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Abstract

The main purpose of this paper is to characterize the calibrability of bounded convex sets in
IRN by the mean curvature of its boundary, extending the known analogous result in dimension 2.
As a by-product of our analysis we prove that any bounded convex set C of class C1,1 has a convex
calibrable set K in its interior, and and for any volume V ∈ [|K|, |C|] the solution of the perimeter
minimizing problem with fixed volume V in the class of sets contained in C is a convex set. As a
consequence we describe the evolution of convex sets in IRN by the minimizing total variation flow.
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1 Introduction

The characterization of convex calibrable sets in the plane in terms of the mean curvature of its
boundary was proved in [27]. Indeed, given a bounded convex set C ⊆ IR2 of class C1,1, the following
statements are equivalent ([27],[22])

(a) C is a solution of the problem

min
X⊆C

P (X)− λC |X| where λC = P (C)
|C| .

(b) There is a vector field z ∈ L∞(IR2, IR2), ‖z‖∞ ≤ 1 such that

−div z = λC in C

z · νC = −1 a.e. in ∂C

(1)

where νC denotes the outer unit normal to ∂C.

(c) ess supp∈∂C k∂C(p) ≤ λC .

This result implies the existence of solutions of the capillary problem in the absence of gravity for any
contact angle γ ∈ (0, π

2 ] (even for γ = 0, [27]). This result was also improved (proving that (a) implies
that C must be convex and of class C1,1) and used in [11] to describe those sets which evolve by the
minimizing Total Variation flow

∂u

∂t
= div

(
Du

|Du|

)
in QT := ]0, T [×IR2, (2)
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without distortion of its boundary, i.e., the sets Ω ⊆ IR2 whose solution of (2) with u(0, x) = χΩ(x) is
given by u(t, x) = (1− P (Ω)

|Ω| t)+χΩ. Later, in [1], using these results the authors described the evolution
by (2) of any convex set in the plane.

Let us mention that the calibrability of plane convex sets in the case of Finsler metrics has been
extensively studied by G. Bellettini, M. Novaga, and E. Paolini [14], (see also [13]) in connection with
the problem of facet breaking of crystals which evolve under anisotropic mean curvature flow. The
development of facets in crystal evolution has also been considered in [25], [26] using a variational
approach.

The main purpose of this paper is to extend the above result to the case of bounded convex sets
of class C1,1 in IRN . The main tools of our analysis will be the study of the variational problems

min
X⊆C

P (X)− λ|X|, λ > 0, (3)

and its relation with the associated variational problem

min
u∈BV (IRN )∩L2(IRN )

∫
IRN

|Du|+ µ

2

∫
IRN

(u− χC)2 dx (µ > 0). (4)

It turns out that the level sets of the solution of (4) embed the solutions of (3) for the values of
λ ∈ [0, µ]. This will be exploited to give the characterization of the calibrability of C in terms of the
mean curvature of its boundary. Indeed, we shall characterize for which values of λ the solution of (3)
coincides with C. Indeed, the set of such λ coincides with the interval [max(λC , (N − 1)‖HC‖∞),∞),
where HC(x) denotes the mean curvature of ∂C at the point x. As an interesting by-product of our
analysis we shall prove that the solutions of (3) are convex sets. Since (3) can be considered as the
functional obtained by applying the Lagrange multiplier method to the area minimizing problem

min
X⊆C,|X|=V

P (X) (5)

where 0 < V < |C|, we shall obtain that, for some range of volumes V , the solutions of this isoperi-
metric problem with fixed volume V in C are convex sets. The range of values of V for which the
above result holds is [|K|, |C|] where K is a convex calibrable set contained in C. A positive answer
to this problem in the case of convex sets C containing a ball B such that ∂B ∩ ∂C is a large circle of
B has been given by E. Stredulinsky and W.P. Ziemer in [41]. There is also a positive answer to this
problem when C is a rotationally symmetric convex body [36].

As a consequence of the characterization of convex calibrable sets in IRN we may describe its
explicit evolution by (2) by means of the same formula than in the 2D case, i.e.,

u(t, x) =
(
1− P (C)

|C|
t
)+

χC .

We can also describe the evolution of any convex set (more generally, of unions of them which satisfy
some additional condition) in IRN .

Let us describe the plan of the paper. In Section 2 we collect some preliminaries about functions
of bounded variation, Green’s formula, the subdifferential of the total variation in IRN , calibrable sets,
and the corresponding Dirichlet problem for total variation in a bounded domain in IRN . Section 3
is devoted to the characterization of calibrability of convex sets in terms of the mean curvature of
its boundary. For that we first study the basic properties of the minimizers of problems 3 and 4.
In Section 4 we prove the convexity of the solutions of 5 when V ∈ [|K|, |C|] where K is a convex
calibrable set contained in C. Section 5 is devoted to the description of the evolution of convex by the
minimizing TV flow (2). We also describe the evolution of several convex sets satisfying an additional
condition meaning that they are sufficiently far apart to have no interaction between them.
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2 Preliminaries

2.1 BV functions and sets of finite perimeter

Let Q be an open subset of IRN . A function u ∈ L1(Q) whose gradient Du in the sense of distributions
is a (vector valued) Radon measure with finite total variation in Q is called a function of bounded
variation. The class of such functions will be denoted by BV (Q). The total variation of Du on Q
turns out to be

sup

{∫
Q

u divz dx : z ∈ C∞
0 (Q; IRN ), ‖z‖L∞(Q) := ess sup

x∈Q
|z(x)| ≤ 1

}
, (6)

(where for a vector v = (v1, . . . , vN ) ∈ IRN we set |v|2 :=
∑N

i=1 v2
i ) and will be denoted by |Du|(Q) or by∫

Q |Du|. It turns out that the map u → |Du|(Q) is L1
loc(Q)-lower semicontinuous. BV (Q) is a Banach

space when endowed with the norm
∫
Q |u| dx + |Du|(Q). We recall that BV (IRN ) ⊆ LN/(N−1)(IRN ).

The total variation of u on a Borel set B ⊆ Q is defined as inf{|Du|(A) : A open , B ⊆ A ⊆ Q}. We
denote by BVloc(Q) the space of functions w ∈ L1

loc(Q) such that wϕ ∈ BV (Q) for all ϕ ∈ C∞
0 (Q).

For results and informations on functions of bounded variation we refer to [4], [21].
A measurable set E ⊆ IRN is said to be of finite perimeter in Q if (6) is finite when u is substituted

with the characteristic function χ
E of E. The perimeter of E in Q is defined as P (E,Q) := |Dχ

E |(Q),
and P (E,Q) = P (IRN \ E,Q). We shall use the notation P (E) := P (E, IRN ). For sets of finite
perimeter E one can define the essential boundary ∂∗E, which is countably (N − 1) rectifiable with
finite HN−1 measure, and compute the outer unit normal νE(x) at HN−1 almost all points x of ∂∗E,
where HN−1 is the (N − 1) dimensional Hausdorff measure. Moreover, |Dχ

E | coincides with the
restriction of HN−1 to ∂∗E.

If µ is a (possibly vector valued) Radon measure and f is a Borel function, the integration of f
with respect to µ will be denoted by

∫
fdµ. When µ is the Lebesgue measure, the symbol dx will be

often omitted.
If E is a subset of IRN of class C1,1, we denote by HE the (HN−1-almost everywhere defined) mean

curvature of ∂E, nonnegative for convex sets. As observed in [12], the following result can be proved
as in [35].

Proposition 1. Let µ ∈ IR, E be a set of class C1,1 and x ∈ ∂E. Assume that there exists an open
set A 3 x such that A ∩ ∂E is the graph of a C1,1 function, and

P (E,A)− µ|E ∩A| ≤ P (E ∪B,A)− µ|(E ∪B) ∩A|, (7)

for any bounded measurable set B with B ⊂ A. Then (N − 1)HE(x) ≥ µ for HN−1-almost every
x ∈ A ∩ ∂E. Similarly, if in place of (7) there holds the inequality

P (E,A)− µ|E ∩A| ≤ P (E \B,A)− µ|(E \B) ∩A|,

then (N − 1)HE(x) ≤ µ for HN−1-almost every x ∈ A ∩ ∂E.

2.2 A generalized Green’s formula

Let Ω be an open subset of IRN . Following [8], let

X2(Ω) := {z ∈ L∞(Ω; IRN ) : div z ∈ L2(Ω)}.

If z ∈ X2(Ω) and w ∈ L2(Ω) ∩BV (Ω) we define the functional (z,Dw) : C∞
0 (Ω) → IR by the formula

< (z, Dw), ϕ >:= −
∫

Ω
w ϕdiv z dx−

∫
Ω

w z · ∇ϕ dx.
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Then (z,Dw) is a Radon measure in Ω,∫
Ω
(z,Dw) =

∫
Ω

z · ∇w dx ∀w ∈ L2(Ω) ∩W 1,1(Ω),

and ∣∣∣∣ ∫
B

(z,Dw)
∣∣∣∣ ≤ ∫

B
|(z,Dw)| ≤ ‖z‖∞

∫
B
|Dw| ∀B Borel set ⊆ Ω.

We denote by θ(z,Dw) ∈ L∞
|Dw|(Ω) the density of (z, Dw) with respect to |Dw|, that is

(z, Dw)(B) =
∫

B
θ(z,Dw) d|Dw| ∀ Borel set B ⊆ Ω. (8)

We recall the following result proved in [8].

Theorem 1. Let Ω ⊂ IRN be a bounded open set with Lipschitz boundary. Let u ∈ BV (Ω) ∩ L2(Ω)
and z ∈ L∞(Ω; IRN ) with div z ∈ L2(Ω). Then there exists a function [z · νΩ] ∈ L∞(∂Ω) such that
‖[z · νΩ]‖L∞(∂Ω) ≤ ‖z‖L∞(Ω;IRN ), and∫

Ω
u divz dx +

∫
Ω

θ(z,Du) d|Du| =
∫

∂Ω
[z · νΩ]u dHN−1.

When Ω = IRN we have the following integration by parts formula [8], for z ∈ X2(IRN ) and
w ∈ L2(IRN ) ∩BV (IRN ): ∫

IRN

w div z dx +
∫

IRN

(z,Dw) = 0. (9)

In particular, if z ∈ X2(IRN ) and Q is bounded and has finite perimeter in IRN , from (9) and (8) it
follows ∫

Q
div z dx =

∫
IRN

(z,−Dχ
Q) =

∫
∂∗Q

θ(z,−Dχ
Q) dHN−1. (10)

If additionally, Q is a bounded open set with Lipschitz boundary, then θ(z,−Dχ
Q) coincides with

[z · νQ].

Remark 1. Let Ω ⊂ IR2 be a bounded Lipschitz open set, and let zinn ∈ L∞(Ω; IR2) with divzinn ∈
L2(Ω), and zout ∈ L∞(IR2 \ Ω; IR2) with divzout ∈ L2

loc(IR
2 \ Ω). Assume that

[zinn · νΩ](x) = −[zout · νIR2\Ω](x) for HN−1 − a.e x ∈ ∂Ω.

Then if we define z := zinn on Ω and z := zout on IR2\Ω, we have z ∈ L∞(IR2; IR2) and divz ∈ L2
loc(IR

2).

2.3 The subdifferential of the total variation. Calibrable sets

Consider the energy functional Ψ : L2(IRN ) → (−∞,+∞] defined by

Ψ(u) :=


∫

IRN

|Du| if u ∈ L2(IRN ) ∩BV (IRN )

+∞ if u ∈ L2(IRN ) \BV (IRN ).

(11)

Since the functional Ψ is convex, lower semicontinuous and proper, then ∂Ψ is a maximal monotone
operator with dense domain, generating a contraction semigroup in L2(IRN ) (see [15]). Next Lemma
gives the characterization of ∂Ψ (see [5, 11] for a proof).

Lemma 1. The following assertions are equivalent:

(a) v ∈ ∂Ψ(u);
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(b)
u ∈ L2(IRN ) ∩BV (IRN ), v ∈ L2(IRN ), (12)

∃z ∈ X2(IRN ) with ‖z‖∞ ≤ 1, such that v = −divz in D′(IRN ),

and ∫
IRN

(z,Du) =
∫

IRN

|Du|. (13)

From now on we shall write v = div
(

Du
|Du|

)
instead of v ∈ ∂Ψ(u).

Given a function g ∈ L2(IRN ), we define

‖g‖∗ := sup
{∣∣∣∣∫

IRN

g(x)u(x) dx

∣∣∣∣ : u ∈ L2(IRN ) ∩BV (IRN ),
∫

IRN

|Du| ≤ 1
}

.

Note that ‖g‖∗ may be infinite. Let us recall the following Lemma ([11],[34]).

Lemma 2. Let f ∈ L2(IRN ) and λ > 0. The following assertions hold.

(a) the function u is the solution of

min
w∈L2(IRN )∩BV (IRN )

D(w), D(w) :=
∫

IRN

|Dw|+ λ

2

∫
IRN

(w − f)2 dx (14)

if and only if there exists z ∈ X2(IRN ) satisfying (13) with ‖z‖∞ ≤ 1 and −λ−1divz = f − u.

(b) The function u ≡ 0 is the solution of (14) if and only if ‖f‖∗ ≤ 1
λ .

(c) We have ∂Ψ(0) = {f ∈ L2(IRN ) : ‖f‖∗ ≤ 1}.

Obviously, part (a) follows from Lemma 1 since ∂Ψ(u) + λ(u − f) 3 0 is the Euler-Lagrange
equation for (14). Part (b) can be found in ([11],[34]), and it is easily deduced from (a). Part (c)
follows from (a) and (b), or as an immediate consequence of duality.

Remark 2. We observe that if z ∈ X2(IRN ), u ∈ BV (IRN ), and (z,Du) = |Du| then |(z,Dχ
{u≥t})| =

|Dχ
{u≥t}| as measures in IRN for almost any t ∈ IR. Indeed, by [8, Proposition 2.7], we have

< (z,Du), ϕ >=
∫ ∞

−∞
< (z,Dχ{u≥t}), ϕ > dt, ϕ ∈ C∞

0 (Ω).

Since |Du|(ϕ) =
∫∞
−∞ |Dχ

{u≥t}|(ϕ), we may write (z, Du) = |Du| as∫ ∞

−∞
< (z,Dχ{u≥t}), ϕ > dt =

∫ ∞

−∞
|Dχ{u≥t}|(ϕ) dt, ϕ ∈ C∞

0 (IRN ),

and this implies our claim.

Definition 1. Let E be a bounded set of finite perimeter in IRN . We say that E is calibrable if there
exists a vector field ξ ∈ L∞(IRN , IRN ) with ‖ξ‖∞ ≤ 1 such that (ξ, DχE) = |DχE | as measures in RN ,
and

−div ξ = λEχE in D′(IRN ), (15)

for some constant λE.
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Notice that, a set of finite perimeter E is calibrable if and only if it exists λE ∈ IR such that
λEχE ∈ ∂Ψ(χE). Observe that if E is calibrable, then λE = P (E)

|E| . Indeed, multiplying (15) by χE

and integrating in IRN we obtain

λE |E| = −
∫

IRN

div ξ χE dx =
∫

IRN

(ξ,DχE) =
∫

IRN

|DχE | = P (E).

Let us recall the following result (see, for instance, [11]). We shall include its proof for the sake of
completeness.

Proposition 2. Let E be a bounded set of finite perimeter in IRN . Assume E to be convex. The
following assertions are equivalent

(i) E is calibrable

(ii) E minimizes the functional
P (X)− λE |X| (16)

on the sets of finite perimeter X ⊆ E.

Proof: (i) → (ii) Let X be a set of finite perimeter in IRN . We have

λE |E ∩X| = −
∫

IRN

div ξ χX dx =
∫

IRN

(ξ,DχX) ≤ P (X).

Hence P (X)− λE |X| ≥ 0 = P (E)− λE |E| for any set of finite perimeter X ⊆ E.
(ii) → (i) Let us prove that the function f := λEχE satisfies ‖f‖∗ ≤ 1. Indeed, if w ∈ L2(IRN ) ∩
BV (IRN ) is nonnegative, we have∫

IRN

f(x)w(x) dx =
∫ ∞

0

∫
IRN

λEχEχ{w≥t} dx dt =
∫ ∞

0
λE |E ∩ {w ≥ t}| dt

≤
∫ ∞

0
P (E ∩ {w ≥ t}) dt ≤

∫ ∞

0
P ({w ≥ t}) dt =

∫
IRN

|Dw|

where we have used that for all t ≥ 0 for which {w ≥ t} is a set of finite perimeter we have that

P (E ∩ {w ≥ t}) ≤ P ({w ≥ t})

which is a consequence of the convexity of E (see, for instance, [3]). Splitting any function ω ∈
L2(IRN )∩BV (IRN ) into its positive and negative part, using the above inequality one can prove that
|
∫
IRN f(x)ω(x) dx| ≤

∫
IRN |Dω|. It follows that ‖f‖∗ ≤ 1. Then, by Lemma 2, there is a vector field

ξ ∈ L∞(IRN ; IRN ) with ‖ ξ ‖∞≤ 1 such that

−div ξ = f = λEχE . (17)

Now, multiplying (17) by χC and integrating by parts, we obtain∫
IRN

(ξ, DχE) = λE

∫
IR2

χE dx = P (E) =
∫

IRN

|DχE |,

hence χE is calibrable.

Proposition 3. Let B be a ball in IRN , and λ > 0. The solution of

u− λ−1div
( Du

|Du|

)
= χB (18)

is u = (1− λB
λ )+χB.

For a proof, we refer to [11], [5].
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2.4 The minimizing TV flow

The following notion of strong solution is adapted from the notion of strong solution in semigroup
sense [15] (see also [5], [11]).

Definition 2. A function u ∈ C([0, T ];L2(IRN )) is called a strong solution of (2) if

u ∈ W 1,2
loc (0, T ;L2(IRN )) ∩ L1

w(]0, T [;BV (IRN ))

and there exists z ∈ L∞ (
]0, T [×IRN ; IRN

)
with ‖z‖∞ ≤ 1 such that

ut = div z in D′ (]0, T [×IRN
)

and ∫
IRN

(z(t), Du(t)) =
∫

IRN

|Du(t)| t > 0 a.e.. (19)

Theorem 2. Let u0 ∈ L2(IRN ). Then there exists a unique strong solution in the semigroup sense u
of (2) in [0, T ] for every T > 0, i.e., u ∈ C([0, T ];L2(IRN )) ∩W 1,2

loc (0, T ;L2(IRN )), u(t) ∈ D(∂Φ) a.e.
in t ∈ [0, T ] and

−u′(t) ∈ ∂Φ(u(t)) a.e. in t ∈ [0, T ].

Moreover, any semigroup solution is a strong solution, and conversely. Finally, if u and v are the
strong solutions of (2) corresponding to the initial conditions u0, v0 ∈ L2(Ω), then

‖u(t)− v(t)‖2 ≤ ‖u0 − v0‖2 for any t > 0. (20)

2.5 The Dirichlet problem

Let Ω be an open bounded subset of IRN with Lipschitz boundary, and ϕ ∈ L1(Ω). Let Ψϕ : L2(Ω) →
(−∞,+∞] be the functional defined by

Ψϕ(u) :=


∫

Ω
|Du|+

∫
∂Ω
|u− ϕ| if u ∈ L2(Ω) ∩BV (Ω)

+∞ if u ∈ L2(Ω) \BV (Ω).

(21)

The functional Ψϕ is convex and lower semicontinuous in L2(Ω), hence ∂Ψϕ is a maximal monotone
operator in L2(Ω).

Let us recall the characterization of ∂Ψϕ given in [6].

Theorem 3. The following conditions are equivalent

(i) v ∈ ∂Ψϕ(u)

(ii) u, v ∈ L2(Ω), u ∈ BV (Ω) and there exists z ∈ X(Ω) with ‖z‖∞ ≤ 1, v = −div(z) in D′(Ω) such
that ∫

Ω
(w − u)v ≤

∫
Ω

z · ∇w − ‖Du‖+
∫

∂Ω
|w − ϕ| −

∫
∂Ω
|u− ϕ|,

∀w ∈ W 1,1(Ω) ∩ L∞(Ω).

(iii) u, v ∈ L2(Ω), u ∈ BV (Ω) and there exists z ∈ X(Ω) with ‖z‖∞ ≤ 1, v = −div(z) in D′(Ω) such
that (z,Du) = |Du| and [z · νΩ] ∈ sign(ϕ− u) HN−1 a.e. on ∂Ω.

The following result was proved in [6].
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Theorem 4. Let fi ∈ L2(Ω), ϕi ∈ L1(∂Ω), i = 1, 2. Assume that f1 ≤ f2 and ϕ1 ≤ ϕ2. Let ui,
i = 1, 2, be the solution of

u + λ∂Ψϕi(u) 3 fi. (22)

then u1 ≤ u2.

Let ε > 0.

Ψε
ϕ(u) :=


∫

Ω

√
ε2 + |Du|+

∫
∂Ω
|u− ϕ| if u ∈ L2(Ω) ∩BV (Ω)

+∞ if u ∈ L2(Ω) \BV (Ω).

(23)

By the results in [32],[6], we know that ∂Ψε
ϕ is a maximal monotone operator which can be characterized

in an analogous way that ∂Ψϕ, and Theorem 4 also holds for ∂Ψε
ϕ. Moreover, as ε → 0, the solutions

of
u + λ∂Ψε

ϕ(u) 3 f,

where f ∈ L2(Ω) converge to the solution of u + λ∂Ψϕ(u) 3 f .

3 A characterization of convex calibrable sets

3.1 Properties of level sets of the solution of a Variational Problem

Proposition 4. Let C be a bounded convex subset of IRN . Let u ∈ BV (IRN )∩L2(IRN ) be the solution
of the variational problem

(Q)λ : min
u∈BV (IRN )∩L2(IRN )

{∫
IRN

|Du|+ λ

2

∫
IRN

(u− χC)2 dx

}
. (24)

Then 0 ≤ u ≤ 1. Let Es := [u ≥ s], s ∈ (0, 1]. Then Es ⊆ C, and, for any s ∈ (0, 1], we have

P (Es)− λ(1− s)|Es| ≤ P (F )− λ(1− s)|F | (25)

for any F ⊆ C.

Proof. Recall that u satisfies the following partial differential equation

u− λ−1div
(

Du

|Du|

)
= χC in IRN . (26)

Let u− = min(u, 0). Multiplying (26) by u− and integrating by parts, we deduce that u− = 0.
Similarly, multiplying (26) by (u− 1)+ we deduce that u ≤ 1. Let us prove that u = 0 outside C. Let
H be a half-plane containing C. Since χC ≤ χH , and v = χH is the solution of (26) with right-hand
side equal to v, by the comparison principle proved in [11] we have that u ≤ χH . This implies that
u = 0 outside C. This implies that Es ⊆ C for all s ∈ (0, 1].

Let F ⊆ C be a set of finite perimeter. By Remark 2, we have that (z,DχEs) = |DχEs | for almost
all s ∈ (0, 1]. Hence, for such an s ∈ (0, 1], we have

−
∫

IRN

div z (χF −χEs) dx =
∫

IRN

(z,DχF )−
∫

IRN

(z,DχEs) =
∫

IRN

(z,DχF )−P (Es) ≤ P (F )−P (Es)

and we deduce

P (F )− P (Es) ≥ λ

∫
IRN

(χC − u)(χF − χEs) = λ

∫
IRN

((χC − s) + (s− u))(χF − χEs).
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Since (s− u)(χF − χEs) ≥ 0 we have

P (F )− P (Es) ≥ λ

∫
IRN

(χC − s)(χF − χEs) = λ(1− s)(|F | − |Es|).

Since all sets Es are contained in C, the perimeter is lower semicontinuous, and the area is continuous
for increasing or decreasing families of sets contained in C, we deduce that (25) holds for any s ∈
(0, 1].

Lemma 3. Let C be a bounded convex subset of IRN of positive measure. Let uλ be the solution of
(Q)λ, λ > 0.

(i) uλ 6= χC for any λ > 0.

(ii) uλ → χC in L2(IRN ) as λ →∞.

(iii) Assume that C has bounded mean curvature. Let Λ := (N − 1)‖HC‖∞. For any λ > 0, we have

uλ ≥ (1−N
Λ
λ

)+χC .

(iv) uλ 6= 0 if and only if λ > 1
‖χC‖BV ∗

.

(v) Assume that C is not calibrable (i.e., it does not exist a vector field z ∈ L∞(IRN , IRN ), ‖z‖∞ ≤ 1
such that −div z = λCχC). For any λ > 1

‖χC‖BV ∗
uλ cannot be a multiple of χC . Thus, for any

such λ, there is some s ∈ [0, 1] such that [uλ ≥ s] 6= C.

Proof: (i) Suppose that there is λ > 0 such that uλ = χC . Then there is a vector field zλ ∈
L∞(IRN , IRN ), ‖zλ‖∞ ≤ 1, such that (zλ, DχC) = |DχC | and

div zλ = 0.

Multiplying this equation by χC and integrating in IRN , we obtain

0 = −
∫

IRN

div zλ χC dx =
∫

IRN

(zλ, DχC) =
∫

IRN

|DχC | = P (C).

This contradiction proves that uλ 6= χC .
(ii) Since ∫

IRN

|Duλ|+
λ

2

∫
IRN

(uλ − χC)2 dx ≤
∫

IRN

|DχC | = P (C)

we deduce that ∫
IRN

(uλ − χC)2 dx ≤ 2
λ

P (C)

i.e. uλ → χC in L2 as λ →∞. Moreover, uλ is bounded in BV (IRN ).
(iii) By definition of Λ, we have that each principal curvature of ∂C is ≤ Λ. Thus there is a ball B of
radius 1

Λ which is osculating at each point of ∂C from inside ([39], Corollary 3.2.10). Let p ∈ ∂C, let
Bp be the corresponding osculating ball. Let us compare uλ with the solution up of

u− λ−1div
( Du

|Du|

)
= χBp .

Since χBp ≤ χC , by the comparison principle [11] we deduce that up ≤ uλ. The solution up is given
explicitly by

up = (1−
λBp

λ
)+χBp .
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But
λBp =

P (Bp)
|Bp|

=
N

1/Λ
= NΛ.

Hence
up = (1−N

Λ
λ

)+χBp .

Since this is true for any p ∈ ∂C, and also for any p in the interior of C, we deduce that

uλ ≥ (1−N
Λ
λ

)+χC .

(iv) We know that uλ is characterized by the solution of

uλ − λ−1div zλ = χC

where zλ ∈ L∞(IRN , IRN ), ‖zλ‖∞ ≤ 1, with (zλ, Duλ) = |Duλ|. Thus uλ = 0 if and only if −div zλ =
λχC , i.e., if and only if ‖λχC‖BV ∗ ≤ 1. Statement (iv) is proved.
(v) Suppose that for some λ > 1

‖χC‖BV ∗
, we have uλ = cλχC for some constant 0 ≤ cλ ≤ 1. Observe

that, by (i), cλ < 1, and, by (iv), cλ > 0. Then

−div zλ = λ(1− cλ)χC

Since (zλ, Duλ) = |Duλ|, and cλ > 0, we have that (zλ, DχC) = |DχC | = P (C). Multiplying the PDE
by χC and integrating by parts we deduce that

λ(1− cλ) = λC

Hence
−div zλ = λCχC ,

and therefore C is calibrable, a contradiction. The final assertion is a simple consequence of the
first.

Lemma 4. For any λ > 0, let us consider the problem

(P )λ : min
F⊆C

P (F )− λ|F |. (27)

Then

(i) Let Cλ, Cµ be minimizers of (P )λ, and (P )µ respectively. If λ < µ, then Cλ ⊆ Cµ.

(ii) Let µ > λ. Assume that C is a solution of (P )λ. Then C is a solution of (P )µ.

(iii) Let λn ↑ λ. Then C∪
λ := ∪nCλn is a minimizer of (P )λ. Moreover P (Cλn) → P (C∪

λ ). Similarly,
if λn ↓ λ, then C∩

λ := ∩nCλn is a minimizer of (P )λ, and P (Cλn) → P (C∩
λ ).

(iv) Assume that C has bounded mean curvature. Let Λ := (N − 1)‖HC‖∞. Then C is a solution of
(P )λ for any λ ≥ NΛ.

Proof: (i) Observe that we have

P (Cλ)− λ|Cλ| ≤ P (Cλ ∩ Cµ)− λ|Cλ ∩ Cµ|

P (Cµ)− µ|Cµ| ≤ P (Cλ ∪ Cµ)− µ|Cλ ∪ Cµ|.

Adding both inequalities and using that for any two sets of finite perimeter X, Y in IRN we have

P (X ∩ Y ) + P (X ∪ Y ) ≤ P (X) + P (Y ) (28)
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we obtain that
λ(|Cλ ∩ Cµ| − |Cλ|) ≤ µ(|Cµ| − |Cλ ∪ Cµ|)

i.e.,
µ|Cλ \ Cµ| ≤ λ|Cλ \ Cµ|.

Since λ < µ, this implies that |Cλ \ Cµ| = 0, hence Cλ ⊆ Cµ.
(ii) It follows as a consequence of (i).
(iii) Let λn ↑ λ. For each n and each F ⊆ C, we have

P (Cλn)− λn|Cλn | ≤ P (F )− λn|F |

Using the lower semicontinuity of the perimeter we deduce that

P (C∪
λ )− λ|C∪

λ | ≤ P (F )− λ|F |,

i.e, C∪
λ is a minimizer of (P )λ. Now, taking lim sup in

P (Cλn)− λn|Cλn | ≤ P (C∪
λ )− λn|C∪

λ |

we have that
lim sup

n
P (Cλn) ≤ P (C∪

λ ).

Using this, together with the lower semicontinuity of the perimeter, we deduce that limn P (Cλn) =
P (C∪

λ ). The proof of the other assertion is similar.
(iv) By (ii), it suffices to prove that C is a solution of (P )NΛ. For that let η > NΛ. Take 0 <
sn < 1 −N Λ

η such that η(1 − sn) ↓ NΛ. We observe that, by Lemma 3.(iii), [uη ≥ sn] = C and, by
Proposition 4, is a minimum of

P (F )− η(1− sn)|F |. (29)

Now, by assertion (iii) in the present Lemma, we deduce that C is also a minimum of

P (F )−NΛ|F |. (30)

Remark 3. In Proposition 4 we have proved that for any s ∈ (0, 1], the level set [uλ ≥ s] is a
minimizer of (P )λ(1−s). Moreover, by Lemma 4, the sets [uλ ≥ s]∪ := ∪ε>0[uλ ≥ s + ε], s ∈ [0, 1), and
[uλ ≥ s]∩ := ∩ε>0[uλ ≥ s − ε], s ∈ (0, 1], are also minimizers of (P )λ(1−s) (obviously [uλ ≥ 1]∪ = ∅
is also a minimizer of (P )0). Notice that, except on countably many values of s, they coincide with
[uλ ≥ s].

3.2 The concavity of solutions of (Q)λ

Our purpose is to prove the following result.

Theorem 5. Let C be a bounded convex domain in IRN of class C1,1 such that (N − 1)HC ≤ 1
R ,

R > 0. If λ ≥ 2N
R , then the solution uλ of (Q)λ is concave in C. In particular [uλ ≥ s] is convex for

any s ∈ [0, 1].

Before going into the proof, we observe that, being concave in C, uλ is continuous in C. In
particular [uλ ≥ s]∩ = [uλ ≥ s] and [uλ ≥ s]∪ = [uλ > s]. Moreover [uλ ≥ s] = [uλ > s] (modulo a
null set) for any s ∈ (0,max(uλ)).

For that we recall two auxiliary results. The following theorem was proved by Korevaar in [30]
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Theorem 6. Let Ω be a C1, strictly convex bounded domain in IRN . Let b : IR × IRN → IR be such
that

∂b

∂u
> 0

∂2b

∂u2
≥ 0.

Assume that u ∈ C(Ω) ∩ C2(Ω) satisfies

div
( Du√

1 + |Du|2
)

= b(u,Du)

and the graph of u is a C1 surface above Ω making zero contact angle with ∂Ω× IR, i.e.,

Du√
1 + |Du|2

· νΩ = −1. (31)

Then u is a concave function.

The sense of the boundary condition (31) will be made precise during the proof of Theorem 5. Let
us recall the following result which was proved by Atkinson and Peletier in [9].

Theorem 7. Let f : [γ0, γ] → IR be a Lipschitz function such that f > 0 on [γ0, γ]. Let us consider
the problem

div
( Du√

1 + |Du|2
)

+ f(u) = 0 in IRN , N ≥ 2. (32)

Let
fm = min

u∈[γ0,γ]
f(u), fM = max

u∈[γ0,γ]
f(u)

and let L = N−1
N . Assume that

(γ − γ0)(fm − LfM ) ≥ 1. (33)

Then there are numbers R̃ > 0 and U ∈ (γ0, γ) and a radial solution of (32) such that

0 > u′(r) > −∞, γ0 < u(r) < γ for 0 < r < R̃, and

u′(r) → −∞, u(r) → U as r → R̃−.

and satisfying the inequalities
1

fM − Lfm
≤ R̃ ≤ 1

fm − LfM
(34)

γ − 1
fm − LfM

≤ U ≤ γ − 1
fM − Lfm

(35)

Theorem 8. Let C be a bounded convex domain in IRN of class C1,1. Assume that (N − 1)HC ≤ 1
R ,

R > 0. Let λ ≥ 2N
R . Let us consider the following problem

u− λ−1div
( Du√

ε2 + |Du|2
)

= 1 in C

u = 0 on ∂C

(36)

Then there is a unique solution uε of (36) such that 0 ≤ uε ≤ 1. Moreover uε ≥ α > 0 in a neighborhood
of ∂C for some α > 0. Hence, u satisfies[ Duε√

ε2 + |Duε|2
· νC

]
= sign(0− uε) = −1 on ∂C. (37)
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Proof. Existence and uniqueness of a solution uε of (36) satisfying the Dirichlet boundary condition
in the generalized sense follows by the results in [7],[32]. Multiplying (36) by test functions as in the
proof of Proposition 4 and integrating by parts we deduce that 0 ≤ uε ≤ 1.

Let us prove that uε ≥ α > 0 for some α > 0. For that we shall use Theorem 7. Since (N−1)HC ≤
1
R , by [39] Corollary 3.2.10, we know that at each point p ∈ ∂C, there is a ball Bp of radius R such
that Bp ⊆ C and p ∈ ∂Bp.

Lemma 5. There is a radius R̃ ≤ R and radial solution uB̃ of

u− λ−1div
( Du√

ε2 + |Du|2
)

= 1 in B̃ = B(0, R̃)

u = 0 on ∂B̃

(38)

such that
0 > u′

B̃
(r) > −∞, U < uB̃(r) < γ for 0 < r < R̃, and

u′
B̃

(r) → −∞, uB̃(r) → U as r → R̃−.

for some values γ > 0, U > 0.

Proof. By rescaling vε
B̃

(x) := uB̃(x
ε ), we may look for a radial solution of

div
(

Dv√
1+|Dv|2

)
+ λ

ε (1− v) = 0 in εB̃

v = 0 on ∂(εB̃).

(39)

We shall obtain it as an application of Theorem 7. Let γ0 = 0, and 0 < γ < 1 to be precised in a
moment. In this case f(u) = λ

ε (1− u), hence

fm =
λ

ε
(1− γ), fM =

λ

ε

and assumption (33) amounts to write

γ
λ

ε
(1−Nγ) ≥ N. (40)

By Theorem 7 there exists a radius Rλ satisfying the statement of that Theorem. The inequality (34)
can be written as

N

1 + (N − 1)γ
≤ λRλ

ε
≤ N

1−Nγ
. (41)

Let us fix γ = 1
2N and we look for solutions v of (39) bounded by γ = 1

2N . Assumption (40) can be
written as

λ ≥ 4N2ε, (42)

and inequality (41) as
2N2

3N − 1
≤ λRλ

ε
≤ 2N. (43)

We fix λ ≥ 4N2ε. Since we need that Rλ ≤ εR, by (43), this will be guaranteed if

2Nε

λ
≤ εR

i.e. if λ ≥ 2N
R . Finally, observe that (35) can be written as

1
2N

− 2Nε

λ
≤ U ≤ 1

2N
− 2N2ε

λ(3N − 1)
(44)
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Hence, if we take
λ > 4N2ε, (45)

then U = min vε
B̃

> 0. Summarizing, if we take

ε <
1

2NR
and λ ≥ 2N

R
,

then (45) holds and, by Theorem 7, we have a solution vε
B̃

of the PDE in (39) on εB̃, where B̃ = B(0, R̃)
and R̃ = Rλ

ε ≤ R, such that vε
B̃

> 0 on ∂(εB̃), the graph of vε
B̃

having zero contact angle with ∂(εB̃)×IR.
Hence there is a solution uB̃ of the PDE in (38) such that uB̃ ≥ α > 0 on ∂B̃, and this solution has
zero contact angle with ∂B̃ × IR.

Now, since uB̃ has a zero contact angle with ∂B̃ × IR, we have

DuB̃√
ε2 + |DuB̃|2

· νB̃ = −1 = sign(0− uB̃) on ∂B̃.

Since Theorem 3 in Subsection 2.5 also holds for ∂Ψε
ϕ [7],[32], we deduce that uB̃ represents a solution

of (38) with Dirichlet boundary data on B̃.

We come back to the proof of Theorem 8. By our remarks previous to the proof of Lemma 5 we
know that at each point p ∈ ∂C, there is a ball B̃p of radius R̃ such that B̃p ⊆ C and p ∈ ∂B̃p.
Since the solution uε of (36) in C satisfies uε ≥ 0 in B̃p, by applying the comparison principle for the
problem (38) in B̃p instead of B̃ (see Subsection 2.5) we deduce that uε ≥ uB̃p

≥ α. Since this is true

for all balls B̃p, we deduce that uε ≥ α on a neighborhood of ∂C. Finally, by Theorem 3 in Subsection
2.5 we have (37).

Proof of Theorem 5. Assume first that C is a bounded strictly convex domain in IRN of class C4.
Let uε be the solution constructed in Theorem 8, and let vε(x) = uε(x

ε ). We know that vε(x) is a
solution of

div
(

Dv√
1+|Dv|2

)
+ λ

ε (1− v) = 0 in εC, (46)

satisfying [ Dvε√
1 + |Dvε|2

· νεC
]

= sign(0− vε) = −1 on ∂(εC). (47)

Moreover, by the results of L. Simon and J. Spruck [40], since C is a bounded convex domain of class
C4, we have that vε ∈ C2(εC) ∩ C(εC). Let us clarify this conclusion. By the result of L. Simon
and J. Spruck [40], there is a solution wε ∈ C2(εC) ∩ C(εC) of (46), the boundary condition being
understood in the following sense:

lim
η→0+

1
η

∫
W∩[d(x)<η]

|Twε · ∇d(x) + 1| dx = 0 (48)

for each W ⊆ εC, where d(x) = d(x, ∂(εC)), and

Twε :=
Dwε√

1 + |Dwε|2
.

Let us prove that
[Twε · νεC ] = −1 on ∂(εC). (49)

For that, let ϕ ∈ C1(εC), and let us multiply the PDE (46) by ϕ and integrate it on (εC)δ := {x ∈
(εC) : d(x) ≥ δ} for δ > 0 small enough. After integrating by parts, we obtain∫

(εC)δ

f(wε)ϕ dx = −
∫

(εC)δ

div Twε ϕ dx =
∫

(εC)δ

Twε ·Dϕ dx−
∫

∂(εC)δ

(Twε · ν(εC)δ)ϕ dx (50)
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where f(wε) = λ
ε (1− wε). Let

G(x) =
1
η
χ

[d<η]|Twε · ∇d(x) + 1|.

Now, we observe that (48) proves that G(x) → 0 in L1(W ), hence also

G(x)ϕ(x) → 0 in L1(W ). (51)

Take W = εC. If we write∫
εC

G(x)ϕ(x) dx =
∫ η

0

∫
∂(εC)s

G(x)ϕ(x) dHN−1 ds,

using (51) we deduce that for some sequence δn → 0 we have∫
∂(εC)δn

|Twε · ∇d(x) + 1|ϕ(x) dHN−1 → 0

as δn → 0. Now, we take δ = δn and pass to the limit as δ → 0 in (50) to obtain∫
(εC)

f(wε)ϕ dx =
∫

(εC)
Twε ·Dϕ dx−

∫
∂(εC)

(−1)ϕ dx

= −
∫

(εC)
div Twε ϕ dx +

∫
∂(εC)

[Twε · ν(εC)]ϕ dx−
∫

∂(εC)
(−1)ϕ dx.

Since div Twε = f(wε) the above equality implies that [Twε · ν(εC)] = −1 on ∂(εC). We conclude that
wε is a solution of (46) and, both vε and wε satisfy the same boundary condition given in (47) and
(49). A uniqueness result for this equation proves that wε = vε ([7],[32]). Hence vε ∈ C2(εC)∩C(εC).

Under these circumstances, by Korevaar’s Theorem [30], we deduce that vε is concave. Hence, also
uε is concave. Since, as ε → 0, uε converges to the solution wλ of

u− λ−1div
( Du

|Du|

)
= 1 in C

u = 0 on ∂C

(52)

we deduce that wλ is also concave. Moreover we know that wλ ≥ β > 0 (comparison with balls), but
we may also deduce this lower bound from Theorem 8 and Lemma 5 (a derivation based on inequality
(35)). Thus the vector field ξλ, ‖ξλ‖∞ ≤ 1, satisfies (ξλ, Dwλ) = |Dwλ|, wλ − div ξλ = 1 on C, and
[ξλ · νC ] = −1. Hence, if we define wλ = 0 outside C, we have that wλ is a solution of (26) in IRN .
Hence wλ = uλ. We conclude that uλ is concave in C. We have proved Theorem 5 when C is strictly
convex and of class C4.

Let us consider now the general case where C is a bounded convex set of class C1,1 with (N−1)HC ≤
1
R . Let Cn be a sequence of bounded strictly convex sets of class C4 such that C ⊆ Cn and C = ∩nCn.
Moreover we may assume that (N − 1)HCn ≤ 1

Rn
with Rn → R. By the previous paragraph the

solution un of

u− λ−1div
( Du

|Du|

)
= χCn in IRN

is concave. Since un converges to the solution of

u− λ−1div
( Du

|Du|

)
= χC in IRN

we deduce that uλ is concave in C. The Theorem is proved.
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3.3 A characterization of calibrable sets by its mean curvature

Proposition 5. Let C be a bounded convex subset of IRN of class C1,1. Let µn → µ. Let Cn be a
minimizer of (P )µn. Assume that Cn is a sequence of convex sets converging to C, and Cn 6= C. Then
µ ≤ (N − 1)‖HC‖∞.

Proof. Observe that our assumptions imply that C is a minimizer of (P )µ. We recall that the integral
of the mean curvature of a convex set K

B(K) =
∫

∂K
HK dS,

being a multiple of a quermassintegral [39], is an additive, continuous, and monotone functional. Since
Cn ⊆ C and (N − 1)HCn = µn on ∂Cn \ ∂C we may write

0 ≤ B(C)−B(Cn) =
∫

∂C
HC dS −

∫
∂Cn

HCn dS =
∫

∂C\∂Cn

HC dS −
∫

∂Cn\∂C
HCn dS

≤ ‖HC‖∞HN−1(∂C \ ∂Cn)− µn

(N − 1)
HN−1(∂Cn \ ∂C),

hence
µnHN−1(∂Cn \ ∂C) ≤ (N − 1)‖HC‖∞HN−1(∂C \ ∂Cn). (53)

Assume first that HN−1(∂C \ ∂Cn) does not converge to 0 as n → ∞. Since Cn ⊆ C and both sets
are convex we have that P (Cn) ≤ P (C). Since

0 ≤ P (C)− P (Cn) = HN−1(∂C \ ∂Cn)−HN−1(∂Cn \ ∂C), (54)

and P (Cn) → P (C), dividing by HN−1(∂C \ ∂Cn), and letting n →∞, we obtain

1− HN−1(∂Cn \ ∂C)
HN−1(∂C \ ∂Cn)

=
P (C)− P (Cn)
HN−1(∂C \ ∂Cn)

→ 0.

Assume now that HN−1(∂C \ ∂Cn) → 0. Since C minimizes (P )µ, we have

P (C)− µ|C| ≤ P (Cn)− µ|Cn|,

hence, using the isoperimetric inequality, we may write

0 ≤ P (C)− P (Cn) ≤ µ|C \ Cn| ≤ µP (C \ Cn)N/(N−1)

≤ µ(HN−1(∂C \ ∂Cn) +HN−1(∂Cn \ ∂C))N/(N−1)

≤ 2N/(N−1)µHN−1(∂C \ ∂Cn)N/(N−1),

where the last inequality follows from the convexity of Cn. Using (54) we may write the above
inequality as

0 ≤ HN−1(∂C \ ∂Cn)−HN−1(∂Cn \ ∂C) ≤ 2N/(N−1)µHN−1(∂C \ ∂Cn)N/(N−1).

Dividing by HN−1(∂C \ ∂Cn), we obtain

0 ≤ 1− HN−1(∂Cn \ ∂C)
HN−1(∂C \ ∂Cn)

≤ 2N/(N−1)µHN−1(∂C \ ∂Cn)1/(N−1)

Letting n →∞, we deduce that

HN−1(∂Cn \ ∂C)
HN−1(∂C \ ∂Cn)

→ 1 as n →∞.

Thus, in any case, dividing (53) by HN−1(∂C \ ∂Cn) and letting n →∞ we obtain that

µ ≤ (N − 1)‖HC‖∞.
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Theorem 9. Let C be a bounded convex subset of IRN of class C1,1. Let Λ := (N − 1)‖HC‖∞. Let
Cµ be the solution of (P )µ, µ > 0. Then Cµ = C if and only if µ ≥ max(λC ,Λ).

Proof. Assume that Cµ = C is a solution of (P )µ. Then (N − 1)HC ≤ µ is a consequence of
Proposition 1. On the other hand, P (C)− µ|C| ≤ P (∅)− µ|∅| = 0, i.e., µ ≥ λC .

Assume now that µ ≥ max(λC ,Λ), but C is not a minimizer of (P )µ. In particular, by Proposition
2 and Lemma 4.(ii), C is not calibrable. We shall construct a sequence of sets Eλ 6= C each one being
a solution of (P )µλ

with µλ → β, β > µ. Let λ > max(NΛ, 1
‖χC‖∗

, µ). By Lemma 3.(iii), we know

that uλ ≥ (1−N Λ
λ )+χC . Let us define

βλ := inf{γ : uλ ≥ (1− γ

λ
)+χC}.

Obviously, we have βλ ≤ NΛ, and

uλ ≥ (1− βλ

λ
)+χC . (55)

Case βλ ≤ µ. Take s = 1 − µ
λ . Then, by Proposition 4, [uλ ≥ s] is a solution of (P )λ(1−s) = (P )µ.

Finally we observe that [uλ ≥ s] = C. Thus C is a solution of (P )µ. Hence, we may assume that the
following case holds.

Case µ < βλ ≤ NΛ. For each λ > max(NΛ, 1
‖χC‖∗

), take sλ ∈ (1− βλ
λ , 1− βλ

λ + ελ
λ ], ελ > 0 a sequence

converging to 0. Then
βλ − ελ ≤ λ(1− sλ) < βλ.

Let Eλ = [uλ ≥ sλ]. Since λ(1 − sλ) < βλ, and by Lemma 3.(v), we know that uλ is not constant,
by an appropriate choice of sλ we may assume that Eλ 6= ∅, Eλ 6= C. By Lemma 3.(ii), choosing sλ

sufficiently near 1 − βλ
λ , i.e., ελ sufficiently small, we have that Eλ → C as λ → ∞. Without loss of

generality me may assume that βλ → β where µ ≤ β ≤ NΛ. If β = µ, then λ(1− sλ) → µ. Since Eλ

is a solution of (P )λ(1−sλ), then C would be a solution of (P )µ, and this would conclude. Therefore
we may assume that µ < β ≤ NΛ.

Summarizing, Eλ is a solution of (P )µλ
with µλ := λ(1 − sλ) → β with µ < β ≤ NΛ, and Eλ 6= C,

Eλ → C.
Moreover, since Eλ is an upper level set of uλ and λ can be taken ≥ 2NΛ (recall that λ → ∞), by
Theorem 5, we know that uλ is concave, hence, Eλ is convex. By Proposition 5, we have that

β ≤ (N − 1)‖HC‖∞ = Λ ≤ µ,

and we obtain a contradiction. We have proved that C minimizes (P )µ.

Corollary 1. Let C be a bounded convex subset of IRN of class C1,1. Then E = C is a solution of

min
F⊆C

P (F )− λC |F |. (56)

if and only if (N − 1)HC ≤ λC .

Remark 4. Corollary 1 extends to IRN the analogous result proved in [27] when N = 2. From
Corollary 1 and Theorem 1 in [22] (see also [19], [28]), if (N−1)HC ≤ λC we deduce that the capillary
problem in absence of gravity can be solved for any angle γ ∈ (0, π

2 ].

Remark 5. Observe that, if C is not calibrable, then NΛ ≥ 1
‖χC‖∗

. Otherwise, ‖NΛχC‖∗ ≤ 1

and there would exist a vector field z ∈ L∞(IRN , IRN ) with ‖z‖∞ ≤ 1 such that −div z = NΛχC .
Multiplying by χC and integrating in IRN we obtain

NΛ|C| =
∫

IRN

(z,DχC) ≤ P (C).

Hence Λ ≤ NΛ ≤ λC , and C would be calibrable, by Corollary 1. In particular, in the proof of the
second case of Theorem 9 it suffices to take λ > NΛ.

Remark 6. Taking into account the regularity results of Korevaar and Simon [31], the above results
can be extended to the case of crystalline norms φ. This will be considered in a subsequent paper.
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4 Convexity of the minima of the perimeter with fixed volume

We assume that C is a bounded convex set of class C1,1.

Proposition 6. Let α ≥ 2N
R , λ > α(1 − ‖uα‖∞) where uα denotes the solution of (Q)α. Then (P )λ

has a unique solution. Moreover, the solution is convex.

Proof. Let F be a minimizer of (P )λ. Let us write λ = α(1− s) for some s ∈ (0, 1), s < ‖uα‖∞. Let
sn ↑ s, tn ↓ s. Since α(1− sn) ↓ λ, and α(1− tn) ↑ λ, by Lemma 4.(i), we have that

∪nCα(1−tn) ⊆ F ⊆ ∩nCα(1−sn).

where Cα(1−tn) = [uα ≥ tn], Cα(1−sn) = [uα ≥ sn]. Finally, since uα is concave and s < ‖uα‖∞, we
have that

∪nCα(1−tn) = ∩nCα(1−sn) = [uα ≥ s] (modulo a null set).

Hence F = [uα ≥ s] and the Proposition follows. Being a level set of uα, the convexity of F follows
from the concavity of uα.

From Proposition 6 and Lemma 4.(iii) we deduce the following consequence.

Proposition 7. Let α, β ≥ 2N
R . Then α(1− ‖uα‖∞) = β(1− ‖uβ‖∞).

Proof. Assume that these two numbers are not equal. Without loss of generality, we may assume
that

α(1− ‖uα‖∞) < β(1− ‖uβ‖∞).

Let us take λ such that α(1− ‖uα‖∞) < λ < β(1− ‖uβ‖∞). Let us write λ = α(1− s) = β(1− t) for
some values s < ‖uα‖∞, and t > ‖uβ‖∞. Since [uβ ≥ t] = ∅, and, by Proposition 6, the solution of
(P )λ is unique, being [uα ≥ s] a solution of (P )λ, we deduce that [uα ≥ s] = ∅, a contradiction. This
proves our proposition.

Let λ∗ be the unique value of α(1 − ‖uα‖∞), for α ≥ 2N
R , determined by the above proposition.

Using Lemma 4.(iii), and Propositions 6 and 7 we obtain the following result.

Corollary 2. If Cλ denotes the minimum of (P )λ, the functions λ → P (Cλ) and λ → |Cλ| are
continuous for λ ∈ (λ∗,∞).

Proposition 8. Let α, β ≥ 2N
R . Then [uα ≥ ‖uα‖∞] = [uβ ≥ ‖uβ‖∞], and

λ∗ =
P ([uα ≥ ‖uα‖∞])
|[uα ≥ ‖uα‖∞]|

. (57)

As a consequence, we obtain that this set is calibrable.

Proof. Since [uα ≥ ‖uα‖∞− 1
αn ], and [uβ ≥ ‖uβ‖∞− 1

βn ] are both solutions of (P )λ∗+ 1
n
, we have that

[uα ≥ ‖uα‖∞ − 1
αn

] = [uβ ≥ ‖uβ‖∞ − 1
βn

].

Since
[uα ≥ ‖uα‖∞] = ∩n[uα ≥ ‖uα‖∞ − 1

αn
],

and
[uβ ≥ ‖uβ‖∞] = ∩n[uβ ≥ ‖uβ‖∞ − 1

βn
]

we deduce that [uα ≥ ‖uα‖∞] = [uβ ≥ ‖uβ‖∞], and this set minimizes (P )λ∗ .
Now, since [uα ≥ ‖uα‖∞+ ε] = ∅ is a solution of (P )λ∗−λε, for all ε > 0, by Lemma 4.(iii), we have

that ∅ is also a solution of (P )λ∗ . Then

P ([uα ≥ ‖uα‖∞])− λ∗|[uα ≥ ‖uα‖∞]| = P (∅)− λ∗|∅| = 0,

and (57) follows. Since [uα ≥ ‖uα‖∞] is a minimizer of (P )λ∗ we deduce that this set is calibrable.

Collecting the above results, we have obtained the following Theorem.
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Theorem 10. Let C be a bounded convex set of class C1,1. Then there is a convex calibrable set
K ⊆ C. Moreover K minimizes

min
F⊆C

P (F )− λK |F |. (58)

For any λ > λK , there is a unique minimizer Cλ of (P )λ and the function λ → Cλ is increasing and
continuous. Moreover λ → P (Cλ) is also continuous.

Let us state without proof the following observation.

Lemma 6. Let C be a bounded convex subset of IRN . Let µ ≥ 0 and let E be a solution of the
variational problem

min
F⊆C

P (F )− µ|F |. (59)

Let V = |E|. Then E is a solution of
min

F⊆C,|F |=V
P (F ). (60)

Theorem 11. Let C be a bounded convex set of class C1,1. For any V ∈ [|K|, |C|] there is a unique
convex solution of the constrained isoperimetric problem (60).

Proof. Any solution of (60) corresponding to a value V ∈ [|K|, |C|] coincides with the solution
obtained from the corresponding problem (P )λ for some λ ∈ [λK ,∞). Indeed, if V ∈ [|K|, |C|], there
is a value of λ ∈ [λK ,∞) such that, if Cλ is the minimum of (P )λ, then |Cλ| = V . By Lemma
6 we know that Cλ is a solution of (60). Now, let Q be another solution of (60). We have that
P (Q) = P (Cλ), and |Q| = |Cλ|. Hence

P (Q)− λ|Q| = P (Cλ)− λ|Cλ| ≤ P (F )− λ|F |

for any F ⊆ C. Thus, Q is a minimum of (P )λ, hence Q = Cλ.

Remark 7. By virtue of Lemma 6 and Proposition 4, the algorithm described in [16], [17], permits
to compute the solution of (60) for any V ∈ [|K|, |C|].

5 Evolution of convex sets in IRN by the minimizing Total Variation
flow

5.1 The evolution of a convex calibrable set

We are interested in computing the evolution of convex sets by the minimizing Total Variation flow,
i.e., the solution of the equation

∂u

∂t
= div

(
Du

|Du|

)
in QT := ]0, T [×IR2, (61)

coupled with the initial condition
u(0) = u0 ∈ L2(IR2), (62)

when u0 = χC , C being a bounded convex subset of IRN . Since we need the results of Section 4 we
shall assume that C is of class C1,1.

Let Ω be a set of finite perimeter in IRN . We shall say that the set Ω decreases at constant speed
λ if

u(t, x) := (1− λt)+ χΩ(x) (63)

is the strong solution of (61) and (62) corresponding to u0 = χΩ. It can be easily checked (see [11])
that Ω decreases at speed λ if and only if the function v := χΩ satisfies the equation

−div
(

Dv

|Dv|

)
= λv, (64)
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i.e., if and only if there exists a vector field ξ ∈ L∞(IRN ; IRN ) such that ‖ξ‖∞ ≤ 1,

−div ξ = λv (65)

and ∫
IRN

(ξ,Dv) =
∫

IRN

|Dv|. (66)

In other words, the convex set decreases at constant speed if and only if it is calibrable. Now, using
Theorem 9 we obtain a characterization of the bounded convex sets of class C1,1 which decrease at
constant speed.

Theorem 12. Let C be a bounded convex subset of IRN of class C1,1. The following conditions are
equivalent:

(i) C decreases at constant speed.

(ii) C is calibrable.

(iii) (N − 1) supp∈∂C HC(p) ≤ λC .

5.2 The evolution of several convex calibrable sets with no interaction

Let C1, . . . , Cm be bounded convex subsets of IRN of class C1,1 such that Ci ∩ Cj = ∅ for any i 6= j,
and let F := IRN \

⋃m
i=1 Ci. We are concerned with the existence of a vector field z : F → IRN such

that

z ∈ L∞(F, IRN ),


−div z = 0 in D′(F ),
‖z‖∞ ≤ 1,

[z · νF ] = −1 HN−1–a.e. on ∂Ci, i ∈ {1, . . . k},
[z · νF ] = 1 HN−1–a.e. on ∂Cj , j ∈ {k + 1, . . . m}.

(67)

The following result was proved in [12] in IR2 but the proof extends to IRN , N ≥ 3.

Theorem 13. The following conditions are equivalent.

(i) Problem (67) has a solution.

(ii) let E1 be a solution of the variational problem

min

P (E) :
m⋃

j=k+1

Cj ⊆ E ⊆ IRN \
k⋃

i=1

Ci

 . (68)

Then we have

P (E1) =
m∑

j=k+1

P (Cj). (69)

Let E2 be a solution of the variational problem

min

P (E) :
k⋃

i=1

Ci ⊆ E ⊆ IRN \
m⋃

j=k+1

Cj

 . (70)

Then we have

P (E2) =
k∑

i=1

P (Ci). (71)

Moreover, if k = 0, condition (ii) can be stated only for E1; if k = m, condition (ii) can be stated only
for E2.
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Remark 8. Let C1, . . . , Cm be bounded convex subsets of IRN of class C1,1 such that Ci ∩Cj = ∅ for
any i 6= j. The following conditions are equivalent:

(i) The following problem admits a solution:

z ∈ L∞(F, IRN ),


−div z = 0 in D′(F ),
‖z‖∞ ≤ 1,

[z · νF ] = 1 HN−1–a.e. on ∂Cj , j ∈ {1, . . . m}.
(72)

(ii) if E1 be a solution of the variational problem

min

P (E) :
m⋃

j=1

Cj ⊆ E

 , (73)

then we have

P (E1) =
m∑

j=1

P (Cj). (74)

(iii) let 0 ≤ k ≤ m and let {i1, . . . , ik} ⊆ {1, . . . ,m} be any k-uple of indices; if we denote by Ei1,...,ik

a solution of the variational problem

min

P (E) : E of finite perimeter ,
k⋃

j=1

Cij ⊆ E ⊆ IRN \
m⋃

j=k+1

Cij

 , (75)

we have

P (Ei1,...,ik) =
k∑

j=1

P (Cij ). (76)

Indeed, by Theorem 13, (i) and (ii) are equivalent. Obviously, (iii) implies (ii). Assume now that
(ii) holds. Let Ei1,...,ik be a minimum of (75). Let E = Ei1,...,ik ∪

⋃m
j=k+1 Cij . Then, we have

P (E) ≥
m∑

j=1

P (Cj).

Since P (E) ≤ P (Ei1,...,ik) +
∑m

j=k+1 P (Cij ) we deduce that

P (Ei1,...,ik) ≥
k∑

j=1

P (Cij ).

Now, since Ei1,...,ik is a minimum of (75), we also have that

P (Ei1,...,ik) ≤
k∑

j=1

P (Cij )

and we obtain (76). In particular, if one of the equivalent conditions (i), (ii), or (iii) in this Remark
holds, then condition (ii) of Theorem 13 also holds for all values of k ∈ {0, . . . ,m}. In other words,
the solvability of (72) implies the solvability of (67) for all values of k ∈ {0, . . . ,m}.

Theorem 14. Let C1, . . . , Cm be bounded convex subsets of IRN of class C1,1 such that Ci ∩ Cj = ∅
for any i 6= j. Let Ω = ∪m

i=1Ci. Then v := χΩ is a solution of (64) if and only if
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(i) the following inequalities hold:

ess sup
p∈∂Ci

HCi(p) ≤ P (Ci)
|Ci|

∀i = 1, . . . ,m;

(ii) P (Ci)
|Ci| = P (Cj)

|Cj | for any i, j ∈ {1, . . . ,m};

(iii) If E1 is a solution of the variational problem

min

P (E) :
m⋃

j=1

Cj ⊆ E

 , (77)

then we have

P (E1) =
m∑

j=1

P (Cj). (78)

Proof. Assume that χΩ is a solution of (64). Then each set Ci is calibrable. By Theorem 9, condition
(i) holds. Now, integrating (64) on each Ci we obtain

λΩ = λCi ∀i ∈ {1, . . . ,m}.

Finally, we observe that, since χΩ is a solution of (64), then there is a solution of (72). Thus, by
Remark 8.(ii), we obtain that (iii) of the Theorem holds.

Conversely, assume that (i)− (iii) hold. Let us write λΩ = λCi , i = 1, . . . ,m. Then, by Theorem
9, on each Ci there is a vector field ξi such that

−div ξi = λΩ on Ci

and [ξi · νCi ] = −1 on ∂Ci. By (iii), there exists a vector field ξ0 such that

−div ξ0 = 0

and [ξ0 · νCi ] = −1 on ∂Ci. We define

ξ :=
{

ξi onCi, i ∈ {1, . . . ,m}
ξ0 on IRN \ ∪m

i=1Ci

We have
−div ξ = λΩχΩ

and (ξ, DχΩ) = |DχΩ|. We deduce that χΩ is a solution of (64).

Theorem 15. Let C1, . . . , Cm be bounded convex subsets of IRN of class C1,1 such that Ci ∩ Cj = ∅
for any i 6= j. Let bi > 0, i = 1, . . . ,m, k ∈ {1, . . . ,m}. Then v := −

∑k
i=1 biχCi +

∑m
i=k+1 biχCi is a

solution of

−div
( Dv

|Dv|

)
= v (79)

if and only if

(i) the following inequalities hold:

ess sup
p∈∂Ci

HCi(p) ≤ P (Ci)
|Ci|

∀i = 1, . . . ,m;

(ii) bi = P (Ci)
|Ci| for any i ∈ {1, . . . ,m};
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(iii) If E1 is a solution of the variational problem (68), then (69) holds. If E2 is a solution of (70),
then (71) holds.

Proof. Let us write Ω = ∪m
i=1Ci. Assume that v is a solution of (79). Let ξ ∈ L∞(IRN , IRN ),

‖ξ‖∞ ≤ 1, be such that
−div ξ = v on IRN (80)

and (ξ, Dv) = |Dv|. For i ∈ {1, . . . , k}, we have

−div ξ = −bi on Ci (81)

and [ξ · νCi ] = 1 on ∂Ci. Integrating the above equation in Ci we deduce that bi = P (Ci)
|Ci| , and Ci is

calibrable, i ∈ {1, . . . , k}. Similarly, since for i ∈ {k + 1, . . . ,m}, we have

−div ξ = bi on Ci (82)

and [ξ · νCi ] = −1 on ∂Ci, we also deduce that Ci are calibrable and bi = P (Ci)
|Ci| , i ∈ {k + 1, . . . ,m}.

Then (i) and (ii) hold. Finally, we observe that ξ|IRN\Ω is a solution of (67). Hence, by Theorem 13,
(iii) holds.

Assume now that (i)− (iii) hold. By (i) and (ii), we know that there are solutions ξi of (81) such
that [ξ ·νCi ] = 1 on ∂Ci, i ∈ {1, . . . , k}. Similarly, there are solutions ξi of (82) such that [ξ ·νCi ] = −1
on ∂Ci, i ∈ {k+1, . . . ,m}. Now, by (iii), we know that there is a solution of (67). By pasting all these
solutions we find a vector field ξ ∈ L∞(IRN , IRN ), ‖ξ‖∞ ≤ 1, satisfying (80) and (ξ,Dv) = |Dv|.

As a consequence we obtain the following result.

Theorem 16. Let C1, . . . , Cm be bounded convex subsets of IRN of class C1,1 such that Ci ∩ Cj = ∅
for any i 6= j. Assume that Ci satisfy the assumptions (i)− (iii) of Theorem 15. Let u0 =

∑m
i=1 biχCi,

bi ∈ IR. Then the solution u(t) of (61) corresponding to the initial condition u(0) = u0 is u(t) =∑m
i=1 sign(bi)(|bi| − λCit)

+χCi.

5.3 The evolution of a general convex set of class C1,1

In this Section we assume that C is a bounded convex set of class C1,1. Let K be the calibrable set
contained in C defined in Theorem 10. For each λ ∈ (0,∞) let Cλ be the solution of (P )λ. We take
Cλ = ∅ for any λ < λK , and, by Theorem 9 we have that Cλ = C for any λ ≥ max(λC ,Λ). Following
the approach in [10],[29], using the monotonicity of Cλ and |C \ ∪{Cλ : λ > 0}| = 0, we may define

HC(x) =
{
− inf{λ : x ∈ Cλ} onx ∈ C
0 on IRN \ C.

(83)

Observe that HC(x) = −λK for any x ∈ K.

Definition 3. Let H ∈ L1(IRN ). Let FH be the functional

FH(X) = P (X) +
∫

X
HC(x) dx,

X being a set of finite perimeter in IRN . Let E be a set of finite perimeter in IRN . We say that H is
a variational mean curvature of E if

FH(E) ≤ FH(X) ∀X set of finite perimeter in IRN .

The following Proposition was proved in [10],[29].

Proposition 9. We have

23



(i) HC is a variational mean curvature of C. Moreover ‖HC‖L1(C) = P (C).

(ii) HCχCλ
is a variational mean curvature of Cλ and

∫
Cλ

HC(x) dx = −P (Cλ).

Lemma 7. We have ‖HC‖∗ = 1. In particular, there exists a vector field ξC ∈ L∞(IRN , IRN ),
‖ξC‖∞ ≤ 1 such that div ξC = HC in IRN . Moreover

(ξC , DχCλ
) = |DχCλ

| for any λ > 0.

Proof. Since FH(C) = 0, we have that −
∫
X HC(x) dx ≤ P (X) for any rectifiable set X ⊆ IRN .

As in the proof of Lemma 2 this implies that ‖HC‖∗ ≤ 1. Since
∫
C HC(x) dx = −P (C) we deduce

that ‖HC‖∗ = 1. Hence, by Lemma 2, there exists a vector field ξC satisfying the properties of the
statement of the Lemma.

Now, multiplying div ξC = HC by χCλ
and integrating in IRN we deduce that

−
∫

IRN

(ξC , DχCλ
) =

∫
Cλ

HC(x) dx = −P (Cλ) = −
∫

IRN

|DχCλ
|.

Since ‖ξC‖∞ ≤ 1, we deduce that (ξC , DχCλ
) = |DχCλ

|.

Theorem 17. Let C be a bounded convex subset of IRN of class C1,1. Let HC(x) be the variational
curvature of C constructed in Theorem 9. Then u(t, x) = (1 + HC(x)t)+χC(x) is the solution of (61)
corresponding to the initial condition u(0, x) = χC(x).

Proof. Let t > 0. We have ut(t, x) = sign+(1 + HC(x)t)HC(x). Now, observe that sign+(1 +
HC(x)t) = 1 if and only if t ≤ − 1

HC(x) , i.e., if and only if x ∈ C1/t. Otherwise sign+(1 + HC(x)t) = 0.
In particular, we observe that for t ≥ ‖ − 1

HC
‖L∞(C) = 1

λK
we have ut = 0 and also u(t) = 0. Thus

ut(t, x) = HC(x)χC1/t
(x)χ[0,T )(t)

where T := 1
λK

. Let ξC be the vector field given by Lemma 7. In particular, we have (ξC , DχC1/s
) =

|DχC1/s
| for almost all s. In other words, we have

[ξC · νC1/s ] = −1 on ∂C1/s (84)

for almost all s. Observe that, since C1/t is a convex set, there is a vector field ξIRN\C1/t ∈ L∞(IRN \
C1/t), ‖ ξIRN\C1/t ‖∞≤ 1 such that

div ξIRN\C1/t = 0 in IRN \ C1/t

[ξIRN\C1/t · νIRN\C1/t ] = 1 on ∂C1/t.

When t ≤ 1
λK

, let

ξ(t, x) =

{
ξC(x) if x ∈ C1/t

ξIRN\C1/t(x) if x ∈ IRN \ C1/t.
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When t ≥ 1
λK

, let ξ(t, x) = 0. Let t ≤ 1
λK

. By Remark 1 we have that ξ(t) ∈ X2(IRN ). We have∫
IRN

(ξ(t), Du(t)) =
∫

IRN

∫ ∞

0
(ξ(t), Dχ

[u(t)≥λ]) dλ =
∫ ∞

0

∫
IRN

(ξ(t), Dχ
[u(t)≥λ]) dλ

=
∫ ‖u(t)‖∞

0

∫
IRN

(ξ(t), Dχ
[u(t)≥λ]) dλ

= −
∫ ‖u(t)‖∞

0

∫
∂∗[u(t)≥λ]

[ξ(t) · ν[u(t)≥λ]] dλ,

= −
∫ ‖u(t)‖∞

0

∫
∂∗[u(t)≥λ]

[ξ(t) · νC(1−λ)/t ] dλ,

= −
∫ ‖u(t)‖∞

0

∫
∂∗[u(t)≥λ]

[ξC(t) · νC(1−λ)/t ] dλ,

=
∫ ‖u(t)‖∞

0
P (∂∗[u(t) ≥ λ]) dλ (by (84))

=
∫

IRN

|Du(t)|.

Also, for t ≥ 1
λK

, we have (ξ(t), Du(t)) = |Du(t)|.
On the other hand, by construction of ξ(t, x) we have

div ξ(t) = HC(x)χC1/t
(x)

if t ≤ 1
λK

. If t > 1
λK

, we have div ξ(t) = 0. Thus we have that ut(t) = div ξ(t) for almost all t ∈ (0, T )
(also in D′((0, T ) × IRN ) for any T > 0). By the characterization of ∂Ψ given in Lemma 1 we have
that u(t) is a strong solution in the sense of semigroups of (61). Finally, by Theorem 2, u is also the
strong solution of (61) corresponding to the initial condition u(0, x) = χC(x).

5.4 Solutions constructed from convex sets

Theorem 18. Let C1, . . . , Cm be bounded convex subsets of IRN of class C1,1 such that Ci ∩ Cj = ∅
for any i 6= j. Assume that Ci satisfy condition (ii) in Remark (8). Let HCi be the variational
curvature of Ci defined in Subsection 5.3. Let bi ∈ IR, bi < 0, i = 1, . . . , k, bi > 0, i = k + 1, . . . ,m.
Then u(t, x) =

∑m
i=1 sign(bi)(|bi|+HCi(x)t)+χCi(x) is the solution of (61) corresponding to the initial

condition u(0, x) =
∑m

i=1 biχCi.

Proof. By Lemma 7, for each i = 1, . . . ,m, there is a vector field ξCi ∈ L∞(IRN , IRN ), ‖ξCi‖∞ ≤ 1,
such that

div ξCi = HCi in IRN ,

and ∫
IRN

(ξCi , DχCi,λ
) =

∫
IRN

|DχCi,λ
| for any λ > 0.

Observe that this equality implies that

[ξCi · νCi ] = −1 HN−1–a.e. on ∂Ci. (85)

Now, since Ci satisfy condition (ii) in Remark (8), there is a vector field ξe ∈ L∞(IRN \ (C1 ∪ . . . Cm))
with ‖ξe‖∞ ≤ 1 such that −div ξe = 0 in D′(IRN \

m⋃
i=1

Ci),

[ξe · νCi ] = −1 HN−1–a.e. on ∂Ci, i ∈ {1, . . . ,m}.
(86)
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Let us put together all these vector fields, i.e., let

ξ(x) =
{

ξCi(x) if x ∈ Ci

ξe(x) if x ∈ IRN \ (C1 ∪ . . . ∪ Cm).

Since [ξe · νCi ] = [ξCi · νCi ] = −1 HN−1–a.e. on ∂Ci, we have that

−div ξ = −
m∑

i=1

HCiχCi in IRN . (87)

Let F = −
∑m

i=1 HCiχCi =
∑m

i=1 |HCi |χCi ≥ 0. The inequality (87) says that ‖F‖∗ ≤ 1. We have that

0 ≤
m∑

i=1

|HCi |χCi,1/s
≤

m∑
i=1

|HCi |χCi

hence

‖
m∑

i=1

|HCi |χCi,1/s
‖∗ ≤ ‖

m∑
i=1

|HCi |χCi‖∗ ≤ 1.

By Lemma 2, we conclude that there exists a vector field ξs ∈ L∞(IRN , IRN ) such that ‖ξs‖∞ ≤ 1
such that

−div ξs =
m∑

i=1

|HCi |χCi,1/s
,

and this implies that
div ξs = 0 in IRN \ (C1,1/s ∪ . . . ∪ Cm,1/s),

and
[ξs · νCi,1/s ] = −1 HN−1–a.e. on ∂Ci,1/s, i ∈ {1, . . . ,m}.

Let I+ := {i : bi ≥ 0}, I− := {i : bi < 0}. By Remark 8 we know that there is a solution there is a
vector field ξ∗s ∈ L∞(IRN , IRN ), ‖ξ∗s‖∞ ≤ 1 satisfying

−div ξ∗s = 0 in D′(IRN \
m⋃

i=1

Ci,1/s),

[ξ∗s · νCi,1/s ] = −1 HN−1–a.e. on ∂Ci,1/s, i ∈ I+,

[ξ∗s · νCi,1/s ] = 1 HN−1–a.e. on ∂Cj,1/s, j ∈ I−.

(88)

Now we finish the proof as in Theorem 17, the vector field ξ∗s playing the role of the vector field
ξIRN\C1/t in the proof of that Theorem.
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