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A  CHARACTERIZATION  OF  CONVEX  SURFACES
WHICH ARE L-SETS1

E.   O.   BUCHMAN  AND  F.   A.   VALENTINE

Abstract. If the surface of a bounded three dimensional con-

vex body has the property that each pair of its points can see some

third point via the surface, then with a single exception the body

must be a finite cone with a convex base. The exceptional shape is

that of a solid hexahedron with six triangular plane faces formed

as the union of two tetrahedra having a congruent face in common.

A set S in a linear space is an L-set if each pair of its points can see some

point of S via 5. In other words, if x e S, y $ S, there exists a point z e S

(which may vary with x and y) such that xz^S, yz^S. Although

much is known about L-sets in the plane E2 ([1], [2], [3], [4], [5], [6]),

relatively little is known about L-sets in Euclidean «-space E" when «^3.

However, here we have succeeded in characterizing L-surfaces (surfaces

which are L-sets) which are boundaries of compact convex bodies in E3.

In order to observe intuitively the simple geometric nature of this situ-

ation, duality and elementary graph theory reveal that the following

concepts are useful.

Definition 1. A face of a convex body B is the intersection of B with

one of its planes of support. An exposed point x of B is a point which is

also a face of B. (Hence, there exists a plane of support H of B such that

H (~\B=x.) Let exp B be the set of exposed points of B.

Remark. In the following treatment we prefer to use "exposed points"

instead of "extreme points" since an "exposed point" is always a minimal

face whereas an "extreme point" e of B (i.e., B~e is convex) is not

necessarily even a face, let alone minimal. A minimal face is, of course, a

face which does not contain a smaller face, and a corresponding definition

holds for "maximal face". The following elementary theorem shows the

graph theoretic nature of L-surfaces.

Theorem 1. Suppose S is the surface of a compact convex set B with

nonempty interior in Euclidean n-space En.
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Then S is an L-set if and only if every two maximal faces of S have non-

empty intersection.

Proof.    To prove this we use the following.

Notation. The interior, closure, boundary and convex hull of a set

K^E" are denoted by int K, cl K, bd K and conv K respectively. The

empty set is denoted by 0 , and xy is the closed segment joining x 6 En to

y t Cj   .

(Necessity). Suppose Ft (i= 1, 2) are two maximal faces of B. Since S is

an L-set, £, contains at least one segment. Let Hi be the minimal flat con-

taining £¿. Choose points x¡ 6 real int £, where "rel int" is the interior

relative to H{. Since 5=bd B is an L-set, there exists a point z such that

xtz c S (/ = 1,2). We can prove that x¿z<= F¿.

Since F¿ is convex and since x,- e rel int Fit we can express £,■ as the union

of all those line segments xy lying in £¿ and having x¿ in their relative

interiors. However, if x¿ 6 rel int xy, x e £¿, y e Fi then xtz<^S, xycz S,

and the convexity of B imply that conv(xUjUz)<=5'. Consequently

conv(£,Uz)c:5, which, in turn, implies z 6 £¿ 0=1. 2), since £, is a maxi-

mal face of B. Hence, we have £,n£2^ 0.

The sufficiency is immediate.

To complete the theory we need the following concept.

Definition 2. If £ is a two-dimensional compact convex set and if p

is a point not in the plane containing £, then conv(/?U£) is called a solid

finite cone.

Our main theorem is the following.

Theorem 2. Suppose B is a bounded closed convex set in E3 having non-

empty interior.

Also suppose that either (a) "Every two maximal faces of B intersect",

or dually, (b) "Every two exposed points of B lie on a common face of B".

Then the following holds. Either

(1) B is a solid finite cone, or

(2) if (a) holds then B is a solid hexahedron with six triangular plane

faces; //(b) holds, then B is a solid pentahedron with six vertices each of

valence three (each vertex is incident with exactly three edges).

Observe that a finite cone is self-dual whereas the hexahedron and the

pentahedron in (2) are dual polyhedra. The converse is immediate.

Proof of Theorem 2. Because of polar duality, it is sufficient to

derive, in order, the following consequences of hypothesis (b). I. Of every

five exposed points of B at least four are coplanar. II. Either (i) all but one

of the exposed points of B are coplanar or (ii) B has exactly six exposed

points. III. Theorem 2 follows.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1973] CONVEX  SURFACES   WHICH  ARE  L-SETS 237

Proof of I. Assume that five exposed points x, yt (i= 1, 2, 3, 4) of B

exist, no four of which are coplanar. Since no three of the edges xy{

(i= 1, • • • , 4) are then coplanar, and since the four points y¡ (i= 1, • • • , 4)

are not coplanar, it is easy to verify that one of the six edges yty¡ (i,j=

/,•••, 4, ifíj) is an interior diagonal of B. This violates hypothesis (b),

and I has been proved. This is illustrated in Figure 1.

\

^y4

Proof of II. If the set of exposed points exp B has only four points,

then II follows trivially. Hence, suppose exp B contains at least five non-

coplanar points. Result I implies that some four of these, say xx, x2, x3, x4,

are coplanar, where we assume a cyclic ordering in the plane P containing

them. Also let x be a point of exp B not in P. If all of the remaining points

of exp B lie in P, then (i) of II follows. Hence, suppose there exists a point

y e exp B with y $ P,y j±x. If xy is coplanar with xxx3 then the diagonals

of the quadrilateral xyxxx3 are interior diagonals of B, and this violates

hypothesis (b). With a symmetric argument this implies that xy is not co-

planar with either xxx3 or x2xx. This and result I imply that xy is coplanar

separately with two opposite edges of the quadrilateral xxx2x3xi. If exp B

contains a seventh point z, we may if necessary relabel the points x, y, xx,

x2, x3, xx to insure that z $P, and then the preceding sentence applied to

xy, yz, and xz, respectively, implies that each of them is coplanar with each

of two opposite edges of the quadrilateral xxx2x3x4. This is only possible if

x, y, z are all collinear, which violates the fact that x, y, z are all exposed

points of B. Hence, z cannot exist, so that exp B={x, y, xx, x2, x3, x4}.

Proof of III. If all but one point of exp B lie in a plane, then B is a

solid cone, being the closed convex hull of exp B [7]; otherwise, result II

Figure 1
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shows that B has exactly six exposed points contained in three lines which

are either parallel or concurrent. In the latter case, recalling that B has no

internal diagonals, it follows readily that the closed convex hull of exp B

does not contain the point of concurrence (if any) of these three lines, and,

hence, B is a solid pentahedron with six vertices each of valence three (see

Figure 2). Theorem 2 follows because of duality.

Remark. Since the hypothesis (a) is essentially combinatorial, it is clear

that any nonconvex polyhedron with convex faces whose incidence

relationships coincide exactly with those of a corresponding convex poly-

hedron B will share with B the property of having surfaces which are L-sets

or not.

It is of interest to observe that our theorem shows that the boundary S

of B cannot be expressed as the union of line segments every two of which

have a nonempty intersection. Mackie [3] has shown that a simply con-

nected compact L-set in the plane E2 can be expressed as the union of line

segments every two of which have nonempty intersection. However,

Theorem 1 does show that the surface S is an £-set if and only if it can be

expressed as the union of convex subsets every two of which have nonempty

intersection, even though S is not simply connected relative to £3 [2].
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