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A CHARACTERIZATION OF DIMENSION FREE CONCENTRATION
IN TERMS OF TRANSPORTATION INEQUALITIES

BY NATHAEL GOZLAN

Université Paris-Est

The aim of this paper is to give a characterization of the dimension
free concentration of measure phenomenon in terms of transportation-cost
inequalities. We apply this theorem to give a new and very short proof of a
result by Otto and Villani. Another application is to show that the Poincaré
inequality is equivalent to a certain form of dimension free exponential con-
centration. The proofs of all these results rely on simple Large Deviations
techniques.

1. Introduction. One says that a probability measure μ on Rk has the
Gaussian dimension free concentration property if there are two nonnegative con-
stants a and M such that for every positive integer n, the product measure μn

verifies the following inequality:

∀r ≥ 0 μn(A + rB2) ≥ 1 − Me−ar2
,(1.1)

for all measurable subset A of (Rk)n with μn(A) ≥ 1/2 denoting by B2 the Euclid-
ean unit ball of (Rk)n. Here A + rB2 = {x + y :x ∈ A,y ∈ rB2} is the Minkowski
sum of A and rB2.

The first example is of course the standard Gaussian measure on R for which
the inequality (1.1) holds true with the sharp constants M = 1/2 and a = 1/2.
Gaussian concentration is not the only possible behavior; for example, if p ∈ [1,2],
the probability measure dμp(x) = Z−1

p e−|x|p dx verifies a concentration inequal-
ity similar to (1.1) with r2 replaced by min(rp, r2). In recent years many authors
developed various functional approaches to the concentration of measure phenom-
enon. For example, the logarithmic-Sobolev inequality is well known to imply
(1.1); this is the renowned Herbst argument (which is explained, for example, in
Chapter 5 of Ledoux’s book [28]). Among the many functional inequalities yield-
ing concentration estimates, let us mention the following: Poincaré inequalities [8,
23], logarithmic-Sobolev inequalities [7, 27], modified logarithmic-Sobolev in-
equalities [4, 8, 10, 18], transportation-cost inequalities [6, 7, 9, 20, 30, 33–35],
inf-convolution inequalities [26, 32], Beckner–Latała–Oleskiewicz inequalities [2,
3, 5, 25]. Several surveys and monographs are now available on this topic (see, for
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instance, [1, 28] or [36, 37]). This large variety of tools and points of view raises
the following natural question: is one of these functional inequalities equivalent to,
say, (1.1)?

In this paper, one shows with a great generality that Talagrand’s transportation-
cost inequalities are equivalent to a dimension free concentration of measure. To
state our main result, let us introduce some definitions and notation.

In all the sequel, (X , d) is a Polish space, P(X ) is the set of all Borel probability
measures on X and α : R+ → R+ is a convex function with α(0) = 0. It will always
be assumed that α verifies the following doubling property: there is some K ≥ 1
such that

∀t ≥ 0 α(2t) ≤ Kα(t).(1.2)

DEFINITION 1.1. Let μ ∈ P(X ); one says that μ verifies the dimension free
concentration property Cα(a) for some a > 0 if there is some M > 0 such that for
all n ≥ 1 and all measurable A ⊂ X n with μn(A) ≥ 1/2, one has

∀r ≥ 0 μn(Ar
α) ≥ 1 − Me−ar ,

where Ar
α is the enlargement of A defined by

Ar
α =

{
x ∈ X n such that inf

y∈A

n∑
i=1

α(d(xi, yi)) ≤ r

}
.

Now let us define optimal transportation-costs and transportation-cost inequalities.

DEFINITION 1.2. Let ν1, ν2 ∈ P(X ); the optimal transportation-cost Tα(ν1,

ν2) is defined by

Tα(ν1, ν2) = inf
π

∫
α(d(x, y)) dπ(x, y),

where π describes the set

P(ν1, ν2) = {π ∈ P(X × X ) s.t. π(· × X ) = ν1 and π(X × ·) = ν2}.
One says that μ verifies the transportation-cost inequality Tα(a) with a > 0 if

∀ν ∈ P(X ) Tα(ν,μ) ≤ a H(ν|μ),(1.3)

where H(ν|μ) is the relative entropy of ν with respect to μ defined by H(ν|μ) =∫
log( dν

dμ
) dν if ν is absolutely continuous with respect to μ and +∞ otherwise.

When α(x) = xp , with p ≥ 2, one will write Cp(a), Ar
p , Tp(ν,μ) and Tp(a)

instead of Cxp(a), Ar
xp , Txp(ν,μ) and Txp(a).

The idea of controlling an optimal transportation-cost by the relative entropy to
obtain concentration first appeared in Marton’s works [30, 31]. The inequality T2
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was then introduced by Talagrand in [35], where it was proved to be fulfilled by
Gaussian probability measures. In particular, the standard Gaussian measure on R
verifies T2(2) (the constant 2 is sharp). In recent years, many efforts have been
made to find sufficient conditions for T2 and other transportation-cost inequalities
(see Section 3.3), but the problem of finding a necessary and sufficient condition
is still open.

The following theorem is the main result of this paper.

THEOREM 1.3. Let μ be a probability measure on X and a > 0; μ verifies
Tα(a) if and only if μ verifies Cα(b) for all b ∈ (0,1/a).

Observe that the relation between the constants is sharp. In the important special
case when α(x) = x2, the conclusion of the theorem is that the Gaussian dimen-
sion free concentration property (1.1) holds if and only if μ verifies Talagrand’s
inequality T2(1/a). The fact that Tα(a) implies Cα(b) for some b is well known
and follows from a nice and general argument of Marton. The proof of the con-
verse is surprisingly easy and relies on a very simple Large Deviations argument.
We think that this new result confirms the relevance of the Large Deviations point
of view for functional inequalities initiated by Léonard and the author in [22] and
pursued in [24] by Guillin et al. Moreover, Theorem 1.3 turns out to be a quite
powerful tool. For example, the famous result by Otto and Villani stating that the
logarithmic-Sobolev inequality (LSI) implies the T2 inequality (see [33, Theo-
rem 1]) is a direct consequence of Theorem 1.3 for α(x) = x2 (see Theorem 4.1
and Corollary 4.2).

The paper is organized as follows. In Section 2 we give a brief account on the
Large Deviations phenomenon entering the game. In Section 3 we prove in a gen-
eral setting that transportation-cost inequalities and dimension free concentration
inequalities are equivalent. In Section 4 we give a new proof of Otto and Villani’s
theorem, in an abstract metric space framework. In Section 5 we prove the equiv-
alence between the Poincaré inequality and dimension free concentration of the
exponential type.

2. Some preliminaries on large deviations. In what follows the set of all
bounded continuous functions on the Polish space X is denoted by Cb(X ) and
P(X ) is equipped with the weak topology, that is, the smallest topology with re-
spect to which all functionals ν ∈ P(X ) 	→ ∫

ϕ dν, ϕ ∈ Cb(X ) are continuous.
Let μ be a probability measure on X and (Xi)i a sequence of independent and

identically distributed random variables with law μ defined on some probability
space (�,P). The empirical measure Ln is defined for all positive integer n by

Ln = 1

n

n∑
i=1

δXi
,
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where δx stands for the Dirac mass at point x.
According to Varadarajan’s theorem (see, for instance, [17], Theorem 11.4.1),

with probability 1 the sequence (Ln)n converges to μ in P(X ) for the weak topol-
ogy on P(X ). In particular, if O ⊂ P(X ) is some open set not containing μ, then
P(Ln ∈ O) → 0, as n tends to +∞. The celebrated Sanov’s Theorem gives an es-
timation of the speed of convergence. Roughly speaking, it asserts that P(Ln ∈ O)

behaves like e−nH(O|μ), where for all A ⊂ P(X ), the quantity H(A|μ) is defined
by

H(A|μ) = inf{H(ν|μ) :ν ∈ A}.
More precisely, we have the following:

THEOREM 2.1 (Sanov’s theorem). With the previous notation, for all A ⊂
P(X ) measurable with respect to the Borel σ -field, one has

−H(int(A)|μ) ≤ lim inf
n→+∞

1

n
log P(Ln ∈ A) ≤ lim sup

n→+∞
1

n
log P(Ln ∈ A)

≤ −H(cl(A)|μ),

where int(A) and cl(A) denote respectively the interior and the closure of A.

A proof of this famous result can be found in, for example, [15], Theo-
rem 6.2.10. As in [22], the use of this Large Deviations theorem will be the key
step in the proof of the main Theorem 1.3.

3. Concentration and transportation-cost inequalities. A remarkable prop-
erty of transportation-cost inequalities of the form (1.3) is that they tensorize well.
More precisely, let us define a family of optimal transportation-costs on P(X n),
n ≥ 1 as follows. If ν1, ν2 are two probability measures on X n, the optimal trans-
portation cost T (n)

α (ν1, ν2) is defined by

T (n)
α (ν1, ν2) = inf

π∈P(ν1,ν2)

∫ n∑
i=1

α(d(xi, yi)) dπ(x, y),

where P(ν1, ν2) is the set of all probability measures π on X n × X n having ν1
and ν2 as marginal distributions. When n = 1, one will simply write Tα(ν1, ν2)

instead of T (1)
α (ν1, ν2).

With the notation above, one has the following well-known tensorization result.

PROPOSITION 3.1. Suppose that μ verifies the inequality Tα(a) for some
a > 0, then for all positive integer n, the product measure μn verifies

∀ν ∈ P(X n) T (n)
α (ν,μn) ≤ a H(ν|μn).

Tensorization properties of transportation-cost inequalities were discovered by
Marton (see, e.g., [30]). The interested reader can find a general result concerning
these tensorization properties in [22], Theorem 5.
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3.1. From transportation-cost to concentration inequalities. We recall below
how dimension free concentration estimates can be deduced from a transportation-
cost inequality. The material of this section comes mainly from the works of Mar-
ton and Talagrand [30, 31] and [35].

We will need the following lemma.

LEMMA 3.2. Suppose that μ verifies the inequality Tα(a) for some a > 0. For
all λ ∈ (0,1], define αλ(x) = α(x/λ), x ≥ 0. Then for all λ, there is some c > 0
such that μ verifies the inequality Tαλ(c). Let cλ be the optimal constant in the
preceding inequality and define aλ = max(a, cλ). Then aλ → a1 = a when λ → 1,
and for all n ≥ 1 and all λ ∈ (0,1), μn verifies the following inequality:

∀ν1, ν2 ∈ P(X n)
(3.1)

T (n)
α (ν1, ν2) ≤ λaλ H(ν1|μn) + (1 − λ)a(1−λ) H(ν2|μn).

Now we can state the precise concentration result.

PROPOSITION 3.3. If μ verifies the inequality Tα(a) for some a > 0, then μ

verifies the dimension free concentration inequality Cα(b) for all b ∈ (0,1/a).

More precisely, for all positive integer n and all measurable A ⊂ X n with
μn(A) ≥ 1/2, one has

∀λ ∈ (0,1),∀r ≥ 0 μn(Ar
α) ≥ 1 − Mλe

−r/(λaλ),(3.2)

where the numbers aλ were defined in the preceding lemma and Mλ = 2
(1−λ)a(1−λ)

λaλ .
In particular, if μ verifies Tp(a) for some p ≥ 2, then μ verifies Cα(1/a). More

precisely, for all positive integer n and all measurable A ⊂ X n with μn(A) ≥ 1/2,
one has

∀r ≥ ro := a log(2) μn(Ar
p) ≥ 1 − e−a(r1/p−r

1/p
o )p .

Note that this concentration result is dimension free.

PROOF OF LEMMA 3.2. According to the doubling assumption (1.2) made
on α, one sees that K(λ) = supx>0 α(x/λ)/α(x) < +∞, for all λ ∈ (0,1]. Fur-
thermore, it is not difficult to see that K(λ) → 1 as λ → 1. So, Tαλ(ν,μ) ≤
K(λ)Tα(ν,μ) for all λ ∈ (0,1]. From this follows that μ verifies the inequality
Tαλ(K(λ)a). So, a ≤ aλ ≤ K(λ)a, which proves that aλ → a when λ → 1.

Let ν1, ν2 ∈ P(X n), then there exist X,Y,Z three random variables with val-
ues in X n such that X has law ν1, Y has law μn, Z has law ν2, T (n)

αλ (ν1,μ
n) =

E[∑n
i=1 αλ(d(Xi, Yi))] and T (n)

α1−λ(ν2,μ
n) = E[∑n

i=1 α1−λ(d(Yi,Zi))] (see, for in-
stance, the Gluing Lemma of [37], Chapter 1, page 23). Using the convexity of α,
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one gets

T (n)
α (ν1, ν2) ≤ E

[
n∑

i=1

α(d(Xi,Zi))

]
≤ E

[
n∑

i=1

α
(
d(Xi, Yi) + d(Yi,Zi)

)]

≤ λE

[
n∑

i=1

α

(
d(Xi, Yi)

λ

)]
+ (1 − λ)E

[
n∑

i=1

α

(
d(Yi,Zi)

1 − λ

)]
(3.3)

= λT (n)
αλ

(ν1,μ
n) + (1 − λ)T (n)

α1−λ
(ν2,μ

n).

According to Proposition 3.1, the inequalities Tαλ and Tα1−λ
tensorize and so ap-

plying (3.3), one sees that μn verifies (3.1). �

PROOF OF PROPOSITION 3.3. According to Lemma 3.2, the following in-
equality holds:

∀ν1, ν2 ∈ P(X n) T (n)
α (ν1, ν2) ≤ λaλ H(ν1|μn) + (1 − λ)a(1−λ) H(ν2|μn).

Take A ⊂ X n with μn(A) ≥ 1
2 and define B = X n \ Ar

α , dν1(x) = 1B(x) dμn(x)/

μn(B) and dν2(x) = 1A(x) dμn(x)/μn(A). Then T (n)
α (ν1, ν2) ≥ r and H(ν1|

μn) = − logμn(B) and H(ν2|μn) = − logμn(A) ≤ log(2) and the inequality (3.2)
follows immediately. Since λaλ → a when λ → 1, one concludes that μ verifies
the concentration property Cα(b) for all b ∈ (0,1/a).

Now suppose that μ verifies Tp(a). Due to the homogeneity of order p, one can
take aλ = a

λp . So, according to what precedes, one has

∀λ ∈ (0,1),∀r ≥ 0 μn(Ar
p) ≥ 1 − exp

(
log(2)

(
λ

1 − λ

)p−1

− r

a
λp−1

)
,

for all A ⊂ X n with μn(A) ≥ 1/2. For a fixed r ≥ ro = a log(2), the choice λ =
1 − (

a log(2)
r

)1/p maximizes the right-hand side of the above inequality and gives
the expected result. �

3.2. From concentration to transportation-cost inequalities. Now we are go-
ing to establish the converse of Proposition 3.3. The following theorem is the main
result of this work.

THEOREM 3.4. If μ verifies the dimension free concentration inequality
Cα(b) for some b > 0, then μ verifies Tα(1/b).

PROOF OF THEOREM 1.3. According to Proposition 3.3, the inequality Tα(a)

implies the inequalities Cα(b) for all b ∈ (0,1/a). Conversely, suppose that the
inequality Cα(b) holds for all b < 1/a, then Theorem 3.4 implies that μ verifies
the inequality Tα(1/b) for all b < 1/a. Letting b go to 1/a gives the result. �
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PROOF OF THEOREM 3.4. For every positive integer n, and x ∈ X n, define
Lx

n = n−1 ∑n
i=1 δxi

. Recall that for all u > 0, the function αu is defined by αu(x) =
α(x/u).

Let λ ∈ (0,1); applying inequality (3.3) with n = 1 and λd instead of d yields
the following Triangle inequality:

∀ν, ν ′ ∈ P(X ) Tα1/λ
(ν,μ) ≤ λTα(ν, ν′) + (1 − λ)Tα(1−λ)/λ

(ν′,μ).(3.4)

Consider the subset A of X n defined by

A = {
x ∈ X n such that Tα(1−λ)/λ

(Lx
n,μ) ≤ mn

}
,

where mn is a median of x 	→ Tα(1−λ)/λ
(Lx

n,μ) under μn [so that μn(A) ≥ 1/2]. Let
us show that Ar

α ⊂ {x ∈ X n such that Tα1/λ
(Lx

n,μ) ≤ λr/n+ (1 −λ)mn}. Namely,
if x ∈ Ar

α , then there exists x′ such that
∑n

i=1 α(d(xi, x
′
i)) ≤ r. According to the

convexity property of Tα (see, e.g., [37], Theorem 4.8), one has

Tα(Lx
n,L

x′
n ) ≤ 1

n

n∑
i=1

Tα(δxi
, δx′

i
) = 1

n

n∑
i=1

α(d(xi, x
′
i))

and so Tα(Lx
n,L

x′
n ) ≤ r

n
. Now, applying inequality (3.4), with ν = Lx

n and ν′ = Lx′
n

gives Tα1/λ
(Lx

n,L
x′
n ) ≤ λr/n + (1 − λ)mn, which proves the claim.

Define Ln = 1
n

∑n
i=1 δXi

, where Xi is a sequence of independent and identi-
cally distributed random variables with law μ. Applying the concentration prop-
erty Cα(b) to A gives with probabilistic notation

∀r ≥ 0 P
(

Tα1/λ
(Ln,μ) > λr/n + (1 − λ)mn

) ≤ Me−rb.

Equivalently, for all u ≥ (1 − λ)mn,

P
(

Tα1/λ
(Ln,μ) > u

) ≤ M exp
(
−nb

λ

(
u − (1 − λ)mn

))
.

For all s ∈ (0,1], the optimal transportation-cost Tαs is lower semi-continuous
with respect to the weak topology on P(X ) (this fact is classical; it is a
consequence of, e.g., [37], Lemma 4.3). Consequently, the set Os

t := {ν ∈
P(X ) such that Tαs (ν,μ) > t} is open for all s ∈ (0,1] and t > 0. Since μ /∈ Os

t ,
Varadarajan’s theorem implies that P(Ln ∈ Os

t ) → 0 when n → +∞. With
s = (1−λ)/λ, this fact easily implies that mn → 0 when n → +∞. Consequently,
taking the “lim supn→+∞ 1/n log” in the preceding inequality yields

∀u ≥ 0 lim sup
n→+∞

1

n
log P

(
Tα1/λ

(Ln,μ) > u
) ≤ −ub

λ
.(3.5)

On the other hand, since O
1/λ
u is open, Sanov’s theorem implies that

− inf{H(ν|μ) :ν ∈ P(X ) such that Tα1/λ
(ν,μ) > u}

≤ lim inf
n→+∞

1

n
log P

(
Tα1/λ

(ν,μ) > u
)
.
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This together with the upper bound (3.5) yields

inf{H(ν|μ) :ν ∈ P(X ) such that Tα1/λ
(ν,μ) > u} ≥ ub

λ
.

In other words,

∀ν ∈ P(X ) Tα1/λ
(ν,μ) ≤ λ

b
H(ν|μ).

The number λ ∈ (0,1) is arbitrary; letting λ → 1 gives the result. �

3.3. Remarks.

3.3.1. Sufficient conditions for transportation-cost inequalities. Necessary
and sufficient conditions for transportation-cost inequalities are not known, even
in the case of the real line. Nevertheless, several concrete criteria have been dis-
covered recently. Let us recall some of them. In [20], Theorem 5, the author proved
the following result:

THEOREM 3.5. Let μ be a symmetric probability measure on R of the form
dμ(x) = e−V (x)dx, with V a smooth function such that V ′′(x)/(V ′(x)2) → 0
when x → +∞. Let p ≥ 1; if V is such that lim supx→+∞ xp−1/V ′(x) < +∞,

then μ verifies the inequality Tαp(C) for some constant C > 0, where αp(u) = u2

if |u| ≤ 1 and αp(u) = |u|p if |u| ≥ 1.

The case p = 2 was first established by Cattiaux and Guillin in [12] with a com-
pletely different proof. Other cost functions α can be considered in place of the αp

(see [20], Theorem 5). Furthermore, if μ satisfies Cheeger’s inequality on R, then
a necessary and sufficient condition is known for the transportation-cost inequality
associated to α (see [20], Theorem 2).

On Rk , a relatively weak sufficient condition for T2 (and other transportation-
cost inequalities) has been established by the author in [21] (Theorem 4.7 and
Corollary 4.12). Define ω(k) : Rk → Rk : (x1, . . . xk) 	→ (ω(x1), . . . ,ω(xk)), where
ω(u) = ε(u)max(|u|, u2) with ε(u) = 1 when u is nonnegative and −1 otherwise.
If the image of μ under the map ω(k) verifies the Poincaré inequality, then μ satis-
fies T2. It can be shown that this condition is strictly weaker than the condition μ

verifies LSI (see [21], Theorem 5.11).
Other sufficient conditions were obtained by Bobkov and Ledoux in [9] with

an approach based on the Prekopa–Leindler inequality, or in [13] by Cordero–
Erausquin, Gangbo and Houdré with an optimal transportation method.
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3.3.2. Concentration on a fixed space. Let μ be a probability measure on
a Polish space (X , d). If A ⊂ X , and r ≥ 0, let Ar be defined by Ar = {x ∈
X s.t. infy∈A d(x, y) ≤ r}. Let us say that μ verifies the concentration property
c2(a) for some a > 0, if there is some M > 0 such that for all measurable A ⊂ X
with μ(A) ≥ 1/2

∀r ≥ 0 μ(Ar) ≥ 1 − M exp(−ar2).

Of course, the concentration property c2(a) is much weaker than C2(a).
This concentration property can also be characterized in terms of transportation-
cost inequalities involving the optimal transportation cost T (ν,μ) =
infπ∈P(ν,μ)

∫
d(x, y) dπ(x, y). More precisely, one has the following theorem due

to Djellout, Guillin and Wu [16].

THEOREM 3.6. With the notation above, the three following properties are
equivalent:

(1) The probability measure μ verifies c2(a) for some a > 0.
(2) The probability measure μ verifies the following transportation-cost inequal-

ity:

∀ν ∈ P(X ) (T (ν,μ))2 ≤ b H(ν|μ)

for some b > 0.

(3) There is some c > 0 such that
∫

ecd(x,y)2
dμ(x) dμ(y) < +∞.

This theorem has been generalized to other types of concentration by Bolley
and Villani in [11] and by the author in [19]. One can relate the constants a, b, c

to each other, but the link is far from being optimal. In particular, the integrabil-
ity condition (3) behaves very badly with respect to tensorization. In comparison,
Theorem 1.3 is a much deeper result.

3.3.3. The (τ ) property. Transportation-cost inequalities are closely related to
the so-called (τ ) property introduced by Maurey in [32]. If c(x, y) is a nonnegative
function defined on some product space X × X and μ is a probability measure on
X , one says that (μ, c) has the (τ ) property if for all nonnegative f on X ,∫

eQcf dμ ·
∫

e−f dμ ≤ 1,

where Qcf (x) = infy∈X {f (y) + c(x, y)}. The recent paper by Latała and Woj-
taszczyk [26] provides an excellent introduction together with a lot of new results
concerning this class of inequalities.

The (τ ) property is in fact a sort of dual version of the transportation-cost in-
equality. This was first observed by Bobkov and Götze in [7]. In the case of T2,
one can show that if μ verifies T2(a) on the Euclidean space (Rk, | · |2), then
(μ, (2a)−1|x − y|22) has the (τ ) property and, conversely, if (μ, a−1|x − y|22) has
the (τ ) property, then μ verifies T2(a). A general statement can be found in [21,
Proposition 4.17].
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4. Otto and Villani’s theorem revisited. Our aim is now to recover and ex-
tend a theorem by Otto and Villani stating that the logarithmic-Sobolev inequality
is stronger than Talagrand’s T2 inequality.

Let us recall that a probability measure μ on X verifies the logarithmic-Sobolev
inequality with constant C > 0 [LSI(C) for short] if

Entμ(f 2) ≤ C

∫
|∇f |2 dμ,

for all locally Lipschitz f , where the entropy functional is defined by

Entμ(f ) =
∫

f logf dμ −
∫

f dμ log
(∫

f dμ

)
, f ≥ 0,

and the length of the gradient is defined by

|∇f |(x) = lim sup
y→x

|f (x) − f (y)|
d(x, y)

(4.1)

[when x is an isolated point, we put |∇f |(x) = 0].
In [33, Theorem 1], Otto and Villani proved that if a probability measure μ on

a Riemannian manifold M satisfies the inequality LSI(C), then it also satisfies
the inequality T2(C). Their proof was rather involved and uses partial differen-
tial equations, optimal transportation results and fine observations relating relative
entropy and Fisher information. A simpler proof, as well as a generalization, was
proposed by Bobkov, Gentil and Ledoux in [6]. It makes use of the dual formu-
lation of transportation-cost inequalities discovered by Bobkov and Götze in [7]
and relies on hypercontractivity properties of the Hamilton–Jacobi semigroup put
in light in the same paper [6]. Otto and Villani’s result was successfully general-
ized by Wang on paths spaces in [38]. More recently, Lott and Villani showed that
implication LSI ⇒ T2 remains true on a length space provided the measure μ sat-
isfies a doubling condition and a local Poincaré inequality (see [29], Theorem 1.8).
The Hamilton–Jacobi approach is explained in greater detail in Chapter 22 of Vil-
lani’s book (see [37], Theorem 22.28). In particular, the interested reader will find
there a completely self contained presentation of the properties of the Hamilton–
Jacobi semigroup (see [37], Theorem 22.46).

The converse implication T2 ⇒ LSI is sometimes true. For example, it is the
case when μ is a Log-concave probability measure (see [33], Corollary 3.1). How-
ever, in the general case, T2 and LSI are not equivalent. In [12], Cattiaux and
Guillin give an example of a probability measure verifying T2 and not LSI.

On “regular” spaces (say, Rk) the implication LSI ⇒ T2 is completely straight-
forward. Namely, according to the tensorization property of LSI and the celebrated
Herbst argument, LSI(C) implies the concentration property Cα(1/C); since this
latter is equivalent to T2(C), the proof is completed. When dealing with abstract
metric space, a subtle differentiability question arises [see (4.2)]. This is discussed
in Theorems 4.1, 4.5 and 4.6.
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In the sequel, one will denote W2(ν,μ) = √
T2(ν,μ). This quantity defines a

metric on the set P2(X ) = {ν ∈ P(X ) such that
∫

d(x, xo)
2 dν(x) < +∞ for some

xo ∈ X }, which is called the (quadratic) Wasserstein metric (see [37], Chapter 6).

THEOREM 4.1. Let μ be a probability measure on some Polish space X and
suppose that for all positive integer n the function Fn defined on X n by Fn(x) =
W2(L

x
n,μ) verifies

n∑
i=1

|∇iFn|2(x) ≤ 1/n for μn almost every x ∈ X n,(4.2)

where |∇iFn(x)| = lim supyi→xi

|Fn(x1,...,xi−1,yi ,xi+1,...,xn)−Fn(x)|
d(yi ,xi )

.

If μ verifies the inequality LSI(C), then μ verifies the inequality T2(C).

PROOF. Since μ verifies the LSI(C) inequality, then according to the additive
property of the logarithmic-Sobolev inequality, one can conclude that the product
measure μn verifies

Entμn(f 2) ≤ C

∫ n∑
i=1

|∇if |2(x) dμn(x).(4.3)

Apply this inequality to f = esFn/2, with s ∈ R+. It is easy to show that
|∇ie

sFn/2| = s
2esFn/2|∇iFn|, thus, using condition (4.2), one sees that the right-

hand side of (4.3) is less than C s2

4n

∫
esFn dμn. Letting Z(s) = ∫

esFn dμn, one gets
the differential inequality:

Z′(s)
sZ(s)

− logZ(s)

s2 ≤ C

4n
.

Integrating this yields

∀s ∈ R+ Z(s) =
∫

esFn dμn ≤ es
∫

Fn dμn+Cs2/(4n).

This implies that

P
(
W2(Ln,μ) ≥ t + E[W2(Ln,μ)]) ≤ e−nt2/C.

Let Yn = W2(Ln,μ); let us show that E[Yn] → 0 as n → +∞. Arguing as
in the proof of Theorem 3.4, one sees that P(Yn > t) → 0 as n → +∞ for all
t > 0. It is easy to show that K := supn≥1 E[Y 2

n ] < +∞. For all ε > 0, one has
E[Yn] ≤ ε +E[Yn1Yn>ε] ≤ ε +K1/2

P(Yn > ε)1/2 and so lim supn→+∞ E[Yn] ≤ ε,
and since ε > 0 is arbitrary, this proves the claim.

As a consequence, for all u > 0,

lim sup
n→+∞

1

n
log P

(
T2(Ln,μ) ≥ u

) ≤ −u/C.
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Applying Sanov’s theorem as in proof of Theorem 3.4, one concludes that the
inequality T2(C) holds. �

COROLLARY 4.2. Suppose that X is the Euclidean space Rk and μ is ab-
solutely continuous with respect to the Lebesgue measure; then condition (4.2)
holds true and so

(μ verifies LSI(C)) ⇒ (μ verifies T2(C)).

PROOF. The map x 	→ W2(L
x
n,μ) is 1/

√
n-Lipschitz for the Euclidean dis-

tance. Indeed, if x = (x1, . . . , xn) and y = (y1, . . . , yn) are in (Rk)n, then, thanks
to the triangle inequality,∣∣W2(L

x
n,μ) − W2(L

y
n,μ)

∣∣ ≤ W2(L
x
n,L

y
n).

According to the convexity property of T2(·, ·) (see, e.g., [37], Theorem 4.8), one
has

T2(L
x
n,L

y
n) ≤ 1

n

n∑
i=1

T2(δxi
, δyi

) = 1

n

n∑
i=1

|xi − yi |2 = 1

n
|x − y|2,

which proves the claim. According to Rademacher’s Theorem, Fn is almost every-
where differentiable on (Rk)n with respect to the Lebesgue measure. It is then
easy to show that condition (4.2) is fulfilled when μ is absolutely continuous with
respect to the Lebesgue measure. �

REMARK 4.3. The same result holds true when X is a Riemannian manifold.

The following proposition shows that a weaker form of condition (4.2) is always
true. If f is a locally Lipschitz map on (X , d), one defines its subgradient norm
|∇−f | by

|∇−f |(x) = lim sup
y→x

[f (y) − f (x)]+
d(x, y)

,

with [a]+ = max(a,0). Observe that |∇−f | ≤ |∇f |.

PROPOSITION 4.4. If (X , d) is a Polish space, then the following inequality
holds:

∀x ∈ X n
n∑

i=1

|∇−
i Fn|2(x) ≤ 1/n.(4.4)

The following proof uses an argument which I learned from Paul–Marie Sam-
son.
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PROOF OF PROPOSITION 4.4. Let us show how to compute |∇−
1 Fn|. Let a =

(a1, . . . , an) ∈ X n and z ∈ X \ {a1, . . . , an} and define za = (z, a2, . . . , an), then

|∇−
1 Fn|(a) = 1

2Fn(a)
lim sup
z→a1

[T2(L
za
n ,μ) − T2(L

a
n,μ)]+

d(z, a1)
.

Let π ∈ P(La
n,μ) be an optimal coupling (see [37], Theorem 4.1, for the exis-

tence); it is not difficult to see that one can write π(dx, dy) = p(x, dy)La
n(dx),

with p(x, dy) = π({x}×dy)
La

n(x)
, for all x belonging to the support of Ln. Put

νi(dy) = p(ai, dy), for all 1 ≤ i ≤ n. The probability measures νi are such that
n−1 ∑

i νi = μ. Define p̃ as follows: p̃(z, dy) = ν1 and p̃(ai, dy) = νi for all i ≥ 2.
Then π̃ = p̃(x, dy)Lza

n (dy) belongs to P(Lza
n ,μ) (but is not necessary optimal).

One has

T2(L
za
n ,μ) − T2(L

a
n,μ) ≤

∫
d(x, y)2 dπ̃(x, y) −

∫
d(x, y)2 dπ(x, y)

= 1

n

n∑
i=1

∫
d((za)i, y)2 dνi(y) − 1

n

n∑
i=1

∫
d(ai, y)2 dνi(y)

= 1

n

∫
d(z, y)2 − d(a1, y)2 dν1(y)

≤ 1

n
d(z, a1)

∫
d(z, y) + d(a1, y) dν1(y).

Since the function x 	→ [x]+ is nondecreasing, one has

[T2(L
za
n ,μ) − T2(L

a
n,μ)]+

d(z, a1)
≤ 1

n

∫
d(z, y) + d(a1, y) dν1(y).

Letting z → a1 yields |∇−
1 Fn(a)|2 ≤

∫
d(a1,y)2 dν1(y)

n2 T2(L
a
n,μ)

. Doing the same compu-

tations for the other derivatives (with the same optimal coupling π ), one gets

|∇−
i Fn(a)|2 ≤

∫
d(ai ,y)2 dνi(y)

n2 T2(L
a
n,μ)

. Summing these inequalities gives
∑

i |∇−
i Fn|2(a) ≤

1/n for all a ∈ X n, which achieves the proof. �

With this proposition in hand, we can recover and extend a recent result of Lott
and Villani. Following [29], one says that a probability measure μ on X verifies
the inequality LSI+(C) if

Entμ(f 2) ≤ C

∫
|∇−f |2 dμ

holds true for all locally Lipschitz f , where the subgradient norm |∇−f | was
defined above. Since |∇−f | ≤ |∇f |, the inequality LSI+ is stronger than LSI;
more precisely, LSI+(C) ⇒ LSI(C).
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THEOREM 4.5. Let μ be a probability measure on some Polish space X ; if μ

verifies the inequality LSI+(C), then μ verifies T2(C).

This result was first obtained by Lott and Villani using the Hamilton–Jacobi
method. This approach forced them to make many assumptions on X and μ. In
particular, in [29], Theorem 1.8, X was supposed to be a compact length space
and a doubling condition was imposed on μ. The result above shows that the im-
plication LSI+ ⇒ T2 is in fact always true.

PROOF. The inequality LSI+ tensorizes, so μn verifies

Entμn(f 2) ≤ C

∫ n∑
i=1

|∇−
i f |2 dμn.

Take f = esFn/2, s ∈ R+ with Fn(x) = W2(L
x
n,μ). It is easy to check that

|∇−
i esFn/2| = s

2esFn/2|∇−
i Fn| (note that the function x 	→ esx is nondecreas-

ing). According to (4.4),
∑

i |∇−
i Fn|2 ≤ 1/n and so letting Z(s) = ∫

esFn dμn,

one has Z′(s)
sZ(s)

− logZ(s)

s2 ≤ C
4n

, for all s ≥ 0. One concludes as in the proof of
Theorem 4.1. �

Our next result shows that condition (4.2) holds when the Monge–Kantorovich
problem of transporting μ on a probability measure with finite support admits a
unique deterministic solution. To state this result, let us recall some definitions.

Let ν,μ ∈ P2(X ); recall that P(ν,μ) = {π ∈ P(X 2) s.t. π(· × X ) = ν and
π(X × ·) = μ}. One says that π∗ ∈ P(ν,μ) is an optimal coupling of (ν,μ) if
T2(ν,μ) = ∫

d2(x, y) dπ∗(x, y). If F : X → Y is a measurable map, one denotes
by F
μ the image of μ under F . By definition, F
μ(A) = μ(F−1(A)), for all
measurable A ⊂ Y . A coupling π ∈ P(ν,μ) is said to be deterministic if there is a
measurable map H : X → X such that π = F
μ, with F(x) = (H(x), x), x ∈ X .

One will say that a probability measure μ on X is well transportable on finite
probability measures if for all probability measure ν on X with finite support, there
is a unique optimal coupling between ν and μ and this coupling is deterministic.

THEOREM 4.6. If μ is well transportable on finite probability measures then
condition (4.2) holds true and so

(μ verifies LSI(C)) ⇒ (μ verifies T2(C)).

The following result is due to Cuesta–Albertos and Tuero–Díaz (see [14], The-
orem 3):

THEOREM 4.7 (Cuesta–Albertos and Tuero–Díaz). If a probability measure
μ verifies the following continuity condition:

∀k ∈ R,∀u �= v ∈ X μ{x ∈ X s.t. d2(x, u) − d2(x, v) = k} = 0,(4.5)

then it is well transportable on finite probability measures.
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REMARK 4.8. If μ is a probability measure on the Euclidean space Rk , the
condition (4.5) amounts to say that μ does not charge hyperplanes.

PROOF. For all a = (a1, . . . , an) ∈ X n, let π∗
a be the unique optimal coupling

between La
n and μ. By assumption, it is deterministic so there is a map Ha : X → X

such that π∗
a is the image of μ under the map x 	→ (Ha(x), x). Define Ei

a = {x ∈
X s.t. Ha(x) = ai}.

If μ is well transportable on finite probability measures then μ{x} = 0 for all x ∈
X . We leave the verification of this fact to the reader. As a consequence, μn(∀i �=
j, xi �= xj ) = 1 and so it is enough to verify the condition

∑
i |∇iFn|2(a) ≤ 1/n in

the particular case where a = (a1, . . . , an) with ai �= aj for all i �= j .
Let us show how to compute |∇1Fn(a)|. Let a = (a1, . . . , an) ∈ X n with ai �= aj

and z ∈ X \ {a1, . . . , an} and define za = (z, a2, . . . , an), then

|∇1Fn|(a) = 1

2Fn(a)
lim sup
z→a1

|T2(L
za
n ,μ) − T2(L

a
n,μ)|

d(z, a1)
.

Repeating the proof of Proposition 4.4, we see that

T2(L
za
n ,μ) − T2(L

a
n,μ)

d(z, a1)
≤

∫ (
d(z, y) + d(a1, y)

)
1E1

a
(y) dμ(y) := A(z).

Exchanging the roles a and za, we obtain

T2(L
a
n,μ) − T2(L

za
n ,μ)

d(z, a1)
≤

∫ (
d(z, y) + d(a1, y)

)
1E1

za
(y) dμ(y) := B(z).

So

|T2(L
za
n ,μ) − T2(L

a
n,μ)|

d(z, a1)
≤ max(A(z),B(z)).

It is clear that A(z) → 2
∫

d(a1, y)1E1
a(y) dμ(y), when z → a1. Let us see that

B(z) goes to the same quantity. According to [37], Corollary 5.23, Hza con-
verges to Ha in probability when z goes to a1. More precisely, for all ε > 0,
μ(x :d(Hza(x),Ha(x)) ≥ ε) → 0 when z → a1. In particular, μ(E1

za \ E1
a) → 0

and μ(E1
a \ E1

za) → 0. From this follows easily that |A(z) − B(z)| → 0 when
z → a1, and so B(z) → 2

∫
d(a1, y)1E1

a(y) dμ(y), when z → a1.
According to what precedes,

|∇1Fn(a)|2(a) ≤ (
∫

d(a1, y)1E1
a
(y) dμ(y))2

T2(La
n,μ)

≤
∫

d(a1, y)21E1
a
(y) dμ(y)

nT2(La
n,μ)

,

since μ(E1
a) = 1/n. Similar inequalities hold for the other derivatives; summing

these inequalities gives the desired result since T2(L
a
n,μ) = ∑

i

∫
d(ai, y)2 ×

1Ei
a
(y) dμ(y). �
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5. Poincaré inequality and exponential concentration. In this section
X = Rk and d(x, y) = |x − y|2 is the usual Euclidean distance.

Let us recall that a probability measure μ on X satisfies the Poincaré inequality
with constant a > 0 if

Varμ(f ) ≤ a

∫
|∇f |22 dμ

for all locally Lipschitz f .
The following theorem proves the equivalence between the Poincaré in-

equality, the dimension free exponential concentration and the corresponding
transportation-cost inequality.

THEOREM 5.1. Let μ be a probability measure on Rk . Define α1(x) =
min(x2,2x − 1); the following propositions are equivalent:

(1) The probability measure μ verifies the Poincaré inequality with a constant
a > 0.

(2) The probability measure μ verifies the concentration property Cα1(b) for some
b > 0.

(3) The probability measure μ verifies the inequality Tα1(c) for some c > 0.

More precisely:

• (1) implies (2) with b = κ max(a,
√

a)−1, κ being a universal constant.
• (2) implies (3) with c = 1/b.
• (3) implies (1) with a = c/2.

The equivalence of (1) and (3) was first obtained by Bobkov, Gentil and Ledoux
in [6], Corollary 5.1, with the Hamilton–Jacobi approach (see also [37], Theo-
rem 22.25) and the fact that (1) implies (2) is the main result of [8]. The equiva-
lence of (1) and (2) [or (2) and (3)] seems to be new.

Before stating the proof, let us mention an interesting open question related to
the Poincaré inequality and exponential concentration. Since the work by Gromov
and Milman (see [23]), it is well known that under the Poincaré inequality, the
following dimension free concentration inequality holds:

∀n ≥ 1,∀A ⊂ (Rk)n with μn(A) ≥ 1/2,∀r ≥ 0
(5.1)

μn(Ar) ≥ 1 − Me−ar ,

where M and a are positive constants independent of n and where the enlargement
is performed with respect to the Euclidean metric d2 on (Rk)n. Note that (5.1) is
weaker than the concentration property Cα1 . We do not know if (5.1) is equivalent
to the Poincaré inequality or if it is related to some transportation-cost inequality.
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PROOF. According to (a careful reading of) [8, Corollary 3.2], (1) implies (2)
with b = κ max(a,

√
a)−1, where κ is a universal constant. According to Theo-

rem 3.4, (2) implies (3) (with c = 1/b). It remains to prove that (3) implies (1).
This last point is classical; let us simply sketch the proof. The transportation-cost
inequality is equivalent to the following property: for all bounded f on Rk ,∫

eQf dμ ≤ e
∫

f dμ,

where Qf (x) = infy∈Rk {f (y) + c−1α1(|x − y|2)} (see, e.g., [22], Corollary 1).
Let f be a smooth function and apply the preceding inequality to tf . When t goes
to 0, it can be shown that

Q(tf )(x) − tf (x) = −ct2

4
|∇f |22(x) + o(t2),

so
∫

eQ(tf ) dμ = 1 + t
∫

f dμ + t2

2

∫
f 2 dμ − ct2

4

∫ |∇f |22 dμ + o(t2). On the

other hand, et
∫

f dμ = 1 + t
∫

f dμ + t2

2 (
∫

f dμ)2. One concludes that Varμ(f ) ≤
c
2

∫ |∇f |2 dμ, which achieves the proof. �
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