A CHARACTERIZATION OF DISCRETE BANACH LATTICES WITH ORDER CONTINUOUS NORMS

WITOLD WNUK

(Communicated by John B. Conway)

ABSTRACT. We give a characterization of those σ -Dedekind complete Banach lattices for which every continuous linear operator $T: E \to c_0$ is a difference of two positive linear operators from E into c_0 .

1. Preliminary remarks. Let E and F be infinite dimensional Banach lattices. In general, the space L(E, F) of all continuous linear operators from E into Fis not a Riesz space (= vector lattice) with respect to the natural order, i.e., $T \ge 0$ iff $Tx \ge 0$ for $x \in E_+$, even if F is Dedekind complete. However, the subspace $L^r(E, F)$ of regular operators, i.e., the subspace consisting of operators which are differences of positive linear operators, is a Riesz space under the "pointwise order" provided F is Dedekind complete. Moreover, $L^r(E, F)$ is a Banach lattice for the norm $||T||_r = |||T|||$.

A characterization of pairs of Banach lattices E, F for which $L(E, F) = L^r(E, F)$ (or $L(E, F) \equiv L^r(E, F)$, i.e., these spaces are equal and $||T|| = ||T||_r$) is an old problem which, in general, is still not solved. A classical result in this direction says that $L(E, F) \equiv L^r(E, F)$ whenever F is a Dedekind complete AM-space with a strong unit or E is an AL-space and there exists a positive contractive projection $P: F^{**} \to F$. Cartwright and Lotz conjectured in [4] that if $L(E, F) = L^r(E, F)$, then E is Riesz isomorphic to an AL-space or F is Riesz isomorphic to an AMspace. They confirmed the conjecture in the case where E^* or F contains a closed sublattice Riesz isomorphic to l^p for some $p \in [1, \infty)$, but Abramovič constructed in [1] a pair of Banach lattices E and F with the following properties: E is not Riesz isomorphic to an AL-space, F is not Riesz isomorphic to an AM-space and for any operator $T \in L(E, F)$ the modulus $|T|: E \to F$ exists.

The identity $L(E, F) = L^{r}(E, F)$ was also considered in [6] where the author, among other things, gave a characterization of a compact set X provided $L(C(X), C(Y)) = L^{r}(C(X), C(Y))$ for every compact set Y.

The space $l^1(A)$ is the unique Banach lattice E (up to a Riesz isomorphism) having the property that $L(E, F) = L^r(E, F)$ for every Banach lattice F. Indeed, it is easy to notice that $L(l^1(A), F) = L^r(l^1(A), F)$ (see for example [6, Theorem 2.1]). On the other hand, if $L(E, F) = L^r(E, F)$ for every Banach lattice F then E is an AL-space by the result of Cartwright and Lotz. If E were not discrete then by the famous Carathéodory theorem E would contain a closed Riesz subspace Riesz isomorphic to $L^1(0, 1)$. Moreover, there exists a positive projection

©1988 American Mathematical Society 0002-9939/88 \$1.00 + \$.25 per page

Received by the editors July 15, 1987 and, in revised form, August 25, 1987.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 46B30, 47B55; Secondary 47D15.

Key words and phrases. Banach lattice, regular operator.

 $P: E \to L^1(0,1)$, and the operator $T: L^1(0,1) \to c_0$ defined by the equality

(*)
$$Tf = \left(\int_0^1 f(t)\sin(nt)\,dt\right)_{n=1}^\infty$$

is the well-known example of a continuous and nonregular operator. Therefore $TP \in L(E, c_0) \setminus L^r(E, c_0)$ and we have a contradiction.

For a Banach lattice F with an order continuous norm it is not difficult to check that $L(L^1(0,1),F) = L^r(L^1(0,1),F)$ iff there exists a positive projection $P: F^{**} \to F$. Indeed, if there did not exist a projection then F could not be a band in F^{**} . Thus F contains a closed Riesz subspace Riesz isomorphic to c_0 . Since the norm on F is order continuous there exists a positive projection $P: F \to c_0$ (see [8]), and so the operator T defined by (*) is not regular as a map from $L^1(0,1)$ into F.

2. Main result. The purpose of this paper is to characterize those σ -Dedekind complete Banach lattices E for which $L(E, c_0) = L^r(E, c_0)$. The lemma mentioned below is known (see for example [6]) but for the sake of completeness and reader's convenience we will present a proof of the lemma using a simpler and different method than in [6].

LEMMA. If K is an infinite compact Hausdorff space then

$$L(C(K), c_0) \neq L^r(C(K), c_0).$$

PROOF. Choose a weak^{*} null sequence (f_n) of norm-one functionals in the dual space of C(K) (such a sequence exists by the Josefson-Niessenzwieg theorem) and define an operator $T: C(K) \to c_0$ by $Tx = (f_n(x))_{n=1}^{\infty}$. Map T is continuous and noncompact. On the other hand, every regular operator from C(K) into c_0 maps the unit ball, which is an order interval, into some order interval in c_0 . But order intervals in c_0 are compact, and so every regular operator from C(K) into c_0 must be compact. Therefore $T \in L(C(K), c_0) \setminus L^r(C(K), c_0)$.

COROLLARY. $L(l^{\infty}, c_0) \neq L^r(l^{\infty}, c_0)$.

Using the corollary we will prove the following characterization of discrete Banach lattices with order continuous norms.

THEOREM. Let $(E, ||\cdot||)$ be a σ -Dedekind complete Banach lattice. The following statements are equivalent:

(a)
$$L(E, c_0) \equiv L^r(E, c_0)$$
.

- (b) $L(E, c_0) = L^r(E, c_0)$.
- (c) E is discrete and the norm $|| \cdot ||$ is order continuous.

PROOF. (a) \Rightarrow (b) obvious; (b) \Rightarrow (c). If the norm $|| \cdot ||$ is not order continuous then E contains a closed Riesz subspace Riesz isomorphic to l^{∞} . By injectivity of l^{∞} there exists a positive projection $P: E \to l^{\infty}$. Using the corollary choose a nonregular operator $S: l^{\infty} \to c_0$. There are no difficulties in verifying that the operator SP is also nonregular. Therefore $|| \cdot ||$ is order continuous.

Suppose E is nondiscrete. Denote by E_a the band generated by discrete elements in E. Let B(e) be the band in E generated by a strictly positive element $e \in E_a^d$ $(E_a^d \text{ means the orthogonal completion of } E_a)$. The Banach lattice $(B(e), || \cdot ||)$ has an order continuous norm and a weak unit, and so B(e) is Riesz isomorphic to an ideal of some space $L^1(S, \Sigma, \mu) = L^1(\mu)$, where μ is nonatomic and probabilistic (see [7, Theorem 1.b.14]). Moreover, we can assume $L^{\infty}(\mu)$ is contained in the range of B(e) and the characteristic function of the set S is the range of e. We will identify B(e) with its range in further considerations. Choose a separable sub- σ -algebra Σ_0 of Σ such that $\mu_0 = \mu | \Sigma_0$ (the restriction of μ to Σ_0) is nonatomic. The space $L^1(S, \Sigma_0, \mu_0) = L^1(\mu_0)$ is a closed Riesz subspace of $L^1(\mu)$. Therefore, there exists a positive projection $P: L^1(\mu) \to L^1(\mu_0)$. Using the famous Carathéodory theorem we can identify $L^1(\mu_0)$ with $L^1(0, 1)$.

If P_0 denotes the band projection from E onto B(e) then the composition PP_0 maps continuously E into $L^1(0,1)$ because PP_0 is a positive operator. Define the operator $T: E \to c_0$ by the equality $Tx = (\int_0^1 PP_0x(t)\sin(nt) dt)_{n=1}^{\infty}$. If T were regular then the set T([0,e]) would be order bounded and therefore conditionally compact. But T([0,e]) contains the subset $\{(\int_A \sin(nt) dt)_{n=1}^{\infty}: A \text{ is a Lebesgue}$ measurable subset of $(0,1)\}$ which is not conditionally compact in c_0 . Thus T is continuous and nonregular and we have a contradiction. Therefore E is a discrete Riesz space.

 $(c) \Rightarrow (a)$. Let $(e_a)_{a \in A}$ be a complete disjoint system in E consisting of discrete elements. For every $x \in E$ there exists the unique net (t_a) of real numbers such that $x = \sum_a t_a e_a$. Let $T: E \to c_0$ be a linear continuous operator. Putting $Sx = \sum_a t_a |Te_a|$ we have S = |T| (operator S is well defined because c_0 is an AM-space so the convergence of $\sum_a t_a T(e_a)$ implies the convergence of the series $\sum_a |t_a T(e_a)|$ and this convergence is unconditional). Thus $L(E, c_0) = L^r(E, c_0)$.

On the other hand $|T|x = \sup\{|Ty| : |y| \le x\}$ for $x \in E_+$. Since c_0 is super Dedekind complete there exists a sequence $(y_n) \subset E$ with two properties: $|y_n| \le x$ and $|T|x = \sup_n |Ty_n|$. Using this fact we have for $x \ge 0$,

$$|||T|x|| = \left\| \sup_{k} (|Ty_1| \lor \cdots \lor |Ty_k|) \right\| = \lim_{k \to \infty} |||Ty_1| \lor \cdots \lor |Ty_k|||$$
$$= \lim_{k \to \infty} \max_{1 \le i \le k} ||Ty_i|| \le ||T|| \, ||x||.$$

Thus $||T||_r = ||T||$ because $||T||_r \ge ||T||$ always holds.

REMARKS. 1. It is clear that every compact operator T from an arbitrary Banach lattice into c_0 is regular (indeed, T maps order intervals into relatively compact sets in c_0 which are order bounded).

2. A similar proof of implication (c) \Rightarrow (a) is presented in [6] (see Theorem 2.2). 3. The theorem also gives the following characterization of discrete σ -Dedekind complete Banach lattices with order continuous norms:

(d) The mapping $f \to |f|$ from E^* into E^* is $\sigma(E^*, E)$ sequentially continuous. Indeed, it is not difficult to notice that statement (b) of the theorem is equivalent to (d) (but the mapping $f \to |f|$ is not $\sigma(E^*, E)$ continuous at zero if dim $E = \infty$ —see [2] the proofs of Theorems 6.8 and 6.9).

REFERENCES

- Ju. A. Abramovič, The space of operators that act between Banach lattices, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov 73 (1977), 188–192. (Russian)
- 2. C. Aliprantis and O. Burkinshaw, *Locally solid Riesz spaces*, Academic Press, New York and London, 1978.

WITOLD WNUK

- 3. ____, Positive operators, Academic Press, New York and London, 1985.
- 4. D. I. Cartwright and H. P. Lotz, Some characterizations of AM- and AL-spaces, Math. Z. 142 (1975), 97-103.
- 5. D. H. Fremlin, A characterization of L-spaces, Indag. Math. 36 (1974), 270-275.
- Hong-Yun Xiong, On whether or not L(E, F) = L^r(E, F) for some classical Banach lattices E and F, Indag. Math. 46 (1984), 267-282.
- 7. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. II, Function spaces, Springer-Verlag, Berlin and New York, 1979.
- 8. P. Meyer-Nieberg, Charakterisierung einiger topologischer und ordnung theoretischer Eigenschaften von Banachverbanden mit Hilfe disjunkter Folgen, Arch. Math. 24 (1973), 640-647.

MATHEMATICAL INSTITUTE, POLISH ACADEMY OF SCIENCES, POZNAŃ BRANCH, MIELŻYŃSKIEGO 27/29, 61-725 POZNAŃ, POLAND