions. This is an inter-
esting theoretical connection between the primitives. As far as we can tell, however,
the approach is not yet practical. Specifically, their quadratic-residuosity (QR) based



804 M. Bellare and T. Ristov

instantiation has a rate of 1/40 (that is, 40 modular multiplications per bit) with a 1024-
bit modulus. (Their matrix needs 80 rows to get the 80-bit security corresponding to a
1024-bit modulus.) Hence their function is much slower than the constructs of Fig. 1 in
addition to being based on a stronger assumption (QR as opposed to factoring). Addi-
tionally it has a (80 · 1024)-bit output so in a practical sense is not really hashing. Other
instantiations of their construction that we know (El Gamal under DDH, Paillier [40]
under DCRA) are also both slower than known ones and based on stronger assumptions.

Lyubashevsky, Micciancio, Peikert and Rosen [33] present a fast hash function
SWIFFT with an asymptotic security proof based on assumptions about the hardness
of lattice problems [32,41], but the proof would not seem to yield guarantees for the
parameter sizes proposed in [33]. In contrast, our reductions are tight and the proofs
provide guarantees for standard values of the security parameters.

Bellare and Micciancio’s construction [4] (whose goal was to achieve incrementality)
uses random oracles, but these can be eliminated by using a small block size, such as
one bit. In this case their MuHASH is provably collision-resistant based only on the
discrete-log assumption, and runs at 0.33 bits per group operation in MD mode. In
comparison, H -Sch (also discrete log based) is faster, at 0.57 bits per group operation
in MD mode.

Charles, Goren and Lauter [12] presented a hash function based on the assumed hard-
ness of some problems related to elliptic curves. However, their construction was shown
to not be collision-resistant [54] and in fact to not even be pre-image resistant [42].
Tillich and Zémor [53] present a hash function based on the assumed hardness of
some graph problems, whose security properties and efficiency were improved by Petit,
Veyrat-Charvillon, and Quisquater [43]. The hash function of [43] is slower than Fast-
VSH, and thereby slower than Fast-VSH∗, according to the performance results reported
in [14] and [43].

Heng and Kurosawa [31] define reversible Σ -protocols and show that these and trap-
door commitment schemes are equivalent. Reversibility, a property we do not assume,
requires that the prover’s randomness or internal state can be reconstructed from the
public key and last two messages in the protocol given the secret key. The binding
property of the commitment scheme is a weak form of collision-resistance which rules
out efficiently finding message-randomness pairs where the message parts are differ-
ent but the corresponding commitments are the same. They do not claim or provide
(chameleon) collision-resistant hash functions.

Steinfeld, Pieprzyk and Wang [51] suggest a collision-resistant modification of the
VSH compression function based on restricting the domain of the second argument.
This makes iterating the compression function somewhat less convenient but it can be
done using the methods we discuss in Appendix A and would then appear to yield
performance benefits similar to those we get via VSH∗. They do not consider Fast-VSH.

Subsequent to the preliminary version of our work [7], Šarinay [45] provides a variant
of VSH with better performance than the original, security now being based on the
k-sum problem.

3. Definitions

Notation and Conventions We denote by a1‖ · · · ‖an a string encoding of a1, . . . , an

from which the constituent objects are uniquely recoverable. We denote the empty string
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Prover
Input: pk, sk

(Y,y) ←$ P(pk, sk)

Z ←$ P(pk, sk, C,y)

Y �
C�
Z �

Verifier
Input: pk

C ←$ ChSet(pk)

d ← V(pk, Y‖C‖Z)

Fig. 2. Σ-protocol. Keys pk and sk are produced using key-generation algorithm K.

by ε. Unless otherwise indicated, an algorithm may be randomized. If A is a randomized
algorithm then y ←$ A(x1, . . .) denotes the operation of running A with fresh coins on
inputs x1, . . . and letting y denote the output. We denote by [A(x1, . . .)] the set of all
y that have positive probability of being output by A on input x1, . . . . If S is a (finite)
set then s ←$ S denotes the operation of picking s uniformly at random from S. If
X = x1‖x2‖ · · · ‖xn, then x1‖x2‖ · · ·xn ← X denotes the operation of parsing X into its
constituents. Similarly, if X = (x1, x2, . . . , xn) is an n-tuple, then (x1, x2, . . . , xn) ← X

denotes the operation of parsing X into its elements. We denote the security parameter
by k, and by 1k its unary encoding. Vectors are denoted in boldface, for example u. If u
is a vector then |u| is the number of its components and u[i] is its ith component. “PT”
stands for polynomial time.

Σ -Protocols A Σ-protocol is a three-move interactive protocol conducted by a prover
and a verifier. Formally, it is a tuple SP = (K,P,V,CmSet,ChSet,RpSet), where K,P
are PT algorithms and V is a deterministic boolean algorithm. The key-generation algo-
rithm K takes input 1k and returns a pair (pk, sk) consisting of a public and secret key for
the prover. The prover is initialized with pk, sk while the verifier is initialized with pk.
The parties interact as depicted in Fig. 2. The prover begins by applying P to pk, sk to
yield his first move Y ∈ CmSet(pk), called the commitment, together with state infor-
mation y, called the ephemeral secret key. The commitment is sent to the verifier, who
responds with a challenge C drawn at random from ChSet(pk). The prover computes
its response Z ∈ RpSet(pk) by applying P to pk, sk, the challenge C and the ephemeral
secret key y. (This computation may use fresh coins although in the bulk of protocols it
is deterministic.) Upon receiving C the verifier applies V to the public key and transcript
Y‖C‖Z of the conversation to decide whether to accept or reject. We require complete-
ness, which means that an interaction between the honest prover and verifier is always
accepting. Formally, for all k ∈N we have d = 1 with probability 1 in the experiment

(pk, sk) ←$ K
(
1k

); (Y,y) ←$ P(pk, sk); C ←$ ChSet(pk);
Z ←$ P(pk, sk, C,y); d ← V

(
pk, Y‖C‖Z

)
.

The verifier given pk, Y‖C‖Z should always check that Y ∈ CmSet(Y) and C ∈
ChSet(pk) and Z ∈ RpSet(pk) and reject otherwise. We implicitly assume this is done
throughout.

Security Notions We provide formal definitions of strong special soundness (sss)
and strong honest-verifier zero-knowledge (StHVZK). Strong special soundness of
Σ-protocol SP = (K,P,V,CmSet,ChSet,RpSet) [8] asks that it be computationally in-
feasible, given only the public key, to produce a pair of accepting transcripts that are
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commitment-agreeing but challenge-response-disagreeing. Formally an sss-adversary,
on input pk, returns a tuple (Y, C1, Z1, C2, Z2) such that Y ∈ CmSet(pk); C1, C2 ∈
ChSet(pk); Z1, Z2 ∈ RpSet(pk) and (C1, Z1) �= (C2, Z2). The advantage Advsss

SP ,A(k) of
such an adversary is defined for all k ∈ N as the probability that V(pk, Y‖C1‖Z1) = 1
and V(pk, Y‖C2‖Z2) = 1 in the experiment where K(1k) is first executed to get (pk, sk)
and then A(pk) is executed to get (Y, C1, Z1, C2, Z2). We say that SP has strong special
soundness if Advsss

SP ,A(·) is negligible for all PT sss-adversaries A. To define StHVZK,
let Tr SP be the algorithm that on input (pk, sk) executes P and V as per Fig. 2 and returns
the transcript Y‖C‖Z. Recall that a PT algorithm Sim is a HVZK simulator for SP if the
outputs of the processes

(pk, sk) ←$ K
(
1k

); Return
(
pk,Sim(pk)

)

and

(pk, sk) ←$ K
(
1k

); Return
(
pk, Tr SP (pk, sk)

)

are identically distributed. (We require perfect, not computational, ZK. This simplifies
applications and there is no particular loss from assuming it since it is provided by the
candidate protocols.) We say that a PT algorithm StSim is a strong HVZK (StHVZK)
simulator for SP if StSim is deterministic and the algorithm Sim defined on input pk by

C ←$ ChSet(pk); Z ←$ RpSet(pk); Y ← StSim(pk, C, Z); Return Y||C||Z
is a HVZK simulator for SP . We say that SP is StHVZK if it has a PT StHVZK sim-
ulator and also the commitment Y generated via (Y,y) ←$ P(pk, sk) is uniformly dis-
tributed over CmSet(pk) for all (pk, sk) ∈ [K(1k)]. We denote by Σ(sss) the set of all
Σ-protocols that satisfy strong special soundness and by Σ(StHVZK) the set of all
Σ-protocols that are strong HVZK.

Discussion While the basic format of Σ-protocols as 3-move protocols of the type
above is agreed upon, when it comes to security properties, there are different choices
and variations in the literature. Our formalization of strong special soundness is
from [8]. Strong HVZK seems to be new but the canonical protocols in this area have
this property.

Collision-Resistant Hash Functions A family of n-input hash functions (where n ≥ 1
is a constant) is a tuple H = (KG,H,D1, . . . ,Dn,R). The key-generation algorithm
KG takes input 1k and returns a key K describing a particular function HK : D1(K) ×
· · ·Dn(K) → R(K). As this indicates, D1, . . . ,Dn,R are functions that given K return
sets. A cr-adversary, on input K returns distinct tuples (x1, . . . , xn), (y1, . . . , yn) such
that xi, yi ∈ Di (K) for all 1 ≤ i ≤ n. The advantage Advcr

H ,B(k) of such an adversary B

is defined for all k ∈ N as the probability that H(K,x1, . . . , xn) = H(K,y1, . . . , yn) in
the experiment where KG(1k) is first executed to get K and then B(K) is executed to
get ((x1, . . . , xn), (y1, . . . , yn)). We say that H is collision-resistant if the cr-advantage
of any PT adversary B is negligible.
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4. Σ-Hash Theory

This section covers the theory of Σ-hash functions. We present and justify the Σ2H
transform that turns a Σ-protocol SP ∈ Σ(sss) ∩ Σ(StHVZK) into a collision-resistant
hash function H -SP . Then we find Σ-protocols which we can prove have the required
properties and derive specific Σ-hash functions. In Sect. 5 we relate Σ and chameleon
hash functions. In Sect. 6 we discuss the practical and performance aspects of our
Σ-hash functions.

4.1. The Transform

We show how to build a collision-resistant hash function from any Σ-protocol SP =
(K,P,V,CmSet,ChSet,RpSet) ∈ Σ(sss) ∩ Σ(StHVZK) that satisfies strong special
soundness and strong HVZK. Let StSim be a strong HVZK simulator for SP . Let K(1)

be the algorithm that on input 1k lets (pk, sk) ←$ K(1k) and returns pk. We define the
2-input family of hash functions H = (KG,H,ChSet,RpSet,CmSet) by KG = K(1) and
Hpk(C, Z) = StSim(pk, C, Z). In other words, the key is the prover’s public key. (The se-
cret key is discarded.) The inputs to the hash function are regarded as the challenge and
response in the Σ-protocol. The output is the corresponding commitment. The existence
of a StHVZK simulator is exploited to deterministically compute this output. We refer
to a family of functions defined in this way as a Σ -hash. We write H = Σ2H(SP ) to
indicate that H has been derived as above from Σ-protocol SP . The following theorem
says that a Σ -hash family is collision-resistant.

Theorem 4.1. Let SP = (K,P,V,CmSet,ChSet,RpSet) ∈ Σ(sss)∩Σ(StHVZK) be a
Σ -protocol. Let H = (KG,H,ChSet,RpSet,CmSet) = Σ2H(SP ) be the family of hash
functions associated with SP as above. For every cr adversary B against H there exists
an sss-adversary A against SP such that for all k we have Advcr

H,B(k) ≤ Advsss-na
SP ,A (k),

and the running time of A is that of B .

The proof of this theorem, given below, is simple, but we note some subtleties, which
is the way it relies on the (strong) HVZK and completeness of the Σ-protocol in addition
to the strong special soundness.

Proof of Theorem 4.1. We define adversary A as follows.

Adversary A(pk)
((C1, Z1), (C2, Z2)) ←$ B(pk); Y ← Hpk(C1, Z1)

Return (Y, C1, Z1, C2, Z2)

By definition of a cr-adversary we know that (C1, Z1) �= (C2, Z2). Hence A satisfies the
definition of an sss adversary. Let Yi = Hpk(Ci , Zi ) for i = 1,2. The definition of a
cr-adversary also implies that Ci ∈ ChSet(pk) and Zi ∈ RpSet(pk) for i = 1,2. Strong
HVZK now implies that the transcripts Yi‖Ci‖Zi have positive probability of being
produced in the protocol, meaning of being output by Tr SP(pk, sk). The completeness of
the protocol now implies that V(pk, Y1‖C1‖Z1) = 1 and V(pk, Y2‖C2‖Z2) = 1. Finally,
if B succeeds then Y1 = Y2 so A also succeeds. �
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Algorithm K(1k)

(〈G〉,p, g) ←$ G(1k)

x ←$ Zp

X ← g−x ; sk ← x

pk ← (〈G〉,p, g,X)

Return (pk, sk)

Prover Verifier

y ←$ Zp; Y ← gy Y�
C� C ←$ Zp

Z ← y + x · C mod p Z� d ← (XCgZ = Y)

Hpk : Zp ×Zp → G

Hpk(C, Z) = XCgZ

Fig. 3. Sch Σ-protocol and the derived Σ-hash family, where G is a prime-order group generator.

To construct Σ-hash functions we now seek Σ-protocols which we can show are in
Σ(sss) ∩ Σ(StHVZK).

4.2. Overview of Constructions

We begin, as illustrative examples, with the Schnorr [46] and GQ [23] Σ-protocols,
which we can easily show to have the desired properties. The hash functions obtained
are known [2,3,13] and their re-derivation as Σ-hashes sheds new light on their design
and also shows how the Σ-hash paradigm unifies and explains existing work. More
interesting is the Fiat–Shamir [21] Σ-protocol. It does not satisfy strong special sound-
ness, but we modify it to a Σ-protocol SFS that we prove is in Σ(sss) ∩ Σ(StHVZK)

under the standard factoring assumption. With non-standard factoring-related assump-
tions (that it is hard to extract modular square roots of products of small primes) we get
a faster Σ-hash H -SMS from a modification of the Micali–Shamir Σ-protocol [35]. We
also get another discrete-log-based Σ-hash from Okamoto’s protocol [38] and a pairing
based one from the HS protocol [9,24]. Let us now detail all this.

4.3. Sch

We fix a prime-order group generator, by which we mean a PT algorithm G that on
input 1k returns the description 〈G〉 of a group G of prime order p ∈ {2k−1, . . . ,2k − 1}
together with p and a generator g of G. The key-generation process and protocol un-
derlying the Sch Σ-protocol of [46] are then as shown in Fig. 3. The algorithm that
on input pk = (〈G〉,p, g,X) picks C, Z ←$ Zp and returns Xcgz‖C‖Z is a HVZK sim-
ulator for Sch , so Sch ∈ Σ(StHVZK) and the derived Σ-hash H -Sch is as shown in
Fig. 3. The key observation for strong special soundness is that if XC1gZ1 = XC2gZ2

and (C1, Z1) �= (C2, Z2) then it must be that C1 �= C2. This leads us to associate with sss-
adversary A the discrete log finder D that on input 〈G〉,p, g,X runs A on the same input
to get (Y, C1, Z1, C2, Z2) and returns (Z2 − Z1)(C1 − C2)

−1 mod p. Then for all k we
have Advsss

Sch,A(k) ≤ Advdl
G,D(k), where the latter is defined as the probability that x′ = x

in the experiment where we let (〈G〉,p, g) ←$ G(1k) and x ←$ Zp and then let x′ ←$

D(〈G〉,p, g, gx). This shows that Sch has strong special soundness as long as the dis-
crete log problem is hard relative to G . By Theorem 4.1, H -Sch is collision-resistant
under the same assumption.

4.4. GQ

We fix a prime-exponent RSA generator with associated challenge length L(·), by
which we mean a PT algorithm Grsa that on input 1k returns an RSA modulus N ∈
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Algorithm K(1k)

(N, e) ←$ Grsa(1k)

x ←$ Z∗
N

X ← x−e mod N

l ← L(k); sk ← x

pk ← (N, e, l,X)

Return (sk,pk)

Prover Verifier
y ←$ Z∗

N
;

Y ← ye mod N Y�
C� C ←$ {0, . . . ,2l − 1}

Z ← xC · y mod N Z� d ← (Y = XC · Ze mod N)

Hpk: {0, . . . ,2l − 1} ×Z
∗
N

→ Z
∗
N

Hpk(C, Z) = XC Ze mod N

Fig. 4. GQ Σ-protocol and the derived Σ-hash family, where Grsa is a prime exponent RSA generator with
associated challenge length L.

{2k−1, . . . ,2k − 1} and an RSA encryption exponent e > 2L(k) that is a prime. The key-
generation process and protocol underlying Σ-protocol GQ of [23] are then as shown
in Fig. 4. The algorithm that on input pk = (N, e, l,X) picks C ←$ {0,1}l ; Z ←$ Z∗

N

and returns Y‖C‖Z, where Y = XCZe mod N , is a HVZK simulator for GQ , so GQ ∈
Σ(StHVZK) and the derived Σ-hash H -GQ is as shown in Fig. 4. Again, observe that
if XC1 Ze

1 = XC2 Ze
2 and (C1, Z1) �= (C2, Z2) then C1 �= C2. To adversary A attacking the

strong special soundness, this leads us to associate the inverter I that on input N,e,X

runs A on input N,e, l,X, where l = L(�log2(N)� + 1), to get (Y, C1, Z1, C2, Z2), and
returns (Z2Z−1

1 )bXa mod N , where a, b satisfy ae + b(C1 − C2) = 1 and are found
via the extended gcd algorithm. (This is where we use the fact that e is prime.)
Then for all k we have Advsss

GQ ,A(k) ≤ Advrsa
Grsa,I (k), where the latter is defined as the

probability that x′ = x in the experiment where we let (N, e) ←$ Grsa(1k) and x ←$

Z
∗
N and then let x′ ←$ I (N, e, xe mod N). This shows that GQ has strong special

soundness if RSA is one-way relative to Grsa. By Theorem 4.1, H -GQ is collision-
resistant under the same assumption.

4.5. FS and SFS

We fix a modulus generator, namely a PT algorithm Gmod, that on input 1k returns a
modulus N ∈ {2k−1, . . . ,2k − 1} and distinct primes p,q such that N = pq . We also
fix a challenge length L(·). If C is an l-bit string and u ∈ (Z∗

N)l then we let uC =∏
u[i]C[i] where the product is over 1 ≤ i ≤ l and C[i] denotes the ith bit of C. The

key-generation algorithm and protocol underlying the FS Σ-protocol are then as shown
in Fig. 5. However, this protocol does not satisfy strong special soundness because if
Y‖C‖Z is an accepting transcript relative to pk = (N, l,u) then so is Y‖C‖Z′ where
Z′ = N − Z. We now show how to modify FS so that it has strong special soundness.
First, some notation. For w ∈ ZN we let [w]N equal w if w ≤ N/2 and N −w otherwise.
Let Z+

N = Z
∗
N ∩{1, . . . ,N/2}. The modified protocol SFS (strong FS ) is shown in Fig. 5.

Here CmSet((N, l,u)) is the set QRN of quadratic residues in Z
∗
N and ChSet((N, l,u))

is {0,1}l , just as in FS , but RpSet((N, l,u)) is now equal to Z
+
N rather than Z

∗
N as

before. For any adversary F we define Advfac
Gmod,F

(k) as the probability that r ∈ {p,q}
in the experiment where we let (N,p,q) ←$ Gmod(1k) and r ←$ F(N). The following
shows that SFS has strong special soundness under the standard hardness of factoring
assumption.
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Algorithm K(1k)

(N,p,q) ←$ Gmod(1k);
l ← L(k);

For i = 1, . . . , l do
s[i] ←$ Z∗

N
; u[i] ← s[i]−2

sk ← s; pk ← (N, l,u)

Return pk, sk

Prover Verifier
y ←$ Z∗

N
;

Y ← y2 Y�
C� C ←$ {0,1}l

Z ← y · sC Z� d ← (Y = uC · Z2)

Algorithm K(1k)

l ← L(k)

(N,p,q,u) ←$ GSP (1k)

For i = 1, . . . , l do
s[i] ←$ SQR(u[i]−1,p, q)

pk ← (N, l,u); sk ← s
Return pk, sk

Prover Verifier
y ←$ Z∗

N
;

Y ← y2 Y�
C� C ←$ {0,1}l

Z ← [y · sC]N Z� d ← (Y = uC · Z2)

Hpk: {0,1}l ×Z
+
N

→ QRN

Hpk(C, Z) = uC · Z2

Fig. 5. FS , SFS , MS and SMS protocols and the Σ-hash derived from SFS, SMS . The upper left key-gen-
eration algorithm is that of FS and SFS , while the lower left one is that of MS and SMS . The upper protocol
is that of FS and MS while the lower protocol is that of SFS and SMS . Here Gmod is a modulus generator and
GSP is a small prime modulus generator. The computations are in Z

∗
N

, meaning modulo N .

Proposition 4.2. Let Gmod be a modulus generator and L(·) a challenge length. Let
SFS be the associated Σ-protocol as per Fig. 5. If A is an sss-adversary against
SFS then there is a factoring algorithm F against Gmod such that for all k we have
Advsss

SFS,A(k) ≤ 2 · Advfac
Gmod,F

(k). The running time of F is that of A plus the time for
at most L(·) multiplications, one inversion modulo N , and the time for one execution of
the gcd algorithm.

Proof. The factoring algorithm F is shown in Fig. 6. For the analysis, consider two
cases. The first is that C1 �= C2 and the second is that C1 = C2 and Z1 �= Z2. In the first
case, a simple computation shows that r2

1 ≡ r2
2 (mod N). On the other hand, s[g] is cho-

sen at random in Z
∗
N and the only information A gets about it is u[g] = s[g]−2 mod N

so s[g] �∈ {r1,N − r1} with probability 1/2. So in this case F succeeds with probability
1/2 times the probability that A succeeds. In the case C1 = C2 but Z1 �= Z2 we have,
modulo N ,

Y ≡ Z2
1 ·

l∏

i=1

s[i]C1[i] ≡ Z2
2 ·

l∏

i=1

s[i]C2[i]

and C1 = C2 implies Z2
1 ≡ Z2

2. But Z1 �= Z2 and Z1, Z2 ∈ Z
+
N so it must be that Z1 �∈

{Z2,N − Z2}. So F succeeds with the same probability as A in this case. �

Now, the algorithm that on input pk = (N, l,u) lets C ←$ {0,1}l; Z ←$ Z+
N , and

Y ← uC · Z2 mod N and returns Y‖C‖Z is a HVZK simulator for SFS . Accordingly
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Algorithm F(N)

For i = 1, . . . , n do
s[i] ←$ Z∗

N
; u[i] ← s[i]−2 mod N

l ← L(k); pk ← (N, l,u); (Y, C1, Z1, C2, Z2) ←$ A(pk)
If C1 �= C2 then

g ←$ {1, . . . , l : C1[i] �= C2[i]}
r1 ← (

Z1
Z2

· ∏i �=g s[i]C2[i]−C1[i])C1[g]−C2[g]
r2 ← s[g]

Else // C1 = C2 and Z1 �= Z2
r1 ← Z1; r2 ← Z2

r ← gcd(N, r1 − r2)

Return r

Adversary B(N,u)

pk ← (N,u) ; (Y, C1, Z1, C2, Z2) ←$ A(pk)
If C1 �= C2

T ← {j : C1[j ] = 1 ∧ C2[j ] = 0}
R ← {j : C1[j ] = 1 ∧ C2[j ] = 1}
M ← {j : C1[j ] = 0 ∧ C2[j ] = 1};
S ← M ∪ T

x ← Z1
Z2

∏
j∈T u[j ]

Else // C1 = C2 and Z1 �= Z2
p ← gcd(N, Z1 − Z2) // p is a factor of N

x ← SQR(u[1],p,N/p) mod N ; S ← {1}
Return (x, S)

Fig. 6. Factoring algorithm F for proof of Proposition 4.2 and spr-adversary B for proof of Proposition 4.3.

SFS ∈ Σ(StHVZK) and we derive from SFS the Σ-hash family H -SFS shown in Fig. 5.
Proposition 4.2 and Theorem 4.1 imply that H -SFS is collision-resistant under the stan-
dard factoring assumption.

4.6. MS and SMS

The Micali–Shamir protocol [35] is a variant of FS in which verification time is re-
duced by choosing the coordinates of u to be small primes. As with FS , it does not
satisfy sss, but we can modify it to do so and thereby obtain a collision-resistant hash
function H -SMS that is faster than H -SFS at the cost of a stronger assumption for se-
curity. To detail all this, let GSP be a small prime modulus generator with challenge
length L(·), by which we mean a PT algorithm that on input 1k returns a modulus
N ∈ {2k−1, . . . ,2k − 1}, distinct primes p,q such that N = pq , and an L(k)-vector
u each of whose coordinates is a prime in QR(N) = {x2 mod N : x ∈ Z∗

N }. For effi-
ciency we would choose these primes to be as small as possible. (For example u[i]
is the ith prime in QR(N).) An spr-adversary B against (GSP,L) takes input N and
u ∈ (Z∗

N)L(k) and returns (x, S) where x ∈ Z
∗
N and S is a non-empty subset of {0,1}l .

Its spr-advantage is defined for all k by

Advspr
GSP,L,B(k)

= Pr

[
x2 ≡

∏

i∈S

u[i] (mod N): (N,p,q,u) ←$ GSP
(
1k

); (x, S) ←$ B(N,u)

]
.

The SRPP (Square Root of Prime Products) assumption [35] says that the spr-advantage
of any PT B is negligible. Now, Fig. 5 shows our modified version SMS of the Micali–
Shamir protocol. It is in Σ(StHVZK) for the same reason as SFS and hence the derived
hash function is again as shown, where SQR(·,p, q) takes input w ∈ QR(N) and returns
at random one of the four square roots of w modulo N = pq , computed using the
primes p,q . Strong special soundness of SMS is proven in the following under the
SRPP assumption.

Proposition 4.3. Let GSP be a small prime modulus generator with associated chal-
lenge length L. Let SMS be the associated Σ-protocol as per Fig. 5. If A is an
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sss-adversary against SMS then there is a spr-adversary B such that for all k we
have Advsss

GSP ,L,A(k) ≤ Advspr
GSP ,L,B(k). The running time of B is that of A plus time

t = max{t1, t2}, where t1 is the time it takes to execute one inversion modulo N and
L + 1 multiplications modulo N and t2 is the time it takes to execute the gcd algorithm
and the SQR algorithm.

Proof. Let us explain why the adversary B shown in Fig. 6 works. If A succeeds then

Z1
2

n∏

j=1

u[j ]C1[j ] ≡ Z2
2

n∏

j=1

u[j ]C2[j ] (mod N). (1)

Now, when C1 �= C2, multiplying both sides of this equation by
∏

j∈T u[j ]/∏j∈Ru[j ]
gives:

Z1
2
∏

j∈T

u[j ]2 ≡ Z2
2

∏

j∈M∪T

u[j ] (mod N).

From C1 �= C2 it follows that T ∪ M �= ∅, and therefore by outputting ( Z1
Z2

∏
j∈T u[j ],

M ∪ T ) the adversary B succeeds.
In the other case, when C1 = C2, it has to be Z1 �= Z2 and Eq. (1) becomes Z2

1 ≡
Z2

2 mod N . By finding the gcd of N and Z1 − Z2, B can factorize N , and so it can
compute the square root of u[1] modulo N . �

Proposition 4.3 and Theorem 4.1 imply that H -SMS is collision-resistant under the
SRPP assumption.

4.7. Additional Functions

Okamoto’s protocol [38] is StHVZK and can be shown to have special soundness if the
discrete logarithm problem is hard relative to the underlying prime-order group gener-
ator, and hence we obtain a collision-resistant Σ-hash family H -Oka. The key has the
form (〈G〉,p, g1, g2,X), where g1, g2 ∈ G∗ and X ∈ G, and Hpk : Zp × (Zp × Zp) is

defined by Hpk(C, (Z1, Z2)) = XCg
Z1
1 g

Z2
2 . However, this hash function seems to offer no

performance advantage over H -Sch . A pairing-based identification protocol HS , derived
from the id-based signature scheme of [24], is noted in [9]. It is shown in [9] to have
special soundness under concurrent attack assuming the hardness of the one more com-
putational Diffie–Helman problem relative to an underlying prime-order bilinear group
generator. The proof can be easily extended to show strong special soundness while
relaxing the assumption to the hardness of the computational Diffie–Helman problem.
HS can also be shown to be StHVZK and hence we obtain a Σ-hash family H -HS . The
key has the form (〈G1〉, 〈G2〉, q,P, 〈e〉, α) where G1 and G2 are groups of prime order
p; e : G1 × G1 → G2, is non-degenerate bilinear map; P ∈ G∗

1 and α ∈ G2. The func-
tion Hpk : Zp × G1 → G2 is defined by Hpk(C, Z) = e(Z,P ) · αC. Due to the pairing,
however, this hash function is slower than H -Sch .

5. Σ = Chameleon

We move from examples of Σ-hash functions to a general property of the class, namely
that any Σ-hash function is chameleon and vice-versa.
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5.1. Definitions

A 2-input hash family H = (KG,H,D1,D2,R) is said to be trapdoor if the following are
true. First, there is a PT algorithm K, called the full key-generation algorithm, that on
input 1k returns a pair (K,T ), and algorithm KG is equal to K(1), meaning algorithm KG,
on input 1k , runs K(1k) to get (K,T ) and returns K . Second, there is a deterministic,
PT algorithm, I , called the inversion algorithm, such that for all (K,T ) ∈ [K(1k)] and
all C1, C2 ∈ D1(K) and all Y ∈ R(K) the map defined by Z → I (K,T , Y, C1, Z, C2) is
a bijection of SH

K,C1
(Y) to SH

K,C2
(Y), where SH

K,C(Y) = {Z ∈ D2(K) : HK(C, Z) = Y}.1
We say that H has the uniformity property if for all K and all C ∈ D1(K) it is the case
that HK(C, ·) is uniformly distributed over R(K) when regarded as a random variable
over a random choice of its argument Z from D2(K). We say that H is chameleon if it
is trapdoor, collision-resistant and has the uniformity property.

The (standard) completeness requirement for a Σ-protocol SP = (K,P,V,CmSet,
ChSet,RpSet) implies that from a secret key sk and challenge C, one can easily (in
PT) compute the response Z, but only if one has the ephemeral secret key y underly-
ing the commitment. To obtain chameleon hash functions from Σ-protocols we need
the latter to satisfy a strong form of completeness which says that a response, dis-
tributed identically to the response of the real prover P, can be computed even without
the ephemeral secret key so long as we have access to some accepting conversation. For-
mally a strong HVZK Σ-protocol SP = (K,P,V,CmSet,ChSet,RpSet) satisfies strong
completeness if there is a deterministic PT algorithm P∗ called the strong prover such
that for all (pk, sk) ∈ [K(1k)] and all C1, C2 ∈ ChSet(pk) and all Y ∈ CmSet(pk) the map
defined by Z → P∗(pk, sk, Y, C1, Z, C2) is a bijection of SSP

pk,C1
(Y) to SSP

pk,C2
(Y), where

SSP
pk,C(Y) = {Z ∈ RpSet(pk) : StSim(pk, C, Z) = Y} where StSim is the strong HVZK

simulator. We let Σ(sc) be the class of all Σ-protocols that have the strong complete-
ness property.

5.2. Sigma Is Chameleon

The following implies that any Σ-hash is chameleon.

Theorem 5.1. Let SP = (K,P,V,CmSet,ChSet,RpSet) ∈ Σ(StHVZK) ∩ Σ(sss) ∩
Σ(sc) be a Σ-protocol. Then the Σ-hash family H -SP = Σ2H(SP ) = (KG,H,ChSet,
RpSet,CmSet) is chameleon.

Proof of Theorem 5.1. Theorem 4.1 implies that H -SP = (KG,H,ChSet,RpSet,
CmSet) is collision-resistant. We now show that the strong HVZK property of SP im-
plies uniformity of H -SP . Fix (pk, sk) ∈ [K(1k)] and also fix C ∈ ChSet(pk). We want
to show that Hpk(C, ·) = StSim(pk, C, ·) is uniformly distributed over CmSet(pk) when
its argument is drawn at random from RpSet(pk). Consider the games of Fig. 7. Let D

be any (computationally unbounded) adversary. Then it suffices to show that

Pr
[
SD ⇒ 1

] = Pr
[
TD ⇒ 1

]

1 Krawczyk and Rabin [30] only require that HK(C2, I (K,T ,HK(C1, Z1), C1, Z1, C2)) = HK(C1, Z1) for
all C1, C2 ∈ ChSet(K) and all Z ∈ RpSet(K). Shamir and Tauman require a stronger condition that is es-
sentially a computational version of ours. It seems to us that the non-transferability of chameleon signatures
required in [30] requires the hash function to meet one of these stronger conditions.
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Game R

(Y,y) ←$ P(pk, sk)
Z ←$ P(pk, sk, C,y)

Return Y

Game S

Z ←$ RpSet(pk)
Y ←$ StSim(pk, C, Z)

Return Y

Game T

Y ←$ CmSet(pk)
Return Y

Fig. 7. Games for proof of uniformity of H -SP in proof of Theorem 5.1. Here pk, sk, C are fixed.

where “GD ⇒1” denotes the event that D outputs 1 on input the output of game G, and
the probability is over the coins of G and D. But this follows because

Pr
[
SD ⇒ 1

] = Pr
[
RD ⇒ 1

]
, (2)

Pr
[
RD ⇒ 1

] = Pr
[
TD ⇒ 1

]
, (3)

where game T is also in Fig. 7. Equation (2) is true by the strong HVZK property. (The
real and simulated conversation transcripts are equally distributed, and hence continue
to be so conditioned on a particular challenge.) Equation (3) is true because our defini-
tion of strong HVZK required that a commitment generated by the prover is uniformly
distributed over CmSet(pk).

To show that H -SP is trapdoor we need to exhibit the full key-generation algo-
rithm and the inversion algorithm. The full key-generation algorithm is simply the key-
generation algorithm K of SP , so that the trapdoor is the secret key of the protocol. The
inversion algorithm is simply the strong prover from the strong completeness condition.
That the trapdoor condition is met is a tautology, since the set SH

pk,C(Y) is exactly the

set SSP
pk,C(Y). �

As a consequence, we obtain the following new chameleon hash functions: H -GQ ,
H -SFS , H -SMS , H -Oka, H -HS . (H -Sch was already known to be chameleon [30].)
This yields numerous new and more efficient instantiations of on-line/off-line signa-
tures [48], chameleon signatures [30] and designated-verifier signatures [28,50]. It also
provides new and more efficient ways to turn weakly-secure signatures into fully-secure
ones that can improve the performance of schemes like [26].

5.3. Chameleon is Sigma

We also prove the converse. The following theorem says that any chameleon hash fam-
ily is a Σ-hash family, meaning the result of applying our Σ2H transform to some
Σ-protocol.

Theorem 5.2. Let H = (KG,H,ChSet,RpSet,CmSet) be a family of chameleon
hash functions. Then there is a Σ-protocol SP = (K,P,V,CmSet,ChSet,RpSet) ∈
Σ(StHVZK) ∩ Σ(sss) ∩ Σ(sc) such that H = Σ2H(SP ) is the Σ-hash family corre-
sponding to SP .

Proof of Theorem 5.2. Since H is trapdoor, it has a full key-generation algorithm K
and an inversion algorithm I . Let the former be the key-generation algorithm of SP .
Now we define the prover algorithm as shown in Fig. 8. Define the verifier V on input
pk, Y‖C‖Z to output 1 if Hpk(C, Z) = Y and Y ∈ CmSet(pk) and C ∈ ChSet(pk) and Z ∈
RpSet(pk), and 0 otherwise. We now need to show that SP satisfies strong HVZK, strong
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P(pk, sk)

C1 ←$ ChSet(pk)
Z1 ←$ RpSet(pk)
Y ← Hpk(C, Z)

y ← (Y, C1, Z1)

Return (Y,y)

P(pk, sk, C2,y)

(Y, C1, Z1) ← y
Z2 ← I (pk, sk, Y, C1, Z1, C2)

Return Z2

Fig. 8. Prover algorithm for the proof of Theorem 5.2. In line 2 of the second column, (Y, C1, Z1) ← y
means we parse y as shown.

Game R

C1 ←$ ChSet(pk)
Z1 ←$ RpSet(pk)
Y ← Hpk(C, Z)

C2 ←$ ChSet(pk)
Z2 ← I (pk, sk, Y, C1, Z1, C2)

Return (pk, Y‖C2‖Z2)

Game S

C ←$ ChSet(pk)
Z ←$ RpSet(pk)
Y ← Hpk(C, Z)

Return
(pk, Y‖C‖Z)

Game T

C1 ←$ ChSet(pk)
Y ←$ CmSet(pk)
Z1 ←$ SH

pk,C1
(Y)

C2 ←$ ChSet(pk)
Z2 ← I (pk, sk, Y, C1, Z1, C2)

Return (pk, Y‖C2‖Z2)

Game U

Y ←$ CmSet(pk)
C2 ←$ ChSet(pk)
Z2 ←$ SH

pk,C2
(Y)

Return
(pk, Y‖C2‖Z2)

Fig. 9. Games for proof of strong HVZK in proof of Theorem 5.2. Here (pk, sk) are fixed.

special soundness, and strong completeness. (We need to also show that SP satisfies
completeness, but this is implied by strong completeness.)

Let StSim be defined by StSim(pk, C, Z) = Hpk(C, Z) . We now show this is a strong
HVZK simulator. Fix (pk, sk) ∈ K(1k) and consider the games of Fig. 9. Game R gener-
ates real protocol transcripts based on the prover algorithm of Fig. 8 while S generates
a simulated transcript based on StSim. We want to show that

Pr
[
RD ⇒ 1

] = Pr
[
SD ⇒ 1

]
(4)

for any (computationally unbounded) adversary D. But the uniformity property implies
that

Pr
[
RD ⇒ 1

] = Pr
[
TD ⇒ 1

]
.

On the other hand, by the trapdoor property we have

Pr
[
TD ⇒ 1

] = Pr
[
UD ⇒ 1

]
.

Re-applying uniformity we have

Pr
[
UD ⇒ 1

] = Pr
[
SD ⇒ 1

]

and so we have Eq. (4).
The collision-resistance of H directly implies strong special soundness of SP . Also,

the trapdoor property of H implies strong completeness of SP by simply letting the
strong prover for the strong completeness condition be the inversion algorithm of the
trapdoor condition. Again, the required conditions are met simply because the sets
SH

pk,C(Y) and SSP
pk,C(Y) are the same. �

Applying this to known chameleon-hash functions like H -Da [17,30] and H -ST [48]
yields new Σ-protocols and hence new identification schemes and, via [16,19], new
commitment schemes.
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6. Σ-Hash Practice and Performance

In this section we cover practical issues related to Σ-hash functions, including per-
formance, performance comparison with existing constructions and implementation re-
sults.

6.1. Extending the Domain

A Σ -hash family H as defined above is actually a (keyed) compression function since
the domain is relatively small. In practice however we need to hash messages of long
and variable length. This would not at first appear to be much of a problem since we
should be able to do MD iteration [18,34]. In fact, this is essentially true but one has
to be careful about a few things. What one would naturally like to do is use the sec-
ond argument to Hpk as the chaining variable. But this requires that outputs of the
compression function can be regarded as chaining values, meaning CmSet(pk) be a
subset of RpSet(pk). Sometimes this is true, as for H -GQ , which in this way lends
itself easily and naturally to MD iteration. But in the case of SFS and SMS we have
CmSet((N, l,u)) = Z

∗
N � Z

+
N = RpSet((N, l,u)). In Appendix A we show how to re-

solve these problems by appropriate “embeddings” that effectively allow the second
input of the compression function to be used as a chaining variable at the cost of 1 bit
in throughput and in particular allows us to run any of our Σ-hash functions in MD
mode. We will not detail the general transform here, but it is instructive to describe the
modified compression function. The public key has the form (N, l,u, v) where N, l,u
are as before and v ∈ QR(N), and Hpk : {0,1}l ×Z

∗
N → Z

∗
N is defined by

Hpk(C, Z) = uC · Z2 · vfN (Z) mod N, (5)

where fN(Z) = 0 if Z ∈ Z
+
N and 1 otherwise. It can be shown that this modified function

is also a Σ-hash, meaning the result of applying Σ2H to a suitably modified version of
the original Σ-protocol that retains the sss, StHVZK and sc properties of the original.
But now CmSet((N, l,u, v)) = Z

∗
N = RpSet((N, l,u, v)) so MD-iteration is possible.

6.2. Metrics

We measure performance of a hash function in terms of rate, which we define as the
average number of bits hashed per group operations. (By “average” we mean when the
data is random.) In this measure, an exponentiation a �→ Aa costs 1.5n group operations
and a twofold multi-exponentiation a, b �→ AaBb costs 1.75n group operations where
n is the length of a and also of b. We will use these estimates extensively below. We can
consider two modes of operation of a given Σ-hash function H -SP , namely compres-
sion and MD. In the first case the data to be hashed by Hpk is the full input C, Z, while in
the second case it is only C. (The second input is the chaining variable which is not part
of the data.) The rate in MD mode is lower than in compression mode for most hash
functions. (SFS is an interesting exception.) Compression mode is relevant when the
function is being used as a chameleon hash, since the data can then be compressed with
a standard (merely collision-resistant) hash function such as SHA-1 before applying the
Σ-hash [30, Lemma 1]. MD mode is relevant when one wants to avoid conventional
hash functions and get the full provable guarantees of the Σ-hash by using it alone. Our
performance evaluations will consider MD mode.
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Table 1. Implementation results. Here w is the “width” parameter determining pre-computation and the
space is the number of group elements that need to be stored.

Σ-hash w KB/s space

H -SFS 0 30.85 n/a
H -SFS 4 67.41 2048
H -SFS 8 118.1 16384
H -SMS 0 914.3 n/a

6.3. Performance of Σ-Hash Functions

H -Sch and H -GQ can be computed with one twofold multi-exponentiation so that they
use 1.75 group operations per bit of data (in MD mode). We now turn to H -SFS . Since
we are considering MD mode performance we refer to the MD-compatible version of
the function from Eq. (5). (But in fact performance is hardly affected by the modifi-
cation.) On the average about half the bits of C are 1 so H -SFS comes in at about 0.5
modular multiplications per bit. This explains the claim of Fig. 1 in regard to H -SFS
without pre-computation. Now we look at how pre-computation speeds it up, using a
block size of l = 512 (the same as MD5 and SHA-1) for illustration. The method is ob-
vious. Pick a “width” w that divides l and let t = l/w. Letting pk = (N, l,u, v) denote
the public key, pre-compute and store the table T with entries

T [i, x] =
w∏

j=1

u
[
(i − 1)w + j

]x mod N
(
1 ≤ i ≤ t, x ∈ {

0, . . .2w − 1
})

.

The size of the table is t2w = l2w/w group elements. Now computing H -SFS takes
t + 2 = 2 + l/w multiplications since

Hpk(C, Z) =
(

t∏

i=1

T [i, xi]
)

· Z2 · vfN(Z) mod N,

where xi is the integer with binary representation C[(i − 1)w + 1] . . . c[iw] (1 ≤ i ≤ t).
The number of group operations per bit is thus [2 + l/w]/l ≈ 1/w, meaning the rate is
w. Figure 1 showed the storage and this rate for w = 4 and w = 8.

Analytical assessment of the performance of H -SMS is difficult, but we have im-
plemented both it and (for comparison) H -SFS . The implementation used a 1024-bit
modulus and (for MD mode) a 512-bit block size. Table 1 shows that H -SMS is about
30 times faster than the basic (no pre-computation) version of H -SFS . The gap drops to
a factor of 15 and 7.5 when compared with the w = 4 and w = 8 pre-computation levels
of H -SFS , respectively. Note that H -SMS here is without pre-computation. (The latter
does not seem to help it much.) These implementation results are on a Dual Pentium IV,
3.2 GHz machine, running Linux kernel 2.6 and using the GMP library [52].

6.4. Comparisons

We now assess performance of previous schemes, justifying claims in Sect. 1. Damgård
[17] shows how to construct collision-resistant hash functions from claw-free permu-
tations [22]. Of various factoring-based instantiations of his construction, the one of
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[22,30], which we denote H -Da , seems to be the most efficient. The key is a modulus
N product of two primes, one congruent to 3 mod 8 and the other to 7 mod 8, and the
hash function HN : {0,1}l ×Z

∗
N → Z

∗
N is defined by HN(m, r) = 4m · rs mod N where

s = 2l . Since multiplying by 4 is cheap, we view it as free and the cost is then one mul-
tiplication per bit, meaning H -SFS is twice as fast. But pre-computation does not help
H -Da since r is not fixed, and the gap in rates increases as we allow pre-computation
for H -SFS as shown in Fig. 1.

The key of Shamir and Tauman’s [48] hash function is a modulus N and an a ∈ Z
∗
N .

With a 1024-bit modulus the chaining variable needs to be 1024 bits as well, so that
with a 512-bit block size the function would take a (512 + 1024)-bit input, regard it as
an integer s, and return as mod N . The computation takes 1.5 multiplications per bit
of the full input, which is 1.5 · (1024 + 512)/512 = 4.5 per bit of data, meaning the
rate is 1/4.5 ≈ 0.22 as claimed in Fig. 1. Since a is fixed, one can use the standard
pre-computation methods for exponentiation. For any v dividing 1024 + 512 = 1536,
the computation takes 1536/v multiplications with a table of 2v · 1536/v group ele-
ments. Note that per data bit the rate is 512/(1536/v) = v/3. To compare to H -SFS
we need to choose parameters so that the storage for the two is about the same, mean-
ing 2w(512/w) ≈ 2v(1536/v). This yields v = 1 for w = 4 and v = 6 for w = 8. This
explains the rates shown in Fig. 1.

7. Improvements to VSH

The performance of a hash function on short inputs is important in practice. (For ex-
ample, a significant fraction of Internet traffic consists of short packets.) We present a
variant VSH∗ of VSH that is up to 5 times faster in this context while remaining proven-
secure under the same assumption as VSH. The improvement stems from VSH∗, unlike
VSH, having a collision-resistant compression function.

Background The key of Contini, Lenstra and Steinfeld’s VSH function [14] is a modu-
lus N product of two primes. The VSH compression function vshN : {0,1}l ×Z

∗
N → Z

∗
N

is defined by

vshN(C, Z) = Z2 ·
l∏

i=1

p
C[i]
i mod N,

where pi is the ith prime and C[i] is the ith bit of C. The hash function VSH is obtained
by MD-iteration of vsh with initial vector 1. A curious feature of VSH is that the com-
pression function is not collision-resistant. Indeed, vshN(c, z) = vshN(c,N −z) for any
c ∈ {0,1}l and z ∈ Z

∗
N . Nonetheless, it is shown in [14] that the hash function VSH is

collision-resistant based on the VSSR assumption. The latter states that given N, l it is
hard to find x ∈ Z

∗
N and integers e1, . . . , el , not all even, such that x2 ≡ p

e1
1 · · · · · p

el

l

(mod N). The proof makes crucial use of the fact that the initial vector is set to 1.

VSH∗ We alter the compression function of VSH so that it becomes (provably)
collision-resistant and then define VSH∗ by MD iteration with the initial vector being
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Table 2. The size of the modulus used here is 1024. The block and the input size are given in bits.

Hash Function block size input size Iterations Avg. time

VSH 128 8 × 128 9 140 µs
VSH∗ 128 8 × 128 1 25 µs

part of the data to be hashed. The first application of the compression function thus con-
sumes much more (1024 bits more for a 1024-bit modulus, for example) of the input,
resulting in significantly improved rate for the important practical case of hashing short
messages. For example, the implementation results of Table 2 show speed increases of
a factor of 5 over VSH when hashing 1024-bit messages. Performance for long mes-
sages is the same as for VSH. VSH∗ and its compression function vsh∗ are provably
collision-resistant under the same VSSR assumption as VSH.

The inspiration comes from H -SMS which we notice is very similar to vsh
but, unlike the latter, is collision-resistant. The difference is that in H -SMS the
primes u[1], . . . ,u[l], v—referring to the MD-compatible version of the function from
Eq. (5)—are quadratic residues. But this turns out to be important for the completeness
of the Σ-protocol rather than for collision-resistance. This leads to the compression
function vsh∗

N : {0,1}l ×Z
∗
N → Z

∗
N defined by

vsh∗
N(C, Z) =

(
l∏

i=1

p
C[i]
i

)

· pfN(Z)

l+1 · Z2 mod N,

where fN(Z) = 0 if Z ∈ Z+
N and 1 otherwise, pi is the ith prime and C[i] is the ith bit

of C. As a check notice that vsh∗
N(C, Z) is unlikely to equal vsh∗

N(C,N − Z) because
fN(Z) �= fN(N − Z), meaning the attack showing vsh is not collision-resistant does
not apply. Of course, this is not the only possible attack, but the proof of strong special
soundness of SMS Proposition 4.3 can be adapted to show that vsh∗ is collision-resistant
under the VSSR assumption. Finally VSH∗ is obtained by MD iteration of vsh∗ but
with the initial vector being the first k − 1 bits of the input. For MD-strengthening, the
standard padding method of SHA-1 is used.

The implementation results given in Table 2 were again obtained on a Pentium IV, 3
GHz machine using the GMP library [52]. We set the block size to 128 for both func-
tions and considered hashing a 1024-bit input. In this case (even taking into account the
increase in length due to MD strengthening) VSH∗ needs 1 application of its compres-
sion function. On the other hand VSH (with their own form of strengthening) needs 9.
The implementation shows that VSH∗ is 5.6 times faster. We need to add that our imple-
mentations (unlike those of [14]) are not optimized, but our goal was more to assess the
comparative than the absolute performance of these hash functions, and this is achieved
because both are tested on the same platform.
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Appendix A. Extending the Domain

Since a Σ-hash has two inputs, there is a natural way to regard it as a compression
function and then run it in MD mode to get a full-fledged hash function. Namely, regard
the first input of Hpk : ChSet(pk) × RpSet(pk) → CmSet(pk) as the data and the second
as the chaining variable. For this to work however, one must be able to view the output
as a chaining value, meaning we need CmSet(pk) ⊆ RpSet(pk). Sometimes this is true,
as for H -GQ , which in this way lends itself easily and naturally to MD iteration. But
in the case of SFS and SMS we have CmSet((N, l,u)) = Z

∗
N �Z

+
N = RpSet((N, l,u)).

In the case of H -Sch , we would like to work over on elliptic curve group because then
the group size can be smaller (about 2160) and computational costs are reduced. How-
ever, when CmSet(〈G〉,p, g,X) = G is an elliptic curve group, a group element is
represented as a pair (x, y) where x ∈ Zp and y is a bit, and this G is not a subset of
RpSet((〈G〉,p, g,X)) = Zp . However, we now present a simple and general way to get
around these problems and in particular make H -SFS , H -SMS and H -Sch amenable to
MD iteration. Let H = (KG,H,ChSet,CmSet,RpSet) be a Σ-hash family. Let d(·) be
an integer valued function called the data length. We now find an embedding e. By this
we mean that epk : {0,1}d(k) ×CmSet(pk) → ChSet(pk)×RpSet(pk) is an injective map
for every pk ∈ [K(1k)] and every k. Now define H d = (K,Hd, {0,1}d(·),CmSet,CmSet)
by

Hd
pk(m,w) = Hpk

(
e
(1)
pk (m,w), e

(2)
pk (m,w)

)

where e
(i)
pk (m,w) is the ith component of the tuple epk(m,w) for i = 1,2. Then H d is

MD-compatible because the range of Hd
pk is the domain of its second argument and thus

the second argument can be used as a chaining variable. On the other hand it is easy to
see that the injectivity of epk implies that H d inherits the collision-resistance of H . So
MD-iteration of H d yields a full-fledged hash function which is collision-resistant.

Let us now apply this to H -SFS , H -SMS , and H -Sch by finding suitable embeddings.
To maximize data throughput, we should choose d as large as possible.

Suppose H = (KG,H,ChSet,RpSet,CmSet) is H -SFS or H -SMS , so that ChSet(pk)
= {0,1}l and RpSet(pk) = Z

+
N and CmSet(pk) = Z

∗
N where pk = (N, l,u) and l =

L(k), with L(·) being the challenge length. Let d(·) = L(·) − 1. For every N the
map fN : Z∗

N → {0,1} × Z
+
N defined by fN(w) = (0,w) if w ≤ N/2 and (1,N − w)

otherwise is a bijection. Let epk : {0,1}l−1 × Z
∗
N → {0,1}l × Z

+
N be defined by

epk(m,w) = (m‖f (1)
N (w),f

(2)
N (w)) where f

(i)
N (w) is the ith component of the pair

fN(w) for i = 1,2. Then e is an embedding, so from the above H d is MD-compatible
and collision-resistant as long as H is collision-resistant. MD iterate H d to get a full-
fledged hash function.
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