A CHARACTERIZATION OF FINITE PREHOMOGENEOUS VECTOR SPACES OF D_{4}-TYPE UNDER VARIOUS SCALAR RESTRICTIONS

Dedicated to Professor Tatsuo Kimura on the occasion of his 60th birthday.

By
Tomohiro Kamiyoshi

Abstract

In the present paper, we give conditions to have only finitely many orbits for prehomogeneous vector spaces of D_{4}-type. This paper completes the classification of finite prehomogeneous vector spaces of type $\left(G \times S L_{n}, \rho \otimes \Lambda_{1}\right)$ with $n \geq 2$. We consider everything over the complex number field \mathbf{C}.

Introduction

Let $\rho: G \rightarrow G L(V)$ be a rational representation of a connected linear algebraic group G on a finite-dimensional vector space V. If V has a Zariski-dense G-orbit, the triplet (G, ρ, V) is called a prehomogeneous vector space (abbrev. PV). When V is decomposed into a finite union of G-orbits, it must be a PV. Such a triplet is called a finite prehomogeneous vector space (abbrev. FP). When there is no confusion, we sometimes denote it by (G, ρ) instead of (G, ρ, V).

When G is reductive, all FPs have been completely classified under the condition that each irreducible component has an independent scalar multiplication ([KKY]). However if we restrict scalar multiplications, the classification becomes complicated and it has been done only some cases ([NN], [NOT], [KKMOT]).

Let G_{i} be a general linear algebraic group $G L\left(m_{i}\right)$ or a special linear algebraic group $S L\left(m_{i}\right)(i=1, \ldots, 4)$. Then the group $G=G_{1} \times G_{2} \times G_{3} \times G_{4}$ acts on $V=M\left(m_{4}, m_{1}\right) \oplus M\left(m_{4}, m_{2}\right) \oplus M\left(m_{4}, m_{3}\right)$ as $\rho(g) v=\left(g_{4} v_{1} g_{1}^{-1}, g_{4} v_{2} g_{2}^{-1}\right.$,

[^0]$\left.g_{4} v_{3} g_{3}^{-1}\right)$ for $g=\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \in G$ and $v=\left(v_{1}, v_{2}, v_{3}\right) \in V$. We call it a triplet of D_{4}-type under scalar restriction and denote it by

In this paper, we determine the conditions for a triplet of D_{4}-type under scalar restriction to be an FP by decomposing into the orbits. This method is different from that of [NOT]. This result is useful to study the classification of the FPs of D_{r}-type $(r \geq 5), E_{6}, E_{7}$ or E_{8}-type under various scalar restrictions since they contain the diagram of D_{4}-type as a subdiagram. Together with [KKMOT], this paper completes the classification of FPs of type $(G \times S L(n)$, $\left.\rho \otimes \Lambda_{1}\right)(n \geq 2)$ where G is a reductive algebraic group.

1. Preliminaries and Notation

For positive integers m and n, we denote by $M(m, n)$ the totality of $m \times n$ matrices. We also use the notation $M(m, n)^{\prime}=\{X \in M(m, n) \mid \operatorname{rank} X=$ $\min \{m, n\}\}$ and $M(m, n)^{\prime \prime}=\{X \in M(m, n) \mid \operatorname{rank} X<\min \{m, n\}\}$. We denote by I_{n} the identity matrix of degree n. We write the standard representation of $G L(n)$ on \mathbf{C}^{n} by Λ_{1}.

In general, we denote by ρ^{*} the dual representation of a rational representation ρ. It is known that (H, σ, V) is an FP if and only if $\left(H, \sigma^{*}, V^{*}\right)$ is an FP for any algebraic group H, not necessarily reductive (see [P]). Hence $\left(G, \rho_{1}^{(*)} \oplus \cdots \oplus \rho_{l}^{(*)}\right)$ is an FP if and only if $\left(G, \rho_{1} \oplus \cdots \oplus \rho_{l}\right)$ is an FP where $\rho^{(*)}$ means ρ or its dual ρ^{*}. Also if G_{1} and G_{2} are reductive, then we have $\left(G_{1} \times G_{2}, \rho_{1}^{(*)} \otimes \rho_{2}^{(*)}\right) \cong\left(G_{1} \times G_{2}, \rho_{1} \otimes \rho_{2}\right)$. Using these facts, we do not have to consider the dual representation as far as we deal with D_{4}-type FPs.

Any subgroup $H_{1} \times H_{2}$ of $G L(m) \times G L(n)$ acts on $M(n, m)$ by $\Lambda_{1} \otimes \Lambda_{1}$. In the following, to simplify the notation, we will express this representation $\left(H_{1} \times H_{2}, \Lambda_{1} \otimes \Lambda_{1}, M(m, n)\right)$ by the diagram

Since any parabolic subgroup P of $G L(m)$ is conjugate to a standard parabolic subgroup, we may assume that P is a standard parabolic subgroup $P\left(e_{1}, \ldots, e_{r}\right)\left(e_{1}+\cdots+e_{r}=m\right)$ defined as follows:

A characterization of FPs of D_{4}-type under various scalar restrictions

$$
P\left(e_{1}, \ldots, e_{r}\right)=\left\{\left.\left[\begin{array}{cccc}
P_{11} & P_{12} & \ddots & P_{1 r} \\
0 & P_{22} & \ddots & \ddots \\
0 & 0 & \ddots & \ddots \\
0 & 0 & 0 & P_{r r}
\end{array}\right] \in G L(m) \right\rvert\, \begin{array}{l}
\\
P_{i j} \in M\left(e_{i}, e_{j}\right) \\
(1 \leq i, j \leq m)
\end{array}\right\}
$$

To prove that a triplet is a non FP, the following lemma is fundamental.

Lemma 1.1 ([K, Proposition 2.4]). If there exists a non-constant absolute invariant of a triplet (G, ρ, V), then it is a non $P V$. In particular, it is a non $F P$.

Example 1.2. Let $F(X)=\operatorname{det} X$ for $X \in M(n, n)$. The diagram $\begin{gathered}S L(n) \quad S L(n) \\ 0\end{gathered}$ is a non PV since $F(X)$ is a non-constant absolute invariant.

For the A_{r}-type, the following result is known.
Theorem 1.3 ([NN, Theorem 4.2]). Let $d=\left(d_{1}, \ldots, d_{r}\right)$ be an r-tuple of positive integers. Then

where $G_{k}=G L\left(d_{k}\right)$ or $S L\left(d_{k}\right)$, is a non FP if and only if there exist some numbers $u_{1}, u_{2}, \ldots, u_{l}\left(u_{1}<\cdots<u_{l}\right)$ such that

$$
\begin{gathered}
d_{u_{1}}-d_{u_{2}}+d_{u_{3}}-d_{u_{4}}+d_{u_{5}}-d_{u_{6}}+\cdots+(-1)^{l+1} d_{u_{l}}=0, \\
G_{u_{i}}=S L\left(d_{u_{i}}\right) \quad \text { for } i=1, \ldots, l,
\end{gathered}
$$

and for $j=2, \ldots, l$,

$$
d_{u_{j-1}}-d_{u_{j-2}}+\cdots+(-1)^{j} d_{u_{l}} \leq \min \left\{d_{u_{j-1}+1}, d_{u_{j-1}+2}, \ldots, d_{u_{j}}\right\}
$$

Corollary 1.4. All non FPs of A_{3}-type under various scalar restrictions are given as follows:

1. | $S L\left(m_{1}\right)$ | $S L(n)$ | $G L\left(m_{2}\right)$ |
| :---: | :---: | :---: |
| 0 | | |
| $S L\left(m_{1}\right)$ | $G L(n)$ | $S L\left(m_{2}\right)$ | with $n=m_{1}$,

3. $\stackrel{S L\left(m_{1}\right) \quad S L(n) \quad S L\left(m_{2}\right)}{\circ}$ with $n=m_{1}, n=m_{2}, n=m_{1}+m_{2}$ or $n>m_{1}=m_{2}$.

Remark 1.5. We can also obtain the orbital decomposition of an FP of A_{r}-type and their isotropy subgroups by $[\mathrm{NN}]$. For our purpose, it is enough to see these results only for A_{3}-type $\begin{array}{cccc}G L\left(m_{1}\right) \\ 0 & G L(n) & G L\left(m_{2}\right) \\ 0 & 0\end{array}$

First we consider ${ }_{\circ}^{G L(n)} \quad G L\left(m_{1}\right)$. It is well-known that each orbit is represented by

$$
J\left(r_{1}\right)=\left[\begin{array}{cc}
I_{r_{1}} & 0 \\
0 & 0
\end{array}\right] \in M\left(n, m_{1}\right)=\mathbf{C}^{n} \otimes \mathbf{C}^{m_{1}}
$$

with $0 \leq r_{1} \leq \min \left\{n, m_{1}\right\}$. Then the $G L(n)$-part of the isotropy subgroup at $J\left(r_{1}\right)$ is given by

$$
H_{1}=\left\{\left.\left[\begin{array}{cc}
A_{1} & * \\
0 & A_{2}
\end{array}\right] \in G L(n) \right\rvert\, A_{1} \in G L\left(r_{1}\right), A_{2} \in G L\left(n-r_{1}\right)\right\}
$$

Next we consider ${ }^{H_{1}}{ }^{-} \quad G L\left(m_{2}\right)$. In this case, each orbit is represented by

$$
J\left(r_{2}, r_{3}\right)=\left[\begin{array}{cccc}
I_{r_{2}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & I_{r_{3}} & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \in M\left(n, m_{2}\right)
$$

which is a block matrix of size $\left(r_{2}, r_{1}-r_{2}, r_{3}, n-r_{1}-r_{3}\right) \times\left(r_{2}, r_{1}-r_{2}, r_{3}\right.$, $m_{2}-r_{1}-r_{3}$) with $0 \leq r_{2} \leq r_{1}$ and $0 \leq r_{1}+r_{3} \leq \min \left\{n, m_{2}\right\}$. For each orbit, the H_{1}-part of the isotropy subgroup is given as

$$
H_{2}=\left\{\left[\begin{array}{cccc}
B_{1} & * & * & * \\
0 & B_{2} & 0 & * \\
0 & 0 & B_{3} & * \\
0 & 0 & 0 & B_{4}
\end{array}\right] \in G L(n) \left\lvert\, \begin{array}{l}
B_{1} \in G L\left(r_{2}\right), \\
B_{2} \in G L\left(r_{1}-r_{2}\right), \\
B_{3} \in G L\left(r_{3}\right), \\
B_{4} \in G L\left(n-r_{1}-r_{3}\right)
\end{array}\right.\right\} .
$$

The following is a key lemma to classify the FPs under various scalar restrictions.

Lemma 1.6. Let $\sigma: H \rightarrow G L(m)$ be a representation of an algebraic group H.

1. If $m<n$, then $\left(H \times S L(n), \sigma \otimes \Lambda_{1}, M(m, n)\right)$ is an FP if and only if $\left(H \times G L(n), \sigma \otimes \Lambda_{1}, M(m, n)\right)$ is an FP. In this case they have the same number of orbits.
2. If $m \geq n$ and the number of orbits of $H \times S L(n)$ in $M(m, n)^{\prime}$ is finite, then $\left(H \times S L(n), \sigma \otimes \Lambda_{1}, M(m, n)\right)$ is an FP if and only if $\left(H \times G L(n), \sigma \otimes \Lambda_{1}\right.$, $M(m, n))$ is an $F P$. In this case they have the same number of orbits.

Proof. See [KKMOT, Proposition 1.2].

A characterization of FPs of D_{4}-type under various scalar restrictions 61

2. The FPs of D_{4}-Type Under Various Scalar Restrictions

In this section, we shall classify FPs of D_{4}-type under various scalar restrictions. Here we put $m_{4}=n$.

Proposition 2.1. The diagram

is a non FP if and only if $n \geq m_{1}=m_{2}$.
Proof. If $n \geq m_{1}=m_{2}$, then $\xlongequal[0]{S L\left(m_{1}\right) \quad G L(n) \quad S L\left(m_{2}\right)}$ is a non FP by 2 of Corollary 1.4. Therefore our diagram is a non FP.

If $m_{1}>n$ or $m_{2}>n$, our representation has the same number of orbits as that of D_{4}-type with full scalar multiplications by 1 of Lemma 1.6.

Suppose that $n \geq m_{1}, m_{2}$ and $m_{1} \neq m_{2}$. It follows from 2 of Lemma 1.6 that each orbit contained in $M\left(n, m_{1}\right)^{\prime \prime}$ of $\stackrel{G L(n) \quad G L\left(m_{1}\right)}{\circ}$ cannot be decomposed by the scalar-restricted action of $G L(n) \times S L\left(m_{1}\right)$. Therefore our representation has the same number of orbits as that of D_{4}-type with full scalar multiplications. Hence it is enough to investigate only the orbits of our space related with $M\left(n, m_{1}\right)^{\prime}$ of ${ }^{G L(n) \quad S L\left(m_{1}\right)}$.

If $n=m_{1} \neq m_{2}$ (resp. $\left.n=m_{2} \neq m_{1}\right)$, the $G L(n)$-part of the isotropy subgroup of $\stackrel{G L(n)}{\circ} \xrightarrow{S L\left(m_{1}\right)}\left(\right.$ resp. ${ }^{G L(n)}{ }_{\circ} S L\left(m_{2}\right)$ at a generic point is $S L\left(m_{1}\right)$ (resp. $S L\left(m_{2}\right)$). Since $\xlongequal{S L\left(m_{2}\right) \quad S L\left(m_{1}\right) \quad G L\left(m_{3}\right)}\left(\right.$ resp. $\left.\stackrel{S L\left(m_{1}\right) \quad S L\left(m_{2}\right) \quad G L\left(m_{3}\right)}{0}\right)$ is an FP by 1 of Corollary 1.4, our representation is an FP. $\underset{\substack{G L(n) \\ 0}}{\text { If }} \underset{S L\left(m_{1}\right)}{n} m_{1}, m_{2}$ with $m_{1} \neq m_{2}$, the $G L(n)$-part of the isotropy subgroup of

$$
H_{1}=\left\{\left[\begin{array}{cc}
A_{1} & * \\
0 & A_{2}
\end{array}\right] \in G L(n) \left\lvert\, \begin{array}{l}
A_{1} \in S L\left(m_{1}\right), \\
A_{2} \in G L\left(n-m_{1}\right)
\end{array}\right.\right\} .
$$

 orbit of this space is similarly represented by $J\left(r_{2}, r_{3}\right)$ as in Remark 1.5 ([NN]). The H_{1}-part of the isotropy subgroup at $J\left(r_{2}, r_{3}\right)$ contains

$$
H_{2}=\left\{\left.\left[\begin{array}{cc}
B_{1} & 0 \\
0 & B_{2}
\end{array}\right] \in G L(n) \right\rvert\, B_{1} \in P_{1}, B_{2} \in P_{2}\right\} .
$$

where $P_{1}=P\left(r_{2}, m_{1}-r_{2}\right) \cap S L\left(m_{1}\right)$ and $P_{2}=P\left(r_{3}, n-m_{1}-r_{3}\right)$.

By Theorem 1.3,

is an FP for $m_{1} \neq m_{2}$. In particular,

is an FP, and so that

is an FP. Hence our diagram is an FP.

Proposition 2.2. The diagram

is a non FP if and only if it satisfies at least one of the following conditions:

1. $n=m_{1}$,
2. $n=2 m_{1}$ with $m_{1} \leq \min \left\{m_{2}, m_{3}\right\}$.

Proof. If $n=m_{1}$, it is a non FP by Example 1.2. When $n=2 m_{1}$ with $m_{1} \leq \min \left\{m_{2}, m_{3}\right\}$, take

$$
\left(\left[\begin{array}{c}
I_{m_{1}} \\
0
\end{array}\right],\left[\begin{array}{cc}
0 & 0 \\
0 & I_{m_{1}}
\end{array}\right]\right) \in M\left(n, m_{1}\right) \oplus M\left(n, m_{2}\right) .
$$

 given by

$$
H_{1}=\left\{\left.\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right] \in S L(n) \right\rvert\, A_{1}, A_{2} \in S L\left(m_{1}\right)\right\} .
$$

Then $\quad H_{1} \times G L\left(m_{3}\right)$ acts on $\left[\begin{array}{l}X \\ Y\end{array}\right] \in M\left(n, m_{3}\right) \quad$ with $\quad X, Y \in M\left(m_{1}, m_{3}\right) \quad$ as $\underset{\bigcirc}{S L\left(m_{1}\right) \quad G L\left(m_{3}\right) \quad S L\left(m_{1}\right)}$, which is a non FP by 2 of Corollary 1.4.

Suppose that the conditions 1 and 2 are not satisfied. If $m_{1}>n$, our representation has the same number of orbits as that of D_{4}-type with full scalar

A characterization of FPs of D_{4}-type under various scalar restrictions
multiplications by 1 of Lemma 1.6. Therefore we may assume, without loss of generality, $n>m_{1}$ and $m_{2} \geq m_{3}$. It follows from 2 of Lemma 1.6 that each orbit contained in $M\left(n, m_{1}\right)^{\prime \prime}$ of ${ }_{\circ}^{G L(n)} G L\left(m_{1}\right)$ cannot be decomposed by the scalarrestricted action of $S L(n) \times S L\left(m_{1}\right)$. Therefore our representation has the same number of orbits as that of D_{4}-type with full scalar multiplications. Hence it is enough to consider only the orbits related with $M\left(n, m_{1}\right)^{\prime}$ of $\begin{gathered}S L(n) \\ 0\end{gathered} S_{0}^{S L\left(m_{1}\right)}$.

The diagram $\stackrel{S L\left(m_{1}\right)}{\circ} S L(n) \quad G L\left(m_{3}\right)$ is an FP by 1 of Corollary 1.4 and each orbit in this case is represented by $J=\left(J\left(m_{1}\right), J\left(r_{2}, r_{3}\right)\right) \in M\left(n, m_{1}\right) \oplus M\left(n, m_{3}\right)$ as in Remark 1.5. The $S L(n)$-part of the isotropy subgroup of ${ }_{0}^{S L\left(m_{1}\right)} S L(n) \quad G L\left(m_{3}\right)$ at J contains

$$
H_{2}=\left\{\left.\left[\begin{array}{cc}
B_{1} & 0 \\
0 & B_{2}
\end{array}\right] \in S L(n) \right\rvert\, B_{1} \in P_{1}, B_{2} \in P_{2}\right\} .
$$

where $P_{1}=P\left(r_{2}, m_{1}-r_{2}\right) \cap S L\left(m_{1}\right)$ and $P_{2}=P\left(r_{3}, n-m_{1}-r_{3}\right) \cap S L\left(n-m_{1}\right)$.
By Theorem 1.3,

is an FP for $m_{1} \neq n-m_{1}$ or $m_{2}<m_{1}$, i.e., $2 m_{1} \neq n$ or $m_{2}<m_{1}$. In particular,

is an FP, and so that

is an FP. Hence we obtain our result.

Proposition 2.3. The diagram

is a non FP if and only if it satisfies at least one of the following conditions:

1. $n=m_{1}$,
2. $n=m_{2}$,
3. $n=m_{1}+m_{2}$,
4. $n>m_{1}=m_{2}$,
5. $n=2 m_{1}$ with $m_{1} \leq \min \left\{m_{2}, m_{3}\right\}$,
6. $n=2 m_{2}$ with $m_{2} \leq \min \left\{m_{1}, m_{3}\right\}$.
$\underset{S L(n)}{\operatorname{ProOF}}$ If $\underset{S L\left(m_{2}\right)}{n}=m_{1}, \quad n=m_{2}, \quad n=m_{1}+m_{2} \quad$ or $\quad n>m_{1}=m_{2}, \quad$ then $S L\left(m_{1}\right) \quad S L(n) \quad S L\left(m_{2}\right)$ is a non FP by 3 of Corollary 1.4. Therefore our diagram is a non FP. If $n=2 m_{1}$ with $m_{1} \leq \min \left\{m_{2}, m_{3}\right\}$ or $n=2 m_{2}$ with $m_{2} \leq \min \left\{m_{1}, m_{3}\right\}$, then it is a non FP by Proposition 2.2.

Suppose that the conditions 1 to 6 are not satisfied. If $m_{1}>n$, our representation has the same number of orbits as that of D_{4}-type of Proposition 2.2 by 1 of Lemma 1.6. Hence we assume, without loss of generality, $n>m_{1}>m_{2}$. It $\underset{G L(n)}{\text { follows from }} 2$ of Lemma 1.6 that each orbit contained in $M\left(n, m_{1}\right)^{\prime \prime}$ of $G L(n) G L\left(m_{1}\right)$ cannot be decomposed by the scalar-restricted action of $S L(n) \times S L\left(m_{1}\right)$. Therefore our representation has the same number of orbits as that of D_{4}-type of Proposition 2.2. Hence it is enough to investigate the orbits
 which is an FP if $n \neq m_{1}$ by 1 of Corollary 1.4, is represented by $J=\left(J\left(m_{1}\right), J\left(r_{2}, r_{3}\right)\right) \in M\left(n, m_{1}\right) \oplus M\left(n, m_{3}\right)$ as in Remark 1.5. The $S L(n)$-part of the isotropy subgroup at J contains

$$
H=\left\{\left.\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right] \in S L(n) \right\rvert\, A_{1} \in P_{1}, A_{2} \in P_{2}\right\} .
$$

where $P_{1}=P\left(r_{2}, m_{1}-r_{2}\right) \cap S L\left(m_{1}\right)$ and $P_{2}=P\left(r_{3}, n-m_{1}-r_{3}\right) \cap S L\left(n-m_{1}\right)$.
By Theorem 1.3,

is an FP for $n \neq m_{2}, n \neq m_{1}+m_{2}, m_{1} \neq m_{2}$ and $\left(n \neq 2 m_{1}\right.$ or $m_{1}>m_{2}$ when $n=2 m_{1}$). In particular,

is an FP. Therefore

is an FP. Hence we obtain our result.

For Propositions 2.5 and 2.6 , we shall prove the next lemma.

Lemma 2.4. Let G_{r} be a subgroup of $\left(\left(G L(1) \times S L\left(m_{1}\right)\right) \times(G L(1) \times\right.$ $\left.\left.S L\left(m_{2}\right)\right)\right) \times S L(n) \quad$ defined \quad by $\quad G_{r}=\left\{(\alpha, A, \beta, B, C) \mid \alpha, \beta \in G L(1), A \in S L\left(m_{1}\right)\right.$, $\left.B \in S L\left(m_{2}\right), C \in S L(n), \alpha^{m_{1}}=\beta^{m_{2}}\right\}$. Then $\quad\left(G_{r},\left(\Lambda_{1} \otimes \Lambda_{1} \otimes 1 \otimes 1+1 \otimes 1 \otimes\right.\right.$ $\left.\Lambda_{1} \otimes \Lambda_{1}\right) \otimes \Lambda_{1}$) is a non FP if and only if $n \geq m_{1}=m_{2}$.

Proof. Assume that $n=m_{1}=m_{2}$. The $S L(n)$-part of the isotropy subgroup of $\left(\left(G L(1) \times S L\left(m_{1}\right)\right) \times S L(n),\left(\Lambda_{1} \otimes \Lambda_{1}\right) \otimes \Lambda_{1}\right)$ at $I_{m_{1}}$ is $S L\left(m_{1}\right)$. Therefore our representation is reduced to $\left.{ }^{S L\left(m_{1}\right)} \operatorname{SL} \mathrm{O}_{2}\right)$ which is a non FP by Example 1.2.

Assume that $n>m_{1}=m_{2}$. The $S L(n)$-part of the isotropy subgroup of $\left(\left(G L(1) \times S L\left(m_{1}\right)\right) \times S L(n),\left(\Lambda_{1} \otimes \Lambda_{1}\right) \otimes \Lambda_{1}\right)$ at $\left[\begin{array}{c}I_{m_{1}} \\ 0\end{array}\right] \in M\left(n, m_{1}\right)$ is

$$
H_{1}=\left\{\left[\begin{array}{cc}
\alpha^{-1} C_{1} & * \\
0 & \gamma C_{2}
\end{array}\right] \in S L(n) \left\lvert\, \begin{array}{l}
C_{1} \in S L\left(m_{1}\right), C_{2} \in S L\left(n-m_{1}\right), \\
\alpha, \gamma \in G L(1), \alpha^{-m_{1}} \cdot \gamma^{n-m_{1}}=1
\end{array}\right.\right\} .
$$

Then $\left(G L(1) \times S L\left(m_{2}\right)\right) \times H_{1}$ acts on $\left[\begin{array}{c}X \\ 0\end{array}\right] \in M\left(n, m_{2}\right)$ with $X \in M\left(m_{1}, m_{2}\right)$ as $S L\left(m_{1}\right) S L\left(m_{1}\right)$ which is a non FP by Example 1.2.

If $m_{1}>n$ or $m_{2}>n$, our representation has the same number of orbits as that of an A_{3}-type with full scalar multiplications by 1 of Lemma 1.6.

Suppose that $n \geq m_{1}, n \geq m_{2}$ and $m_{1} \underset{G L(n)}{\neq m_{2}}$. It follows from 2 of Lemma 1.6 that each orbit contained in $M\left(n, m_{1}\right)^{\prime \prime}$ of $\stackrel{G L(n)}{\circ}{ }_{\square}{ }^{\circ}\left(m_{1}\right)$ cannot be decomposed by the scalar-restricted action of $\left(G L(1) \times S L\left(m_{1}\right)\right) \times S L(n)$. Therefore our representation has the same number of orbits as that of A_{3}-type with full scalar multiplications. Hence it is enough to investigate only the orbits related with $M\left(n, m_{1}\right)^{\prime}$ of $\left(\left(G L(1) \times S L\left(m_{1}\right)\right) \times S L(n),\left(\Lambda_{1} \otimes \Lambda_{1}\right) \otimes \Lambda_{1}\right)$.

If $n=m_{1} \neq m_{2}$, the $S L(n)$-part of the isotropy subgroup of $\left(\left(G L(1) \times S L\left(m_{1}\right)\right) \times S L(n),\left(\Lambda_{1} \otimes \Lambda_{1}\right) \otimes \Lambda_{1}\right)$ at a generic point is $S L\left(m_{1}\right)$. Since $S L\left(m_{2}\right) S L\left(m_{1}\right)$ is an FP, our representation is an FP.

We may assume that $n>m_{1}>m_{2}$ without loss of generality. The $S L(n)$-part of the isotropy subgroup of $\left(\left(G L(1) \times S L\left(m_{1}\right)\right) \times S L(n),\left(\Lambda_{1} \otimes \Lambda_{1}\right) \otimes \Lambda_{1}\right)$ at a generic point is given by

$$
H_{2}=\left\{\left[\begin{array}{cc}
\alpha^{-1} C_{1} & * \\
0 & \gamma C_{2}
\end{array}\right] \in S L(n) \left\lvert\, \begin{array}{l}
C_{1} \in S L\left(m_{1}\right), C_{2} \in S L\left(n-m_{1}\right) \\
\alpha, \gamma \in G L(1), \alpha^{-m_{1}} \cdot \gamma^{n-m_{1}}=1
\end{array}\right.\right\} .
$$

By the action of $\left(G L(1) \times S L\left(m_{2}\right)\right) \times H_{2}$, each element $\left[\begin{array}{l}W \\ Z\end{array}\right] \in M\left(n, m_{2}\right)$ with $W \in M\left(m_{1}, m_{2}\right), Z \in M\left(n-m_{1}, m_{2}\right)$ is transformed to

$$
T=\left[\begin{array}{cc}
0 & W^{\prime} \\
Z^{\prime} & 0
\end{array}\right] \in M\left(n, m_{2}\right)
$$

with $W^{\prime} \in M\left(m_{1}, m_{2}-s\right), Z^{\prime} \in M\left(n-m_{1}, s\right)$ and $0 \leq s \leq \min \left\{n-m_{1}, m_{2}\right\}$.

The isotropy subgroup of $H_{2} \times \operatorname{SL}\left(m_{2}\right)$ at T contains

$$
\begin{aligned}
& \left\{\left[\begin{array}{cc}
\alpha^{-1} C_{1} & 0 \\
0 & \gamma C_{2}
\end{array}\right] \in S L(n) \left\lvert\, \begin{array}{l}
C_{1} \in S L\left(m_{1}\right), C_{2} \in S L\left(n-m_{1}\right) \\
\alpha, \gamma \in G L(1), \alpha^{-m_{1}} \cdot \gamma^{n-m_{1}}=1
\end{array}\right.\right\} \\
& \quad \times\left\{\left[\begin{array}{cc}
\delta_{1} B_{1} & 0 \\
0 & \delta_{2} B_{2}
\end{array}\right] \in S L\left(m_{2}\right) \left\lvert\, \begin{array}{l}
B_{1} \in S L(s), B_{2} \in S L\left(m_{2}-s\right), \\
\delta_{1}, \delta_{2} \in G L(1), \delta_{1}^{s} \cdot \delta_{2}^{m_{2}-s}=1
\end{array}\right.\right\}
\end{aligned}
$$

Hence it is enough to show

$$
\left[\begin{array}{cc}
0 & W^{\prime} \\
Z^{\prime} & 0
\end{array}\right] \mapsto \beta\left[\begin{array}{cc}
\alpha^{-1} C_{1} & 0 \\
0 & \gamma C_{2}
\end{array}\right]\left[\begin{array}{cc}
0 & W^{\prime} \\
Z^{\prime} & 0
\end{array}\right]\left[\begin{array}{cc}
\delta_{1} B_{1} & 0 \\
0 & \delta_{2} B_{2}
\end{array}\right]
$$

is an FP with $\alpha^{m_{1}}=\beta^{m_{2}}, \alpha^{-m_{1}} \cdot \gamma^{n-m_{1}}=1$ and $\delta_{1}^{s} \cdot \delta_{2}^{m_{2}-s}=1$. If $s=0$ or m_{2}, it is clearly an FP. If $0<s<m_{2}$,

$$
M\left(m_{1}, m_{2}-s\right) \ni W^{\prime} \mapsto\left(\alpha^{-1} C_{1}\right) W^{\prime}\left(\beta \delta_{2} B_{2}\right)
$$

is an FP since $m_{1}>m_{2}-s$. Then we can put $\alpha=\beta=\gamma=1$, and δ_{1} runs over $G L(1)$. Therefore

$$
M\left(n-m_{1}, s\right) \ni Z^{\prime} \mapsto\left(\gamma C_{2}\right) Z^{\prime}\left(\beta \delta_{1} B_{1}\right)
$$

is an FP. Hence we have our results.

Proposition 2.5. The diagram

is a non FP if and only if it satisfies at least one of the following conditions:

1. $n \geq m_{1}=m_{2}$,
2. $n \geq m_{2}=m_{3}$,
3. $n \geq m_{3}=m_{1}$,
4. $n \geq m_{1}=m_{2}+m_{3}$,
5. $n \geq m_{2}=m_{3}+m_{1}$,
6. $n \geq m_{3}=m_{1}+m_{2}$.

Proof. If $n \geq m_{1}=m_{2}, n \geq m_{2}=m_{3}$ or $n \geq m_{3}=m_{1}$, then it is a non FP by Proposition 2.1. Assume $n \geq m_{1}=m_{2}+m_{3}$. The $G L(n)$-part of the isotropy subgroup of $\underset{\circ}{G L(n)} S L\left(m_{1}\right)$ at $\left[\begin{array}{c}I_{m_{1}} \\ 0\end{array}\right] \in M\left(n, m_{1}\right)$ contains

A characterization of FPs of D_{4}-type under various scalar restrictions

$$
H=\left[\begin{array}{cc}
S L\left(m_{1}\right) & * \\
0 & G L\left(n-m_{1}\right)
\end{array}\right](\subset G L(n))
$$

Then $\stackrel{S L\left(m_{2}\right)}{\circ} \stackrel{H}{\circ} \xrightarrow{S L\left(m_{3}\right)}$ acts on $\left(\left[\begin{array}{l}X \\ 0\end{array}\right],\left[\begin{array}{l}Y \\ 0\end{array}\right]\right) \in M\left(n, m_{2}\right) \oplus M\left(n, m_{3}\right)$ with
$X \in M\left(m_{1}, m_{2}\right), \quad Y \in M\left(m_{1}, m_{3}\right)$ as $X \in M\left(m_{1}, m_{2}\right), \quad Y \in M\left(m_{1}, m_{3}\right)$ as

which is a non FP by 3 of Corollary 1.4. When $n \geq m_{2}=m_{3}+m_{1}$ or $n \geq m_{3}=$ $m_{1}+m_{2}$, we can see similarly that our representation is a non FP.

Assume that the conditions 1 to 6 are not satisfied. If $n<m_{1}, n<m_{2}$ or $n<m_{3}$, our representation has the same number of orbits as that of D_{4}-type of Proposition 2.1 by 1 of Lemma 1.6. Hence we may assume, without loss of generality, $n \geq m_{1}>m_{2}>m_{3}$.

It follows from 2 of Lemma 1.6 that each orbit contained in $M\left(n, m_{1}\right)^{\prime \prime}$ of ${ }_{\circ}^{G L(n)} G L\left(m_{1}\right)$ cannot be decomposed by the scalar-restricted action of $G L(n) \times S L\left(m_{1}\right)$. Therefore our representation has the same number of orbits as that of D_{4}-type of Proposition 2.1. Hence it is enough to study only the orbits related with $M\left(n, m_{1}\right)^{\prime}$ of ${ }_{0}^{G L(n)} S L\left(m_{1}\right)$. Then the orbit $M\left(n, m_{1}\right)^{\prime}$ is $J\left(m_{1}\right)$ as in $\operatorname{Remark}_{G L(n)} 1.5$ and we denote by H_{1} the $G L(n)$-part of the isotropy subgroup of $\stackrel{G L(n) \quad S L\left(m_{1}\right)}{\circ}$ at $J\left(m_{1}\right)$.

It follows from 2 of Lemma 1.6 that each orbit contained in $M\left(n, m_{2}\right)^{\prime \prime}$ of $H_{0}^{H_{1}-G L\left(m_{1}\right)}$ cannot be decomposed by the scalar-restricted action of $H_{1} \times \operatorname{SL}\left(m_{2}\right)$. Therefore our representation has the same number of orbits as that of D_{4}-type of Proposition 2.1. Hence it is enough to see only each orbit related with $M\left(n, m_{2}\right)^{\prime}$ of $\stackrel{H_{1}}{H_{1}-S L\left(m_{2}\right)}$, which are represented by $J\left(r_{2}, r_{3}\right)$ with $r_{2}+r_{3}=m_{2}$ as in Remark 1.5. The H_{1}-part of the isotropy subgroup of ${ }_{\circ}^{H_{1}-S L\left(m_{2}\right)}$ at $J\left(r_{2}, r_{3}\right)$ is isomorphic to

$$
H_{2}=\left[\begin{array}{cc}
H_{3} & * \\
0 & G L(t)
\end{array}\right]\left(\subset H_{1}\right)
$$

where we put $t=n-m_{1}-m_{2}+r_{2}$ and

$$
H_{3}=\left\{\left[\begin{array}{ccc}
\alpha_{1} A_{1} & 0 & 0 \\
* & \alpha_{2} A_{2} & * \\
0 & 0 & \alpha_{3} A_{3}
\end{array}\right] \in G L(n-t) \left\lvert\, \begin{array}{l}
A_{1} \in S L\left(m_{1}-r_{2}\right), \\
A_{2} \in S L\left(r_{2}\right), A_{3} \in S L\left(r_{3}\right), \\
\alpha_{1}, \alpha_{2}, \alpha_{3} \in G L(1), \\
\alpha_{1}^{m_{1}-r_{2} \cdot \alpha_{2}^{r_{2}}=1,} \\
\alpha_{2}^{r_{2}} \cdot \alpha_{3}^{r_{3}}=1
\end{array}\right.\right\}
$$

First we assume that $t\left(=n-m_{1}-m_{2}+r_{2}\right) \neq 0$. By the action of $H_{2} \times S L\left(m_{3}\right)$, any element $\left[\begin{array}{l}W \\ Z\end{array}\right] \in M\left(n, m_{3}\right)$ with $W \in M\left(n-t, m_{3}\right), Z \in M\left(t, m_{3}\right)$
is transformed to

$$
T_{1}=\left[\begin{array}{cc}
0 & W^{\prime} \\
Z^{\prime} & 0
\end{array}\right] \in M\left(n, m_{3}\right)
$$

with $W^{\prime} \in M\left(n-t, m_{3}-r_{4}\right), Z^{\prime} \in M\left(t, r_{4}\right)$ and $0 \leq r_{4} \leq \min \left\{t, m_{3}\right\}$. Then the isotropy subgroup of $H_{2} \times \operatorname{SL}\left(m_{3}\right)$ at T_{1} contains

$$
\begin{aligned}
& {\left[\begin{array}{cc}
H_{3} & 0 \\
0 & G L(t)
\end{array}\right] \times\left\{\left[\begin{array}{cc}
\beta_{1} B_{1} & 0 \\
0 & \beta_{2} B_{2}
\end{array}\right] \left\lvert\, \begin{array}{l}
B_{1} \in S L\left(r_{4}\right), B_{2} \in S L\left(m_{3}-r_{4}\right), \\
\beta_{1}, \beta_{2} \in G L(1), \beta_{1}^{r_{4}} \cdot \beta_{2}^{m_{3}-r_{4}}=1
\end{array}\right.\right\}} \\
& \quad\left(\subset H_{2} \times S L\left(m_{3}\right)\right)
\end{aligned}
$$

Hence it is enough to show

$$
\left[\begin{array}{cc}
0 & W^{\prime} \\
Z^{\prime} & 0
\end{array}\right] \mapsto\left[\begin{array}{cc}
h & 0 \\
0 & A_{4}
\end{array}\right]\left[\begin{array}{cc}
0 & W^{\prime} \\
Z^{\prime} & 0
\end{array}\right]\left[\begin{array}{cc}
\beta_{1} B_{1} & 0 \\
0 & \beta_{2} B_{2}
\end{array}\right]
$$

is an FP with $A_{4} \in G L(t), h \in H_{3}$ and $\beta_{1}^{r_{4}} \cdot \beta_{2}^{m_{3}-r_{4}}=1$, namely

1. $M\left(t, r_{4}\right) \ni Z^{\prime} \mapsto A_{4} Z^{\prime}\left(\beta_{1} B_{1}\right)$ is an FP, and
2. $M\left(n-t, m_{3}-r_{4}\right) \ni W^{\prime} \mapsto h W^{\prime}\left(\beta_{2} B_{2}\right)$ is, at the same time, an FP with $\beta_{1}^{r_{4}} \cdot \beta_{2}^{m_{3}-r_{4}}=1$.
1 is clearly an FP since ${ }_{\circ}^{G L(t)} \quad S L\left(r_{4}\right)$ is an FP. The diagram

is an FP for $m_{1} \neq m_{2}$ by Proposition 2.1, in particular

$$
\stackrel{H}{3}_{H_{3}}^{-} \quad G L\left(m_{3}-r_{4}\right)
$$

is an FP since β_{2} runs over $G L(1)$. Hence our representation is an FP.
Next we assume that $t\left(=n-m_{1}-m_{2}+r_{2}\right)=0$. If $r_{2}=m_{2}$, then $r_{3}=0$, i.e., $n=m_{1}$. By Theorem 1.3,

is an FP for $m_{2} \neq m_{1}, m_{2} \neq m_{3}, m_{1} \neq m_{3}$ and $m_{2}+m_{3} \neq m_{1}$. Since H_{2} is isomorphic to the $G L(n)$-part of the isotropy subgroup of $S L\left(m_{2}\right) S L\left(m_{1}\right) \quad G L(n) \quad$ at $\left(\left[\begin{array}{c}I_{m_{2}} \\ 0\end{array}\right], I_{m_{1}}\right) \in M\left(m_{1}, m_{2}\right) \oplus M\left(n, m_{1}\right)$, in particular

A characterization of FPs of D_{4}-type under various scalar restrictions

is an FP.
If $r_{3}=m_{2}$, then $r_{2}=0$, i.e., $n=m_{1}+m_{2}$. Then H_{2} is

$$
\left[\begin{array}{cc}
S L\left(m_{1}\right) & 0 \\
0 & S L\left(m_{2}\right)
\end{array}\right]
$$

Since

is an FP for $m_{1} \neq m_{3}, m_{1} \neq m_{2}, m_{3} \neq m_{2}$ and $m_{1}+m_{2} \neq m_{3}$,

$$
\begin{array}{cc}
\mathrm{H}_{2} & \mathrm{SL}\left(m_{3}\right) \\
\hline \\
0
\end{array}
$$

is an FP.
If $r_{2} \neq 0$ and $r_{3} \neq 0$, then H_{2} is isomorphic to

$$
\left.H_{4}=\left\{\begin{array}{ccc}
\alpha D_{1} & * & * \\
0 & \beta D_{2} & 0 \\
0 & 0 & \gamma D_{3}
\end{array}\right] \in G L(n) \left\lvert\, \begin{array}{l}
D_{1} \in S L\left(m_{1}+m_{2}-n\right), \\
D_{2} \in S L\left(n-m_{1}\right), \\
D_{3} \in S L\left(n-m_{2}\right), \\
\alpha, \beta, \gamma \in G L(1), \\
\alpha^{m_{1}+m_{2}-n} \cdot \beta^{n-m_{1}}=1, \\
\alpha^{m_{1}+m_{2}-n} \cdot \gamma^{n-m_{2}}=1
\end{array}\right.\right\}
$$

We consider the action $H_{4} \times S L\left(m_{3}\right)$ on

$$
T_{2}=\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right] \in M\left(n, m_{3}\right)
$$

with $X_{1} \in M\left(m_{1}+m_{2}-n, m_{3}\right), X_{2} \in M\left(n-m_{1}, m_{3}\right), X_{3} \in M\left(n-m_{2}, m_{3}\right)$.
If $X_{2}=X_{3}=0$, then ${ }^{H_{4}}{ }^{H_{4}} S L\left(m_{3}\right)$ has the same number of orbits as that of $G L\left(m_{1}+m_{2}-n\right) S L\left(m_{3}\right)$ which is an FP.

We may suppose that $X_{2} \neq 0$ or $X_{3} \neq 0$. By the action $H_{4} \times S L\left(m_{3}\right)$, an element T_{2} is transformed to the

$$
T_{3}=\left[\begin{array}{cc}
0 & X_{1}^{\prime} \\
X_{2}^{\prime} & 0 \\
X_{3}^{\prime} & 0
\end{array}\right] \in M\left(n, m_{3}\right)
$$

with $\quad X_{1}^{\prime} \in M\left(m_{1}+m_{2}-n, m_{3}-s\right), \quad X_{2}^{\prime} \in M\left(n-m_{1}, s\right), \quad X_{3}^{\prime} \in M\left(n-m_{2}, s\right) \quad$ and $s=\max \left\{\operatorname{rank} X_{2}, \operatorname{rank} X_{3}\right\}$.

Then the isotropy subgroup of $H_{2} \times S L\left(m_{3}\right)$ at T_{3} contains

$$
\begin{aligned}
& \left\{\left[\begin{array}{ccc}
\alpha D_{1} & 0 & 0 \\
0 & \beta D_{2} & 0 \\
0 & 0 & \gamma D_{3}
\end{array}\right] \in H_{2} \left\lvert\, \begin{array}{l}
D_{1} \in S L\left(m_{1}+m_{2}-n\right), \\
D_{2} \in S L\left(n-m_{1}\right), D_{3} \in S L\left(n-m_{2}\right), \\
\alpha, \beta, \gamma \in G L(1), \\
\alpha^{m_{1}+m_{2}-n} \cdot \beta^{n-m_{1}}=1, \\
\alpha^{m_{1}+m_{2}-n} \cdot \gamma^{n-m_{2}}=1
\end{array}\right.\right\} \\
& \quad \times\left\{\left[\begin{array}{cc}
\delta_{1} E_{1} & 0 \\
0 & \delta_{2} E_{2}
\end{array}\right] \in S L\left(m_{3}\right) \left\lvert\, \begin{array}{l}
E_{1} \in S L(s), E_{2} \in S L\left(m_{3}-s\right), \\
\delta_{1}, \delta_{2} \in G L(1), \delta_{1}^{s} \cdot \delta_{2}^{m_{3}-s}=1
\end{array}\right.\right\}
\end{aligned}
$$

We put $Y=\left[\begin{array}{l}X_{2}^{\prime} \\ X_{3}^{\prime}\end{array}\right] \in M\left(2 n-m_{1}-m_{2}, s\right)$, and let $H_{5}=\left\{\left[\begin{array}{cc}\beta D_{2} & 0 \\ 0 & \gamma D_{3}\end{array}\right]\right\}$ be the lower reductive part of H_{4}.

Hence it is enough to show

$$
\left[\begin{array}{cc}
0 & X_{1}^{\prime} \\
Y & 0
\end{array}\right] \mapsto\left[\begin{array}{cc}
\alpha D_{1} & 0 \\
0 & h
\end{array}\right]\left[\begin{array}{cc}
0 & X_{1}^{\prime} \\
Y & 0
\end{array}\right]\left[\begin{array}{cc}
\delta_{1} E_{1} & 0 \\
0 & \delta_{2} E_{2}
\end{array}\right]
$$

is an $\quad \mathrm{FP} \quad$ with $\quad h \in H_{5}, \quad \alpha^{m_{1}+m_{2}-n} \cdot \beta^{n-m_{1}}=1, \quad \alpha^{m_{1}+m_{2}-n} \cdot \gamma^{n-m_{2}}=1 \quad$ and $\delta_{1}^{s} \cdot \delta_{2}^{m_{3}-s}=1$, namely
3. $M\left(m_{1}+m_{2}-n, m_{3}-s\right) \ni X_{1}^{\prime} \mapsto\left(\alpha D_{1}\right) X_{1}^{\prime} \delta_{2} E_{2}$ is an FP, and
4. $M\left(2 n-m_{1}-m_{2}, s\right) \ni Y \mapsto h Y \delta_{1} E_{1}$ is, at the same time, an FP with the conditions $\alpha^{m_{1}+m_{2}-n} \cdot \beta^{n-m_{1}}=1, \alpha^{m_{1}+m_{2}-n} \cdot \gamma^{n-m_{2}}=1$ and $\delta_{1}^{s} \cdot \delta_{2}^{m_{3}-s}=1$.

The space 3 is clearly an FP. Since $n-m_{1} \neq n-m_{2}$, the space 4 is an FP by Lemma 2.4. Hence our representation is an FP.

Although M. Nagura, S. Otani and D. Takeda independently obtained the same result as the following Proposition 2.6 ([NOT, Theorem 4.1]), we will give our proof here.

Proposition 2.6. The diagram

is a non FP if and only if it satisfies at least one of the following conditions:

1. $n=m_{1}$,
2. $n=m_{2}$,
3. $n=m_{3}$,
4. $n>m_{1}=m_{2}$,
5. $n>m_{1}=m_{3}$,
6. $n>m_{2}=m_{3}$,
7. $n=m_{1}+m_{2}$,
8. $n=m_{1}+m_{3}$,
9. $n=m_{2}+m_{3}$,
10. $n>m_{1}=m_{2}+m_{3}$,
11. $n>m_{2}=m_{1}+m_{3}$,
12. $n>m_{3}=m_{1}+m_{2}$,
13. $n=2 m_{1}$ with $m_{1} \leq \min \left\{m_{2}, m_{3}\right\}$,
14. $n=2 m_{2}$ with $m_{2} \leq \min \left\{m_{1}, m_{3}\right\}$,
15. $n=2 m_{3}$ with $m_{3} \leq \min \left\{m_{1}, m_{2}\right\}$,
16. $n+m_{1}=m_{2}+m_{3}$ with $m_{1}<\min \left\{m_{2}, m_{3}\right\}$,
17. $n+m_{2}=m_{1}+m_{3}$ with $m_{2}<\min \left\{m_{1}, m_{3}\right\}$,
18. $n+m_{3}=m_{1}+m_{2}$ with $m_{3}<\min \left\{m_{1}, m_{2}\right\}$,
19. $n=m_{1}+m_{2}+m_{3}$,
20. $2 n=m_{1}+m_{2}+m_{3}$ with $n>\max \left\{m_{1}, m_{2}, m_{3}\right\}$.

Proof. By Propositions 2.3 and 2.5, the conditions 1 to 15 are sufficient. Assume that $n+m_{3}=m_{1}+m_{2}$ with $m_{3}<\min \left\{m_{1}, m_{2}\right\}$. In particular, $n>\max \left\{m_{1}, m_{2}\right\}$ and $n<m_{1}+m_{2}$. Take $Q_{1}=\left(\left[\begin{array}{c}I_{m_{1}} \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ I_{m_{2}}\end{array}\right]\right) \in M\left(n, m_{1}\right) \oplus$ $M\left(n, m_{2}\right)$. The $S L(n)$-part of the isotropy subgroup of ${ }_{0}^{S L\left(m_{1}\right)} \underbrace{S L(n)}_{0} S L\left(m_{2}\right)$ at Q_{1} is isomorphic to

$$
H_{1}=\left\{\left[\begin{array}{ccc}
A_{1} & * & * \\
0 & A_{2} & 0 \\
0 & 0 & A_{3}
\end{array}\right] \in S L(n) \left\lvert\, \begin{array}{l}
A_{1} \in S L\left(m_{1}+m_{2}-n\right), \\
A_{2} \in S L\left(n-m_{1}\right), A_{3} \in S L\left(n-m_{2}\right)
\end{array}\right.\right\}
$$

Then $H_{1} \times S L\left(m_{3}\right)$ acts on $Q_{2}=\left[\begin{array}{c}X \\ 0\end{array}\right] \in M\left(n, m_{3}\right)$ with $X \in M\left(m_{3}, m_{3}\right)$ as $S L\left(m_{3}\right) \quad S L\left(m_{3}\right)$ which is a non FP by Example 1.2.

If $n+m_{1}=m_{2}+m_{3}$ with $m_{1}<\min \left\{m_{2}, m_{3}\right\}$ or $n+m_{2}=m_{3}+m_{1}$ with $m_{2}<$ $\min \left\{m_{3}, m_{1}\right\}$, we can prove similarly that our representation is a non FP.

If $\underset{S L(n)}{n=m_{1}+m_{2 L}\left(m_{2}\right)}+m_{3}$, the $S L(n)$-part of the isotropy subgroup of

$$
H_{2}=\left\{\left.\left[\begin{array}{ccc}
B_{1} & 0 & 0 \\
* & B_{2} & 0 \\
* & 0 & B_{3}
\end{array}\right] \in S L(n) \right\rvert\, B_{1} \in S L\left(m_{3}\right), B_{2} \in S L\left(m_{1}\right), B_{3} \in S L\left(m_{2}\right)\right\}
$$

Then $H_{2} \times S L\left(m_{3}\right)$ acts on Q_{2} as $\underset{0}{S L\left(m_{3}\right)} \quad S L\left(m_{3}\right)$ which is a non FP by Example 1.2.

If $2 n=m_{1}+m_{2}+m_{3}$ with $n>\max \left\{m_{1}, m_{2}, m_{3}\right\}$, the $S L(n)$-part of the isotropy subgroup of $\stackrel{S L\left(m_{1}\right)}{\circ} \xrightarrow{S L(n)} \operatorname{SL(m_{2})}$ at Q_{1} is isomorphic to H_{1}. Then $H_{1} \times S L\left(m_{3}\right)$ acts on

$$
\left[\begin{array}{c}
0 \\
Y_{1} \\
Y_{2}
\end{array}\right] \in M\left(n, m_{3}\right)
$$

with $Y_{1} \in M\left(n-m_{1}, m_{3}\right), \quad Y_{2} \in M\left(n-m_{2}, m_{3}\right)$ as

$$
S L\left(n-m_{1}\right) \quad S L\left(m_{3}\right) \quad S L\left(n-m_{2}\right)
$$

which is a non FP for $n-m_{1}+n-m_{2}=m_{3}$ by 3 of Corollary 1.4.

Suppose that the conditions 1 to 20 are not satisfied. If $n<m_{1}, n<m_{2}$ or $n<m_{3}$, our representation has the same number of orbits as that of D_{4}-type of Proposition 2.3. Hence we may assume, without loss of generality, $n>m_{1}>m_{2}>m_{3}$.

It follows from 2 of Lemma 1.6 that each orbit contained in $M\left(n, m_{1}\right)^{\prime \prime}$ of $G L(n) G L\left(m_{1}\right)$ cannot be decomposed by the scalar-restricted action of $S L(n) \times S L\left(m_{1}\right)$. Therefore our representation has the same number of orbits as that of D_{4}-type of Proposition 2.3. Hence it is enough to study only the orbits related with $M\left(n, m_{1}\right)^{\prime}$ of $S L(n) S L\left(m_{1}\right)$. Then the orbit is represented by $J\left(m_{1}\right) \in M\left(n, m_{1}\right)$ as $i_{S L(n)} \operatorname{Remark}_{S L\left(m_{1}\right)} 1.5$ and we denote by H_{3} the $S L(n)$-part of the isotropy subgroup of ${ }^{S L(n)}{ }_{\circ} \quad S L\left(m_{1}\right)$ at $J\left(m_{1}\right)$. It follows from 2 of Lemma 1.6 that each orbit contained in $M\left(n, m_{2}\right)^{\prime \prime}$ of $H_{0}^{H_{3}} \quad G L\left(m_{2}\right)$ cannot be decomposed by the scalar-restricted action of $H_{3} \times S L\left(m_{2}\right)$. Therefore our representation has the same number of orbits as that of D_{4}-type of Proposition 2.3. Hence it is enough to see only each orbit related with $M\left(n, m_{2}\right)^{\prime}$ of ${ }_{0}^{H_{3} \quad S L\left(m_{2}\right)}$, which are represented by $J\left(r_{2}, r_{3}\right)$ with $r_{2}+r_{3}=m_{2}$ as in Remark 1.5.

A characterization of FPs of D_{4}-type under various scalar restrictions 73 We put $t=n-m_{1}-m_{2}+r_{2}$. The H_{3}-part of the isotropy subgroup of
$H_{0}^{H_{3}-S_{0}^{\left(m_{2}\right)} \text { at } J\left(r_{2}, r_{3}\right) \text { is isomorphic to }}$.

$$
\left.H_{4}=\left\{\begin{array}{cccc}
\alpha_{1} C_{1} & * & * & * \\
0 & \alpha_{2} C_{2} & 0 & * \\
0 & 0 & \alpha_{3} C_{3} & * \\
0 & 0 & 0 & \alpha_{4} C_{4}
\end{array}\right] \in S L(n) \left\lvert\, \begin{array}{l}
C_{1} \in S L\left(r_{2}\right), \\
C_{2} \in S L\left(m_{1}-r_{2}\right), \\
C_{3} \in S L\left(m_{2}-r_{2}\right), \\
C_{4} \in S L(t), \\
\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \in G L(1), \\
\alpha_{1}^{r_{2}} \cdot \alpha_{2}^{m_{1}-r_{2}}=1, \\
\alpha_{1}^{r_{2}} \cdot \alpha_{3}^{m_{2}-r_{2}}=1, \\
\alpha_{2}^{m_{1}-r_{2} \cdot \alpha_{4}^{t}=1,} \\
\alpha_{3}^{m_{2}-r_{2}} \cdot \alpha_{4}^{t}=1
\end{array}\right.\right\} .
$$

First we assume that $t\left(=n-m_{1}-m_{2}+r_{2}\right) \neq 0$. By the action of $H_{4} \times S L\left(m_{3}\right)$, an element $\left[\begin{array}{c}W \\ Z\end{array}\right] \in M\left(n, m_{3}\right)$ with $W \in M\left(n-t, m_{3}\right), Z \in M\left(t, m_{3}\right)$ is transformed to

$$
T_{1}=\left[\begin{array}{cc}
0 & W^{\prime} \\
Z^{\prime} & 0
\end{array}\right] \in M\left(n, m_{3}\right)
$$

with $W^{\prime} \in M\left(n-t, m_{3}-r_{4}\right), Z^{\prime} \in M\left(t, r_{4}\right)$ and $0 \leq r_{4} \leq \min \left\{t, m_{3}\right\}$. Let

$$
\left.K_{1}=\left\{\begin{array}{ccc}
\alpha_{1} C_{1} & * & * \\
0 & \alpha_{2} C_{2} & 0 \\
0 & 0 & \alpha_{3} C_{3}
\end{array}\right] \in G L(n-t) \left\lvert\, \begin{array}{l}
C_{1} \in S L\left(r_{2}\right), \\
C_{2} \in S L\left(m_{1}-r_{2}\right), \\
C_{3} \in S L\left(m_{2}-r_{2}\right), \\
\alpha_{1}, \alpha_{2}, \alpha_{3} \in G L(1), \\
\alpha_{1}^{r_{2} \cdot \alpha_{2}^{m_{1}-r_{2}}=1,} \\
\alpha_{1}^{r_{2}} \cdot \alpha_{3}^{m_{2}-r_{2}}=1
\end{array}\right.\right\}
$$

be the upper $(n-t) \times(n-t)$-part of H_{4}. Then the isotropy subgroup of H_{4} at T_{1} contains

$$
\left\{\left[\begin{array}{cc}
h & 0 \\
0 & \alpha_{4} C_{4}
\end{array}\right] \in H_{4} \left\lvert\, \begin{array}{l}
h \in K_{1}, \\
\alpha_{1}^{r_{2}} \cdot \alpha_{2}^{m_{1}-r_{2}}=1, \\
\alpha_{1}^{r_{2}} \cdot \alpha_{3}^{m_{2}-r_{2}}=1, \\
\alpha_{2}^{m_{1}-r_{2}} \cdot \alpha_{4}^{t}=1, \\
\alpha_{3}^{m_{2}-r_{2}} \cdot \alpha_{4}^{t}=1
\end{array}\right.\right\}
$$

and the isotropy subgroup of $S L\left(m_{3}\right)$ at T_{1} contains

$$
L=\left\{\left[\begin{array}{cc}
\beta_{1} D_{1} & 0 \\
0 & \beta_{2} D_{2}
\end{array}\right] \in S L\left(m_{3}\right) \left\lvert\, \begin{array}{l}
D_{1} \in S L\left(r_{4}\right), D_{2} \in S L\left(m_{3}-r_{4}\right), \\
\beta_{1}, \beta_{2} \in G L(1), \beta_{1}^{r_{4}} \cdot \beta_{2}^{m_{3}-r_{4}}=1
\end{array}\right.\right\} .
$$

Hence it is enough to show

$$
\left[\begin{array}{cc}
0 & W^{\prime} \\
Z^{\prime} & 0
\end{array}\right] \mapsto\left[\begin{array}{cc}
h & 0 \\
0 & \alpha_{4} C_{4}
\end{array}\right]\left[\begin{array}{cc}
0 & W^{\prime} \\
Z^{\prime} & 0
\end{array}\right]\left[\begin{array}{cc}
\beta_{1} D_{1} & 0 \\
0 & \beta_{2} D_{2}
\end{array}\right]
$$

is an FP with $\alpha_{1}^{r_{2}} \cdot \alpha_{2}^{m_{1}-r_{2}}=1, \alpha_{1}^{r_{2}} \cdot \alpha_{3}^{m_{2}-r_{2}}=1, \alpha_{2}^{m_{1}-r_{2}} \cdot \alpha_{4}^{t}=1, \alpha_{3}^{m_{2}-r_{2}} \cdot \alpha_{4}^{t}=1$ and $\beta_{1}^{r_{4}} \cdot \beta_{2}^{m_{3}-r_{4}}=1$, namely

1. $M\left(t, r_{4}\right) \ni Z^{\prime} \mapsto\left(\alpha_{4} C_{4}\right) Z^{\prime}\left(\beta_{1} D_{1}\right)$ is an FP , and
2. $M\left(n-t, m_{3}-r_{4}\right) \ni W^{\prime} \mapsto h W^{\prime}\left(\beta_{2} D_{2}\right)$ is, at the same time, an FP with the conditions of $\quad \alpha_{1}^{r_{2}} \cdot \alpha_{2}^{m_{1}-r_{2}}=1, \quad \alpha_{1}^{r_{2}} \cdot \alpha_{3}^{m_{2}-r_{2}}=1, \quad \alpha_{2}^{m_{1}-r_{2}} \cdot \alpha_{4}^{t}=1$, $\alpha_{3}^{m_{2}-r_{2}} \cdot \alpha_{4}^{t}=1$ and $\beta_{1}^{r_{4}} \cdot \beta_{2}^{m_{3}-r_{4}}=1$.

If $r_{4}=0$, the space 2 has the same number of orbits as that of

which is an FP by Proposition 2.5 .
If $0<r_{4}<\min \left\{t, m_{3}\right\}$, the space Z^{\prime} is transformed to the form

$$
\left[\begin{array}{c}
I_{r_{4}} \\
0
\end{array}\right] \in M\left(t, r_{4}\right) .
$$

Then α_{4} and β_{1} independently run over $G L(1)$, and 2 has the same number of orbits as that of

which is an FP by Proposition 2.1.
If $r_{4}=m_{3} \leq t$, its orbit is represented by

$$
\left[\begin{array}{c}
0 \\
I_{m_{3}}
\end{array}\right] \in M\left(n, m_{3}\right) .
$$

Suppose that $r_{4}=t<m_{3}$. The space 1 is clearly an FP. Then $\beta_{1}=\alpha_{4}^{-1}$. By the conditions of L we have $\beta_{2}^{m_{3}-t}=\alpha_{4}^{t}$. Therefore $\alpha_{2}^{m_{1}-r_{2}} \cdot \beta_{2}^{m_{3}-t}=1$, $\alpha_{3}^{m_{2}-r_{2}} \cdot \beta_{2}^{m_{3}-t}=1$ and $\alpha_{1}^{r_{2}}=\beta_{2}^{m_{3}-t}$. Let

$$
L_{1}=\left\{\left[\beta_{2} D_{2}\right] \in G L(1) \times S L\left(m_{3}-t\right)\right\}
$$

A characterization of FPs of D_{4}-type under various scalar restrictions 75
be the lower reductive part of L. We consider the action $K_{1} \times L_{1}$ on

$$
W^{\prime}=\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right] \in M\left(n-t, m_{3}-t\right)
$$

with $X_{1} \in M\left(r_{2}, m_{3}-t\right), X_{2} \in M\left(m_{1}-r_{2}, m_{3}-t\right), \quad X_{3} \in M\left(m_{2}-r_{2}, m_{3}-t\right)$.
If $X_{2}=X_{3}=0$, then 2 is an FP. We may suppose that $X_{2} \neq 0$ or $X_{3} \neq 0$. The action $K_{1} \times L_{1}$ transforms W^{\prime} to the form

$$
W^{\prime \prime}=\left[\begin{array}{cc}
0 & X_{1}^{\prime} \\
X_{2}^{\prime} & 0 \\
X_{3}^{\prime} & 0
\end{array}\right] \in M\left(n-t, m_{3}-t\right)
$$

with $\quad X_{1}^{\prime} \in M\left(r_{2}, m_{3}-t-s\right), \quad X_{2}^{\prime} \in M\left(m_{1}-r_{2}, s\right), \quad X_{3}^{\prime} \in M\left(m_{2}-r_{2}, s\right) \quad$ and $s=$ $\max \left\{\operatorname{rank} X_{2}\right.$, rank $\left.X_{3}\right\}$. The isotropy subgroup of $K_{1} \times L_{1}$ at $W^{\prime \prime}$ contains

$$
K_{2}=\left\{\left[\begin{array}{ccc}
\alpha_{1} C_{1} & 0 & 0 \\
0 & \alpha_{2} C_{2} & 0 \\
0 & 0 & \alpha_{3} C_{3}
\end{array}\right] \in K_{1} \left\lvert\, \begin{array}{l}
C_{1} \in S L\left(r_{2}\right), C_{2} \in S L\left(m_{1}-r_{2}\right) \\
C_{3} \in S L\left(m_{2}-r_{2}\right), \alpha_{1}, \alpha_{2}, \alpha_{3} \in G L(1), \\
\alpha_{1}^{r_{2}}=\beta_{2}^{m_{3}-t}, \\
\alpha_{2}^{m_{1}-r_{2}} \cdot \beta_{2}^{m_{3}-t}=1, \\
\alpha_{3}^{m_{2}-r_{2}} \cdot \beta_{2}^{m_{3}-t}=1,
\end{array}\right.\right\}
$$

and

$$
L_{2}=\left\{\left[\begin{array}{cc}
\beta_{2} \cdot \gamma_{1} E_{1} & 0 \\
0 & \beta_{2} \cdot \gamma_{2} E_{2}
\end{array}\right] \in L_{1} \left\lvert\, \begin{array}{l}
E_{1} \in S L(s), E_{2} \in S L\left(m_{3}-t-s\right) \\
\beta_{2}, \gamma_{1}, \gamma_{2} \in G L(1), \\
\gamma_{1}^{s} \cdot \gamma_{2}^{m_{3}-t-s}=1
\end{array}\right.\right\}
$$

We put $Y=\left[\begin{array}{c}X_{2}^{\prime} \\ X_{3}^{\prime}\end{array}\right] \in M\left(m_{1}+m_{2}-2 r_{2}, s\right)$, and let

$$
K_{3}=\left\{\left[\begin{array}{cc}
\alpha_{2} C_{2} & 0 \\
0 & \alpha_{3} C_{3}
\end{array}\right] \in G L\left(m_{1}+m_{2}-2 r_{2}\right) \left\lvert\, \begin{array}{l}
C_{2} \in S L\left(m_{1}-r_{2}\right), \\
C_{3} \in S L\left(m_{2}-r_{2}\right), \\
\alpha_{2}, \alpha_{3} \in G L(1) \\
\alpha_{2}^{m_{1}-r_{2}} \cdot \beta_{2}^{m_{3}-t}=1, \\
\alpha_{3}^{m_{2}-r_{2}} \cdot \beta_{2}^{m_{3}-t}=1
\end{array}\right.\right\}
$$

be the middle reductive part of K_{2}. Hence it is enough to show

$$
\left[\begin{array}{cc}
0 & X_{1}^{\prime} \\
Y & 0
\end{array}\right] \mapsto\left[\begin{array}{cc}
\alpha_{1} C_{1} & 0 \\
0 & h^{\prime}
\end{array}\right]\left[\begin{array}{cc}
0 & X_{1}^{\prime} \\
Y & 0
\end{array}\right]\left[\begin{array}{cc}
\beta_{2} \cdot \gamma_{1} E_{1} & 0 \\
0 & \beta_{2} \cdot \gamma_{2} E_{2}
\end{array}\right]
$$

is an FP with $h^{\prime} \in K_{3}, \alpha_{1}^{r_{2}}=\beta_{2}^{m_{3}-t}, \alpha_{2}^{m_{1}-r_{2}} \cdot \beta_{2}^{m_{3}-t}=1, \alpha_{3}^{m_{2}-r_{2}} \cdot \beta_{2}^{m_{3}-t}=1$ and $\gamma_{1}^{s} \cdot \gamma_{2}^{m_{3}-t-s}=1$, namely
3. $M\left(r_{2}, m_{3}-t-s\right) \ni X_{1}^{\prime} \mapsto\left(\alpha_{1} C_{1}\right) X_{1}^{\prime}\left(\beta_{2} \cdot \gamma_{2} E_{2}\right)$ is an FP, and
4. $M\left(m_{1}+m_{2}-2 r_{2}, s\right) \ni Y \mapsto h^{\prime} Y\left(\beta_{2} \cdot \gamma_{1} E_{1}\right)$ is, at the same time, an FP with the conditions $\alpha_{1}^{r_{2}}=\beta_{2}^{m_{3}-t}, \quad \alpha_{2}^{m_{1}-r_{2}} \cdot \beta_{2}^{m_{3}-t}=1, \quad \alpha_{3}^{m_{2}-r_{2}} \cdot \beta_{2}^{m_{3}-t}=1 \quad$ and $\gamma_{1}^{s} \cdot \gamma_{2}^{m_{3}-t-s}=1$.

The space 3 is clearly an FP. Then the space 4 is an FP by Lemma 2.4 since $m_{1}-r_{2} \neq m_{2}-r_{2}$. Hence our representation is an FP.

Next we assume that $t\left(=n-m_{1}-m_{2}+r_{2}\right)=0$. The isotropy subgroup H_{4} is isomorphic to

$$
H_{4}^{\prime}=\left\{\left[\begin{array}{ccc}
C_{1}^{\prime} & 0 & 0 \\
* & C_{2}^{\prime} & * \\
0 & 0 & C_{3}^{\prime}
\end{array}\right] \in S L(n) \left\lvert\, \begin{array}{l}
C_{1}^{\prime} \in S L\left(n-m_{2}\right), \\
C_{2}^{\prime} \in S L\left(m_{1}+m_{2}-n\right), \\
C_{3}^{\prime} \in S L\left(n-m_{1}\right),
\end{array}\right.\right\}
$$

Then H_{4}^{\prime} contains

$$
H_{5}=\left[\begin{array}{cc}
S L\left(n-m_{2}\right) & 0 \\
0 & K_{4}
\end{array}\right]\left(\subset H_{4}^{\prime}\right)
$$

where

$$
K_{4}=\left\{\left[\begin{array}{cc}
C_{2}^{\prime} & * \\
0 & C_{3}^{\prime}
\end{array}\right] \in S L\left(m_{2}\right) \left\lvert\, \begin{array}{l}
C_{2}^{\prime} \in S L\left(m_{1}+m_{2}-n\right), \\
C_{3}^{\prime} \in S L\left(n-m_{1}\right)
\end{array}\right.\right\} .
$$

By Theorem 1.3, we can see the conditions to be an FP of

$$
\begin{array}{llll}
S L\left(n-m_{2}\right) & S L\left(m_{3}\right) & S L\left(m_{2}\right) & S L\left(m_{1}+m_{2}-n\right) \\
\hline
\end{array}
$$

In particular

$$
\begin{array}{ccc}
S L\left(n-m_{2}\right) & S L\left(m_{3}\right) & K_{4} \\
\circ & 0
\end{array}
$$

is an FP. Therefore

is an FP, except $n-m_{2}=m_{1}+m_{2}-n$, i.e., $2 n=m_{1}+2 m_{2}$.
On the other hand, the isotropy subgroup H_{4}^{\prime} contains

$$
H_{6}=\left[\begin{array}{cc}
K_{5} & 0 \\
0 & S L\left(n-m_{1}\right)
\end{array}\right]\left(\subset H_{4}^{\prime}\right)
$$

where

$$
K_{5}=\left\{\left[\begin{array}{cc}
C_{1}^{\prime} & 0 \\
* & C_{2}^{\prime}
\end{array}\right] \in S L\left(m_{1}\right) \left\lvert\, \begin{array}{l}
C_{1}^{\prime} \in S L\left(n-m_{2}\right), \\
C_{2}^{\prime} \in S L\left(m_{1}+m_{2}-n\right)
\end{array}\right.\right\} .
$$

We can show similarly this case to be an FP, except the case of $2 n=2 m_{1}+m_{2}$. Therefore it remains the case of $2 n=m_{1}+2 m_{2}=2 m_{1}+m_{2}$, i.e., $m_{1}=m_{2}$. However $m_{1}=m_{2}$ contradicts the assumption of $m_{1} \neq m_{2}$. Hence we obtain our results.

By Propositions 2.1 to $2.3,2.5$ and 2.6 , we have the following theorem.
Theorem 2.7. The diagram

where $G_{i}=G L\left(m_{i}\right)$ or $S L\left(m_{i}\right)$ for $i=1,2,3,4$, is a non FP if and only if it satisfies at least one of the following conditions:

1. $m_{4}=m_{1}$ with $G_{1}=S L\left(m_{1}\right)$ and $G_{4}=S L\left(m_{4}\right)$,
2. $m_{4}=m_{2}$ with $G_{2}=S L\left(m_{2}\right)$ and $G_{4}=S L\left(m_{4}\right)$,
3. $m_{4}=m_{3}$ with $G_{3}=S L\left(m_{3}\right)$ and $G_{4}=S L\left(m_{4}\right)$,
4. $m_{4}>m_{1}=m_{2}$ with $G_{i}=S L\left(m_{i}\right)$ for $i=1,2$,
5. $m_{4}>m_{1}=m_{3}$ with $G_{i}=S L\left(m_{i}\right)$ for $i=1,3$,
6. $m_{4}>m_{2}=m_{3}$ with $G_{i}=\operatorname{SL}\left(m_{i}\right)$ for $i=2,3$,
7. $m_{4}=m_{1}+m_{2}$ with $G_{i}=S L\left(m_{i}\right)$ for $i=1,2$ and $G_{4}=\operatorname{SL}\left(m_{4}\right)$,
8. $m_{4}=m_{1}+m_{3}$ with $G_{i}=S L\left(m_{i}\right)$ for $i=1,3$ and $G_{4}=\operatorname{SL}\left(m_{4}\right)$,
9. $m_{4}=m_{2}+m_{3}$ with $G_{i}=S L\left(m_{i}\right)$ for $i=2,3$ and $G_{4}=\operatorname{SL}\left(m_{4}\right)$,
10. $m_{4} \geq m_{1}=m_{2}+m_{3}$ with $G_{i}=\operatorname{SL}\left(m_{i}\right)$ for $i=1,2,3$,
11. $m_{4} \geq m_{2}=m_{1}+m_{3}$ with $G_{i}=S L\left(m_{i}\right)$ for $i=1,2,3$,
12. $m_{4} \geq m_{3}=m_{1}+m_{2}$ with $G_{i}=\operatorname{SL}\left(m_{i}\right)$ for $i=1,2,3$,
13. $m_{4}=2 m_{1}$ with $m_{1} \leq \min \left\{m_{2}, m_{3}\right\}, G_{1}=S L\left(m_{1}\right)$ and $G_{4}=S L\left(m_{4}\right)$,
14. $m_{4}=2 m_{2}$ with $m_{2} \leq \min \left\{m_{1}, m_{3}\right\}, G_{2}=\operatorname{SL}\left(m_{2}\right)$ and $G_{4}=\operatorname{SL}\left(m_{4}\right)$,
15. $m_{4}=2 m_{3}$ with $m_{3} \leq \min \left\{m_{1}, m_{2}\right\}, G_{3}=S L\left(m_{3}\right)$ and $G_{4}=S L\left(m_{4}\right)$,
16. $m_{4}+m_{1}=m_{2}+m_{3}$ with $m_{1}<\min \left\{m_{2}, m_{3}\right\}$ and $G_{i}=S L\left(m_{i}\right)$ for $i=$ $1,2,3,4$,
17. $m_{4}+m_{2}=m_{1}+m_{3}$ with $m_{2}<\min \left\{m_{1}, m_{3}\right\}$ and $G_{i}=S L\left(m_{i}\right)$ for $i=$ $1,2,3,4$,
18. $m_{4}+m_{3}=m_{1}+m_{2}$ with $m_{3}<\min \left\{m_{1}, m_{2}\right\}$ and $G_{i}=S L\left(m_{i}\right)$ for $i=$ $1,2,3,4$,
19. $m_{4}=m_{1}+m_{2}+m_{3}$ with $G_{i}=S L\left(m_{i}\right)$ for $i=1,2,3,4$,
20. $2 m_{4}=m_{1}+m_{2}+m_{3}$ with $m_{4}>\max \left\{m_{1}, m_{2}, m_{3}\right\}$ and $G_{i}=S L\left(m_{i}\right)$ for $i=1,2,3,4$.

Acknowledgment

The author would like to express his thanks to Professor Tatsuo Kimura for his suggestions in preparing the revised version of the manuscript. Also he thanks to all members of Professor Kimura's seminar for valuable discussions and comments.

References

[K] T. Kimura, Introduction to prehomogeneous vector spaces, Transl. Math. Monogr. 215 (2003).
[KKMOT] T. Kimura, T. Kamiyoshi, N. Maki, M. Ouchi and M. Takano, A classification of representations $\rho \otimes \Lambda_{1}$ of reductive algebraic groups $G \times S L_{n} \quad(n \geq 2)$ with finitely many orbits, Algebras Groups Geom. 25 (2008), 115-160.
[KKY] T. Kimura, S. Kasai, and O. Yasukura, A classification of the representations of reductive algebraic groups which admit only a finite number of orbits, Amer. J. Math. 108 (1986), 643-692.
[NN] M. Nagura and T. Niitani, Conditions on a finite number of orbits for A_{r}-type quivers, J. Algebra 274 (2004), 429-445.
[NOT] M. Nagura, S. Otani and D. Takeda, A characterization of finite prehomogeneous vector spaces associated with products of special linear groups and Dynkin quivers, Proc. Amer. Math. Soc. 137 (2009), 1255-1264.
[P] V. Pyasetskii, Linear Lie group actions with finitely many orbits, Func. Anal. Appl. 9 (1975), 351-353.

Institute of Mathematics
University of Tsukuba
Tsukuba, Ibaraki, 305-8571, Japan
e-mail: kamitomo@math.tsukuba.ac.jp

[^0]: Received December 19, 2007.
 Revised April 2, 2009.

