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A CHARACTERIZATION OF CONVEX HYPERBOLIC POLYHEDRA
AND OF CONVEX POLYHEDRA INSCRIBED IN THE SPHERE

CRAIG D. HODGSON, IGOR RIVIN, AND WARREN D. SMITH

Abstract. We describe a characterization of convex polyhedra in H3 in terms

of their dihedral angles, developed by Rivin. We also describe some geometric

and combinatorial consequences of that theory. One of these consequences is a

combinatorial characterization of convex polyhedra in E3 all of whose vertices

lie on the unit sphere. That resolves a problem posed by Jakob Steiner in 1832.

In 1832, Jakob Steiner in his book [23] asked the following question:

In which cases does a convex polyhedron have a (combinato-

rial) equivalent which is inscribed in, or circumscribed about, a

sphere?

This was the 77th of a list of 85 open problems posed by Steiner, of which

only numbers 70, 76, and 77 were still open as of last year. Apparently René

Descartes was also interested in the problem (see [12]).

Several authors found families of noninscribable polyhedral types, beginning

with Steinitz in 1927 (cf. [14]); all of these families later were subsumed by

a theorem of Dillencourt [11]. In their 1991 book [9, problem B18], Croft,
Falconer, and Guy had the following to say:

It would of course be nice to characterize the polyhedra of in-

scribable type, but as this may be over-optimistic, good neces-
sary, or sufficient, conditions would be of interest.

Here we announce a full answer to Steiner's question, in the sense that we

produce a characterization of inscribable (or circumscribable) polyhedra that
has a number of pleasant properties—it can be checked in polynomial time and

it yields a number of combinatorial corollaries. First we note the following
well-known characterization of convex polyhedra proved by Steinitz (cf. [14]).

Theorem of Steinitz. A graph is the one-skeleton of a convex polyhedron in E3

if and only if it is a 3-connected planar graph.

Note. A graph G is k-connected if the complement of any k - 1 edges in G
is connected.

We will call graphs satisfying the criteria of Steinitz' theorem polyhedral
graphs.

The answer to Steiner's question stems from the following characterization
of ideal convex polyhedra in hyperbolic 3-space H3. (See [25, 7] for the basics
of hyperbolic geometry.)

Received by the editors August 30, 1991.

1991 Mathematics Subject Classification. Primary 52A55, 53C45, 51M20; Secondary 51M10,
05C10, 53C50.

©1992 American Mathematical Society

0273-0979/92 $1.00+ $.25 per page

246



CONVEX HYPERBOLIC AND CONVEX POLYHEDRA IN THE SPHERE 247

Theorem 1. Let P be a polyhedral graph with weights w(e) assigned to the

edges. Let P* be the planar dual (or Poincaré dual) of P, where the edge

e* dual to e is assigned the dual weight w*(e*) = n - w(e). Then P can

be realized as a convex polyhedron in H3 with all vertices on the sphere at

infinity and with dihedral angle w(e) at every edge e if and only if the following

conditions hold:

(1) 0 < w*(e*) < n for all edges e.
(2) The sum of dual weights of edges e\*, e2, ... , e£ bounding a face in P*

is equal to 2n.
(3) The sum of dual weights of edges e\, e\*, ... , e*^ forming a circuit that

does not bound a face in P* is strictly greater than 2n.

Theorem 2. A realization guaranteed by Theorem 1 is unique up to isometries of
H3.

Theorem 1 is proved by Rivin in [22]. It uses the methods of Aleksandrov

[4] and also results and methods developed by Rivin in [18, 17] and subsequent

work. A brief introduction to this theory is given in §1. A more complete

treatment is given in [21].

Notes. Theorems 1 and 5 were recently extended by Rivin to general hyperbolic

polyhedra of finite volume (that is, those with some finite and some ideal ver-

tices). A characterization of ideal polyhedra with dihedral angles not greater

than %/2 was given by Andreev [6]; Andreev's result is an easy consequence of

Theorem 1.

The so-called projective model (or Klein model) of hyperbolic 3-space is a

representation of H3 as the interior of the unit ball J53 in the ordinary Eu-

clidean 3-space E3. The model has the property of being geodesic—hyperbolic

lines and planes are represented by Euclidean lines and planes, respectively.

Convexity is also preserved—a convex body in H3 is represented by a convex

body in ß3. Thus, hyperbolic convex polyhedra with all vertices on the sphere

at infinity correspond precisely to convex Euclidean polyhedra inscribed in the

sphere S2 = dB3. Therefore, a polyhedron is of inscribable type exactly when

it admits an edge-weighting that satisfies the condition in Theorem 1.

Furthermore (see [14]), a polyhedron is inscribable if and only if its planar

dual is circumscribable, so we can sum up the characterization as follows.

Characterization R*. A polyhedron P is of circumscribable type if and only if

there exists a weighting w of its edges, such that:

(1) The weight of any edge satisfies 0 < w(e) < 1/2.
(2) The total weight of a boundary of a face of P is equal to 1.

(3) The total weight of any circuit not bounding a face is strictly greater
than 1.

Characterization R. A polyhedron P is of inscribable type if and only if its

planar dual satisfies the conditions (l)-(3) of Characterization R*.

The following theorem was proved by Smith:

Theorem 3. Given a polyhedral graph P, we can decide whether it admits a

weighting satisfying Characterization R* in time polynomial in the number of
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vertices N. More exactly : on an integer Random Access Memory (RAM) Ma-

chine (see [1]) with precision bounded by 0(logN) bits, the running time may

be bounded by 0(7Y5-38) operations.

Skeleton of Proof. Finding the desired weighting is a linear program with the

number of constraints exponential in N and the methods of [13] and [26]

can be used to produce the algorithm of Theorem 3. The algorithm exploits

the observation that given a graph with prescribed weights on the edges, it is

possible to determine in polynomal time whether the weights satisfy conditions

(l)-(3) of Characterization R*. Given that, a variant of the Ellipsoid Method
is seen to yield the desired algorithm. Results of [26] allow us to improve the

asymptotic behavior of the algorithm somewhat; the funny looking exponent
5.38 stems from the best known complexity result for matrix inversion.

Note (added in proof). Rivin [20] recently found a much smaller (linear in N)

linear program, and hence a simpler algorithm.

Hence, the two realizability questions above may also be answered in poly-

nomial time. For some special classes of graphs, it is particularly easy to decide
inscribability. We mention the following theorem of M. Dillencourt:

Any polyhedron whose graph is 4-connected, is inscribable. Also,
these graphs are circumscribable. More graph-theoretic results
can be found in [10].

1. Characterization of hyperbolic polyhedra

The work of Aleksandrov [3, 4] gives a complete characterization of com-

pact convex polyhedra in hyperbolic 3-space in terms of the intrinsic hyperbolic

metric on the boundary. Note: Aleksandrov's work has now been extended by
Rivin [19] to ideal convex polyhedra.

Theorem 5 gives an analogous characterization of convex hyperbolic polyhe-

dra in terms of their dihedral angles. This also generalizes the work of Andreev

[5]. A simple derivation of Andreev's results from Theorem 5 is given by Hodg-
son in [15].

1.1. Compact polyhedra. The material from this section is developed in [18].

See [21] for a more detailed exposition. Consider the Gauss Map G of a com-

pact convex polyhedron P in Euclidean three-dimensional space E3. The map

G is a set-valued function from P to the unit sphere S2 , which assigns to each

point p the set of outward unit normals to support planes to P at p . Thus,

the whole of a face / of P is mapped under G to a single point—the outward

unit normal to /. An edge e of P is mapped to a geodesic segment G(e)

on S2, whose length is easily seen to be the exterior dihedral angle at e. A

vertex v of P is mapped by G to a spherical polygon G(v), whose sides are
the images under G of edges incident to v and whose angles are easily seen

to be the angles supplementary to the planar angles of the faces incident to v ;

that is, G(ei) and G(e2) meet at angle n - a whenever ei and e2 meet at

angle a. In other words, G(v) is exactly the "spherical polar" of the link of v

in P. (The link of a vertex is the intersection of a infinitesimal sphere centered
at v with P, rescaled, so that the radius is 1.)

Collecting the above observations, it is seen that G(P) is combinatorially

dual to P, while metrically it is the unit sphere S2.
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Now apply a similar construction to a convex polyhedron P in H3. Asso-

ciate to each vertex v of P a spherical polygon G(v) spherically polar to the
link of v in P. Glue the resulting polygons together into a closed surface,

using the rule that G(vi) and G(v2) are identified isometrically whenever Vi

and v2 share an edge.

The resulting metric space G(P) is topologically S2 and the complex is still

Poincaré dual to P. Metrically, however, it is no longer the round sphere. To

see this, consider G(f)—the single common point of the spherical polygons

G(ví) , where v¡ is a vertex of /. The angle of G(vf) incident to G(f) is

the exterior angle of / at v,, and so by the Gauss-Bonnet Theorem, the sum

of these angles is 2n + area(/) ± 2n . Thus G(f) is a cone-like singularity,
or a cone point, with cone angle greater than 27r. (A cone angle equal to 2n

corresponds to a smooth point.)

This analogue of the Gauss map turns out to have rather remarkable proper-

ties. Here is a brief summary:
1. The image of a convex Euclidean polyhedron under the Gauss map is

always the round sphere S2 . In sharp contrast, the following theorem holds.

Theorem 4 (Compact Uniqueness). The metric of G(P) determines the hyper-

bolic polyhedron P uniquely (up to congruence).

The proof of uniqueness follows the argument used by Cauchy in the proof

of his celebrated rigidity theorem for convex polyhedra in E3 (see [8, 4, or 24]).

2. Using the hyperboloid model of hyperbolic 3-space we can construct a

model of the map G, which is not unlike the well-known spherical polar map.

Let E3 denote Minkowski space: R4 equipped with the inner product of sig-

nature -,+,+,+. Then H3 is represented by one sheet of the hyperboloid

{x € E3 | (x, x) = -1} , which is the "sphere of radius \/-ï" in Ej. (For a

thorough discussion of the hyperboloid model of H3 see [25, 7].)

The polar P* of a convex polyhedron P c H3 consists of all outward

Minkowski unit normals to the support planes of P. Each such unit normal

vector gives a point in the the de Sitter Sphere S2 = {x e E3 | (x, x) = 1},

which is the "sphere of radius 1" in E3. It turns out that P* is a convex

polyhedron in S2 and that the intrinsic metric of P* is exactly G(P).

Note. The de Sitter sphere S2 is a semi-Riemannian submanifold of E\ of
constant sectional curvature 1. See [ 16] for further discussion of the geometry

of Ef and semi-Riemannian manifolds in general.

3. We obtain a precise intrinsic characterization of those surfaces that can
arise as G(P) for a compact convex polyhedron P in H3. The characterization

is quite easy to state:

Theorem 5. Characterization Theorem for compact polyhedra. A metric space

(M, g) homeomorphic to S2 can arise as the Gaussian image G(P) of a com-

pact convex polyhedron P in H3 if and only if the following conditions hold:

(a) The metric g has constant curvature 1 away from a finite collection

of cone points c¡.

(b) The cone angles at the c¡ are greater than 2n.

(c) The lengths of closed geodesies of (M, g) are all strictly greater than
2n.
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The necessity of (a) and (b) is immediately apparent from the above discus-

sion of G. The necessity of (c) is based on hyperbolic version of Fenchel's

theorem ("the total geodesic curvature of a hyperbolic space curve is greater

than 2?r") and the "polarity" model of the map G sketched in 2. See [21 ] for
the details.

The proof of the sufficiency of conditions (a)-(c) is based on Aleksandrov's

Invariance of Domain Principle (see [2, 4]), which exploits the observation

that an open and closed continuous map / from a topological space A into a

connected topological space B is necessarily onto.

Using this idea to prove Theorem 5 requires a careful study of the space

Jtn of metrics on S2 with n cone points satisfying conditions (a)-(c), of the

space &>n of convex polyhedra in H3 with n faces, and of the Gauss map

G : 9on -» Jfn .

1.2. Ideal polyhedra. The theory of the previous section is extended to non-

compact polyhedra in [22]. Ideal polyhedra can be viewed as "boundary points"

of ¿Pn , and likewise Theorem 1 can be viewed as a "limiting case" of Theorem

5. In particular, a polyhedral graph P* as in the statement of Theorem 1 can
be completed to a piecewise-spherical metric on S2 by gluing in a standard
round hemi-sphere into each face. It may be shown that this metric satisfies

the conditions (a)-(c) of Theorem 5, except that it contains closed geodesies of

length 2% , corresponding precisely to the equators of the added hemi-spheres.

Note. In [17] the necessity of the conditions of Theorem 1 is established without
reference to the characterization of compact polyhedra.

The techniques used to prove Theorem 5 are extended to prove Theorem 1

in [22]. The proof involves geometric estimates on families of convex polyhe-

dra in H3 whose vertices move away to the ideal boundary of H3 and beyond.

The methods actually suffice to produce a characterization of polyhedra of finite

volume in H3, which includes Theorem 1 and Theorem 5 as special cases. The

techniques used to prove Theorem 4 give only partial uniqueness results for

ideal polyhedra (see [17]). That approach also yields an algorithm for actually

producing an ideal polyhedron in H3 with prescribed dihedral angles, which

runs in time polynomial in the number of vertices of the polyhedron and the

number of decimals of accuracy required. In other words this algorithm pro-

duces coordinates for a convex inscription of a graph into the unit sphere in

E3. This is worthy of note, as the isometric embedding results of Aleksandrov
et al. and Theorem 5 do not give an effective way to produce a polyhedron with
the desired properties.

2. Acknowledgments

The authors would like to thank Brian Bowditch and Mike Dillencourt for

helpful discussions. Igor Rivin would like to thank Bill Thurston. He would

also like to thank the NEC Research Institute for its hospitality, which made
much of this work possible.

References

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The design and analysis of computer algorithms,
Addison-Wesley, Reading, MA, 1974.



CONVEX HYPERBOLIC AND CONVEX POLYHEDRA IN THE SPHERE 251

2. A. D. Aleksandrov, An application of the theorem of invariance of domain to existence proofs,

Izv. Akad. Nauk SSSR Sei. Mat. 3 (1939), 243-255. (Russian; English Summary)

3. A. D. Aleksandrov, The intrinsic metric of a convex surface in a space of constant curvature,

Dokl. Acad. Sei. SSSR 45 (1944), 3-6.

4. A. D. Aleksandrov, Convex polyhedra, GITTL, Moscow, 1950. (Russian); German transi, in

Akademie Verlag Berlin 1958. MR 12, 732; 19, 1192.

5. E. M. Andreev, On convex polyhedra in Lobachevskii space, Math. USSR Sb. 10 (1970),

413-440.

6. E. M. Andreev, On convex polyhedra of finite volume in Lobachevskii space, Math. USSR

Sb. 12 (1970), 255-259.

7. Alan F. Beardon, The geometry of discrete groups, Springer-Verlag, New York, 1983.

8. A. L. Cauchy, Sur les polygones et polyèdres, 2nd memoir, J. École Polytech. 19 (1813),
87-98.

9. H. T. Croft, K. J. Falconer, and R. K. Guy, Unsolved problems in geometry, Springer-Verlag,

1991.

10. M. Dillencourt and Warren D. Smith, Graph-theoretic aspects of inscribability, in pre-

paration.

11. M. B. Dillencourt, Toughness and Delaunay triangulations, J. Discrete Comput. Geom. 5

(1990), 575-601.

12. P. J. Federico, Descartes on polyhedra: A study of De Solidorum Elementis, Sources in the

History of Mathematics and Physical Sciences, vol. 4, Springer-Verlag, New York, 1982.

13. M. Grotschel, L. Lovasz, and A. Schrijver, The ellipsoid method and its consequences in

combinatorial optimization, Combinatorica 1 (1981), 169-197.

14. Branko Grünbaum, Convex poly topes, Wiley, New York, 1967.

15. C. D. Hodgson, Deduction of Andreev"s theorem from Rivirís characterization of convex

hyperbolic polyhedra, Topology 90, Proceeedings of the Research Semester in Low

Dimensional Topology at O.S.U., de Gruyter Verlag (to appear).

16. Barrett O'Neill, Semi-Riemannian geometry; with applications to relativity, Academic Press,

New York, 1983.

17. Igor Rivin, On geometry of convex ideal polyhedra in hyperbolic 3-space, Topology (to

appear).

18. Igor Rivin, On geometry of convex polyhedra in hyperbolic 3-space, PhD thesis, Princeton

Univ., June 1986.

19. Igor Rivin, Intrinsic geometry of convex polyhedra in hyperbolic 3-space, submitted.

20. Igor Rivin, Some applications of the hyperbolic volume formula of Lobachevsky and Milnor,

submitted.

21. Igor Rivin and C. D. Hodgson, A characterization of compact convex polyhedra in hyperbolic

3-space, Invent. Math, (to appear).

22. Igor Rivin, A characterization of ideal polyhedra in hyperbolic 3-space, preprint 1992.

23. Jakob Steiner, Systematische Entwicklung der Abhängigkeit geometrischer Gestalten von

einander, Reimer, Berlin, 1832; Appeared in J. Steiner's Collected Works, 1881.

24. J. J. Stoker, Geometrie problems concerning polyhedra in the large, Comm. Pure Applied

Math. 21 (1968), 119-168.

25. William P. Thurston, Geometry and topology of 3-manifolds, Lecture notes, Princeton Univ.,
1978.

26. Pravin M. Vaidya, A new algorithm for minimizing convex functions over convex sets, IEEE

Sympos. Foundations of Computer Science, October 1989, pp. 338-343.

Mathematics Department, University of Melbourne, Parkville, Victoria, Australia

NEC Research Institute, Princeton, New Jersey 08540 and Mathematics Department,
Princeton University, Princeton, New Jersey 08540

NEC Research Institute, Princeton, New Jersey 08540


