PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 104, Number 1, September 1988

A CHARACTERIZATION OF DISCRETE BANACH LATTICES
WITH ORDER CONTINUOUS NORMS

WITOLD WNUK
(Communicated by John B. Conway)

ABSTRACT. We give a characterization of those o-Dedekind complete Banach
lattices for which every continuous linear operator T: E — c¢p is a difference
of two positive linear operators from E into co.

1. Preliminary remarks. Let E and F be infinite dimensional Banach lat-
tices. In general, the space L(E, F) of all continuous linear operators from FE into F’
is not a Riesz space (= vector lattice) with respect to the natural order, i.e., T > 0
iff Tx > 0 for z € E,, even if F is Dedekind complete. However, the subspace
L7(E, F) of regular operators, i.e., the subspace consisting of operators which are
differences of positive linear operators, is a Riesz space under the “pointwise order”
provided F is Dedekind complete. Moreover, L™ (E, F) is a Banach lattice for the
norm ||T||, = [T} |].

A characterization of pairs of Banach lattices E, F for which L(E,F) = L"(E, F)
(or L(E,F) = L"(E,F), i.e., these spaces are equal and ||T|| = ||T|,) is an old
problem which, in general, is still not solved. A classical result in this direction
says that L(E, F) = L"(E, F) whenever F is a Dedekind complete AM-space with
a strong unit or F is an AL-space and there exists a positive contractive projection
P: F** — F. Cartwright and Lotz conjectured in [4] that if L(E,F) = L"(E, F),
then E is Riesz isomorphic to an AL-space or F is Riesz isomorphic to an AM-
space. They confirmed the conjecture in the case where E* or F contains a closed
sublattice Riesz isomorphic to P for some p € [1,00), but Abramovi¢ constructed
in [1] a pair of Banach lattices E and F with the following properties: E is not
Riesz isomorphic to an AL-space, F is not Riesz isomorphic to an AM-space and
for any operator T € L(E, F) the modulus |T|: E — F exists.

The identity L(E,F) = L"(E,F) was also considered in [6] where the au-
thor, among other things, gave a characterization of a compact set X provided
L(C(X),C(Y))=L"(C(X),C(Y)) for every compact set Y.

The space [!(A) is the unique Banach lattice E (up to a Riesz isomorphism)
having the property that L(E, F) = L"(E, F) for every Banach lattice F. Indeed,
it is easy to notice that L(I!(A),F) = L"(I'(A), F) (see for example [6, Theorem
2.1]). On the other hand, if L(E, F) = L"(E, F) for every Banach lattice F then
E is an AL-space by the result of Cartwright and Lotz. If E were not discrete
then by the famous Carathéodory theorem E would contain a closed Riesz sub-
space Riesz isomorphic to L(0,1). Moreover, there exists a positive projection
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P: E — L'(0,1), and the operator T: L!(0,1) — ¢ defined by the equality

[e ]

(*) Tf= </01 f(t) sin(nt) dt>

is the well-known example of a continuous and nonregular operator. Therefore
TP e L(E,co)\L"(E,co) and we have a contradiction.

For a Banach lattice F with an order continuous norm it is not difficult to
check that L(L!(0,1),F) = L"(L'(0,1), F) iff there exists a positive projection
P: F** — F. Indeed, if there did not exist a projection then F could not be a band
in F**. Thus F contains a closed Riesz subspace Riesz isomorphic to ¢g. Since the
norm on F is order continuous there exists a positive projection P: F — ¢o (see
[8]), and so the operator T defined by (*) is not regular as a map from L!(0, 1) into
F.

n=1

2. Main result. The purpose of this paper is to characterize those o-Dedekind
complete Banach lattices E for which L(E,¢o) = L"(E,cp). The lemma mentioned
below is known (see for example [6]) but for the sake of completeness and reader’s
convenience we will present a proof of the lemma using a simpler and different
method than in [6].

LEMMA. If K 13 an infinite compact Hausdorff space then
L(C(K),co) # L"(C(K), o).

PROOF. Choose a weak* null sequence (f,) of norm-one functionals in the dual
space of C(K) (such a sequence exists by the Josefson-Niessenzwieg theorem) and
define an operator T: C(K) — ¢ by Tz = (fn(2))S2,. Map T is continuous and
noncompact. On the other hand, every regular operator from C(K) into co maps
the unit ball, which is an order interval, into some order interval in ¢g. But order
intervals in ¢o are compact, and so every regular operator from C(K) into ¢y must
be compact. Therefore T € L(C(K),co)\L"(C(K), o).

COROLLARY. L(I%,¢g) # L"(I*°,¢co).

Using the corollary we will prove the following characterization of discrete Ba-
nach lattices with order continuous norms.

THEOREM. Let (E,||||) be a o-Dedekind complete Banach lattice. The following
statements are equivalent:

(a) L(E,co) = L"(E, co).

(b) L(E,co) = L™(E,co).

(¢) E s discrete and the norm || - || is order continuous.

PROOF. (a) = (b) obvious; (b) = (c). If the norm || - || is not order continuous
then E contains a closed Riesz subspace Riesz isomorphic to {*°. By injectivity
of [° there exists a positive projection P: E — [*°. Using the corollary choose
a nonregular operator S: [*® — c¢g. There are no difficulties in verifying that the
operator SP is also nonregular. Therefore || - || is order continuous.

Suppose F is nondiscrete. Denote by F, the band generated by discrete elements
in E. Let B(e) be the band in E generated by a strictly positive element e € E¢
(E¢ means the orthogonal completion of E,). The Banach lattice (B(e), || - ||) has
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an order continuous norm and a weak unit, and so B(e) is Riesz isomorphic to an
ideal of some space L!(S,X,u) = L!(u), where u is nonatomic and probabilistic
(see [7, Theorem 1.b.14]). Moreover, we can assume L% (u) is contained in the
range of B(e) and the characteristic function of the set S is the range of e. We will
identify B(e) with its range in further considerations. Choose a separable sub-o-
algebra ¥ of ¥ such that ug = u|Zo (the restriction of u to £g) is nonatomic. The
space L(S, o, o) = L (uo) is a closed Riesz subspace of L!(u). Therefore, there
exists a positive projection P: L'(u) — L!(uo). Using the famous Carathéodory
theorem we can identify L(uo) with L(0,1).

If Py denotes the band projection from E onto B(e) then the composition PPy
maps continuously E into L!(0, 1) because PP, is a positive operator. Define the
operator T: E — co by the equality Tz = ( fol PPyz(t)sin(nt) dt)e>,. If T were
regular then the set T'([0, e]) would be order bounded and therefore conditionally
compact. But T([0,€]) contains the subset {([, sin(nt)dt)3>;: A is a Lebesgue
measurable subset of (0,1)} which is not conditionally compact in ¢g. Thus T is
continuous and nonregular and we have a contradiction. Therefore E is a discrete
Riesz space.

(c) = (a). Let (eq)aca be a complete disjoint system in E consisting of discrete
elements. For every z € E there exists the unique net (¢,) of real numbers such
that z = Za taeq. Let T: E — co be a linear continuous operator. Putting
Sz = ) ,ta|Teq| we have S = |T| (operator S is well defined because ¢ is an
AM-space so the convergence of ), t,T(e,) implies the convergence of the series
Y . |taT(eq)| and this convergence is unconditional). Thus L(E,co) = L"(E, co).

On the other hand |T|z = sup{|Ty| : |y| < z} for z € E,. Since ¢o is super
Dedekind complete there exists a sequence (y,) C E with two properties: |y,| < «
and |T'|z = sup,, |Tyn|- Using this fact we have for z > 0,

1T ||| =

sup([Tys| V-V [Tyil)|| = B [[[Tya| V-V [Tyl l

= i Tyl| < ||IT .
dm max || Tyl < [IT1]||=ll

Thus ||T||, = ||T|| because ||T||, > ||T|| always holds.

REMARKS. 1. It is clear that every compact operator T from an arbitrary
Banach lattice into ¢g is regular (indeed, T maps order intervals into relatively
compact sets in co which are order bounded).

2. A similar proof of implication (c¢) = (a) is presented in [6] (see Theorem 2.2).

3. The theorem also gives the following characterization of discrete o-Dedekind
complete Banach lattices with order continuous norms:

(d) The mapping f — |f| from E* into E* is o(E*, E) sequentially continuous.

Indeed, it is not difficult to notice that statement (b) of the theorem is equivalent
to (d) (but the mapping f — |f] is not o(E*, E) continuous at zero if dim £ = co—
see (2] the proofs of Theorems 6.8 and 6.9).
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