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1. INTRODUCTION 

If x is a vertex in a connected simple, undirected graph G = (V, E) and k is a 
positive integer then the open k-neighborhood of x is the set Nk(x) = {y G V | 
d(x, y) = k}. Here d(x, y) denotes the length of a shortest path in G joining x and y. 

When k = 1 we have the usual open neighborhood N(x) = {y £ V | xy £ E}. If S is 
a subset of vertices in G, then N(S) will denote |J N(x) and N[S] = N(S)US. We 

xes 
will write N[x] in place of the more cumbersome N[x] for the closed neighborhood 
of x. \A\ will represent the cardinality of the set A, and so G is a graph of order |V| 
and size \E\. 

A set D of vertices is called a dominating set of G if N[D] = V. If, in addition, 
G has no dominating set of cardinality less than \D\, then the domination number 

of G is y(G) = \D\ and D will be referred to as a 7-set of G. When every edge in 
G is incident with some vertex in A C V, then A is called a vertex cover of G. The 
vertex cover number of G, denoted by a(G), is the minimum cardinality among all 
vertex covers of G. Any vertex cover of this order will be called an a-set of G. 

If A C V and the induced subgraph (A) has no edges, then A is an independent set. 
The vertex independence number of G is the cardinality (5(G) of a largest independent 
set (a /i-set) in G. Gallai established the following relationship between the vertex 
cover number and the independence number. 

Theorem 1.1 [1], For every graph G of order n, a(G) + (5(G) = n. 

It is clear that 7(C) ^ a(G) if G has no isolated vertices, but in an arbitrary graph 
G neither of these parameters is a particularly good bound for the other as can be 
seen by considering the n-cycle for large n. In a survey paper in 1981 Laskar and 
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Walikar [2] posed the problem of finding a characterization of the class of graphs G 

for which 7(G) = a(G). (Note that in [2] a vertex cover is called a transversal of G.) 

Our goal here is to give a structural characterization of this class of graphs. For 
ease of reference in this paper we denote by C the class of all graphs G having 
a(G) = 7(C). One can easily observe that if G G C is of order n and H is any 
spanning subgraph of G with no isolated vertices, then 7(C) ^ 7(H) ^ <*(H) ^ a(G) 

and so H belongs to C as well. In particular, any spanning tree T of G is in C and 
a(T) = a(G) = 7(G) = 7(T). Since 7(F) can be efficiently computed and since it 
follows from Theorem 1.1 that fi(G) =n- a(G) = n- a(T) = n- 7(F), it follows 
that the computation of the domination and independence numbers for members of 
class C can be done in polynomial time. 

Our classification involves the consideration of two types of graphs that can occur 
in C. In section 2 we will consider graphs which have at least one vertex of degree 
one and in Section 3 we consider the structure of an arbitrary G in C. We will 
need the following terminology. A vertex x in G is called a leaf if it has degree one, 
and a vertex y is a stem if y is adjacent to a leaf. We let L = L(G) (respectively 
S = S(G)) denote the set of all leaves (respectively stems) of G. Vertex v is called 
heavy if deg(i;) ^ 3 and w G V is said to be neighborhood full (or just full) if every 
v G N[w] is heavy. A basic 4-cycle in G is one which has some pair of non-adjacent 
vertices which are not heavy. 

2. GRAPHS WITH LEAVES 

In this section we will show how one can begin with a graph G G C for which 
L(G) / (f and reduce to a subgraph H of G with H G C and L(H) = if. We begin 
with a lemma which is used throughout the remainder of the paper. Note that an 
a-set of such a G is also a 7-set of G. 

Lemma 2.1. If G G C and A is any a-set of G which contains adjacent vertices 

x and y, then x and y are both stems ofG. 

P r o o f . Assume xy G E and that both x and y belong to some a-set A of 
G G C. Suppose y is not a stem of G. Clearly y is not a leaf in G or else A - {y} is 
a vertex cover for G. Let u G N(y) — {x}. By assumption u is not a leaf of G and so 
for every edge uv with v ^ y, either u G A or v G A. That is, every vertex of N[y] is 
dominated by A — {y}, and so A — {y} dominates G. This contradiction establishes 
the lemma. • 

If G has leaves and d(x, s) = 2 for a stem s of G where x belongs to G — N[S], 

then x will be called a connector in G — N[S]. 
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Lemma 2.2. Suppose G belongs to class C and L(G) 7- <D. Each component 
of G - N[S] is either an isolated vertex or a member of C. Furthermore, if Hi, 
H2, . . . , Hm are the nontrivial components of G - N[S], then each Ht- is in C and 
H = Hi U H2 U . . . U Hm has an a-set containing all the connectors of H. 

P r o o f . Let A be an a-set for G. We may assume that A contains all the stems 
of G. For any 1 ^ i ^ m, let Ht = A n V(H;). Since A is a vertex cover it follows 
that every edge xy G V(H;) is covered by B{. If Hi has a dominating set D{ with 
\Di\ < IHt-1, then since S C A it follows that A' = D{U (A- B{) dominates G. 

But \A'\ < \A\ = a(G) = 7 (G) . Hence \D{\ = \B{\ and thus H{ G C. It follows 
immediately that Hi U H2 U . . . U Hm is an a-set of H and in fact contains all the 
connectors of H. • 

If some nontrivial component Hi of G — N[S] has a leaf x, then it must be the 
case that x is a connector in G — N[S]. Thus it will follow directly from the next 
lemma that G — N[S] is leafless. 

Lemma 2.3. There does not exist a graph G in C having at least one leaf and 

also having an a-set which contains all the leaves ofG. 

P r o o f . Assume that G is such a graph in C with an a-set D containing all 
the leaves of G. First observe that G cannot have two adjacent stems x and y with 
corresponding leaves v and w (for since v and w belong to H, the edge xy is not 
covered by D). Hence by Lemma 2.1 G cannot have two adjacent vertices which 
belong to any a-set. But now consider any leaf v of G adjacent to its stem x. Since 
v G D and D is a vertex cover of G it follows that N(x) C D. However, (D-{v})U{x} 

is also an a-set of G containing adjacent vertices which is a contradiction. • 

Corollary 2.4. If a(G) = 7(G) and S = S(G) ^ (D, then G - N[S] is leafless. 

Corollary 2.5. If a tree T belongs to class C and S = S(T), then each component 
ofT- N[S] is an isolated vertex. 

We are now able to give a characterization of the family of trees in C. In addition 
to the set of leaves, L, and the set of stems, 5, of a tree we will need to refer to the 
following sets of vertices: P = N(S) - (S U L) and R = V(T) -(LuSuP). 

Theorem 2.6. A tree T of order at least two has 7 (T) = a(T) if and only if 

(i) no two vertices of P are adjacent; 

(ii) no two vertices of R are adjacent; and 

(iii) each vertex of P has at most one neighbor in R. 
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P r o o f . To see that these three conditions are sufficient one can check that when 
(i), (ii) and (iii) hold, SUIt is a minimum dominating set which is also a vertex cover. 

Now assume a(T) = y(T) for some nontrivial tree T, and let D be an a-set of T. 
We may assume that S C D. If vw G E(T) and v and w both belong to P then 
since D covers the edges of T at least one of v and w, say v, must belong to D. But 
v is adjacent to a stem x e D and so by Lemma 2.1 i; must also be a stem. This 
contradiction establishes (i). Condition (ii) follows immediately from Corollary 2.5. 
To verify (iii) assume that some w G P is adjacent to two distinct members, say y 
and z, of It. Since P O D = if it must be the case that y, z G D. By Corollary 2.5 y 
and z are isolated in T — N[5] and so Df = (D — {y, z}) U {w} is a dominating set 
of T smaller than D. Hence (iii) holds in T. • 

3. T H E LEAFLESS CASE 

In this section we consider the class of graphs in C which have no leaves. According 
to Corollary 2.4 this collection will include the nontrivial components of G — N[S] 

for any G in C which has leaves. Our first theorem and corollary here show that 
every such graph must be bipartite. 

Theorem 3.1. If G is in C and G has an odd cycle, then G must have two 

adjacent stems. 

P r o o f . Let B = (v\, V2, • . . , ^2/c+i) be an odd cycle in G. If A is any a-set of 
G, then to cover the edges of B it must be the case that for some i, Vi G A and 
Vi+i G A (subscripts computed modulo 2k + 1). It follows by Lemma 2.1 that both 
Vi and Vi+i must be stems. • 

Corollary 3.2. If G is a leafless graph in C, then G is bipartite. 

We now proceed to determine the structure of a leafless, connected, bipartite graph 
G with a(G) = j(G). If X and Y are the two color classes of G it is clear that either 
X or Y is a vertex cover of G, although it is not obvious that either is a minimum 
vertex cover. In fact, we have the following characterization. 

Lemma 3.3. Suppose G is a connected bipartite graph with no leaves. One of 

the color classes of G is a 7-sefc if and only if G is in the class C. 

P r o o f . Let X and Y be the color classes of G. As noted above the only if part 
of the lemma is immediate. Now assume that G G C, and let A be any a-set of G. 
We assume without loss of generality that Af)X ^ <p. Let x G A n X. Since G is 
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leafless, N(x) fl A = <p. But then N2(x) C A since A is a vertex cover. Similarly 

N%(x) r\ A = <p. By repeating this and using the assumption that G is connected we 

conclude that X = A. D 

While Lemma 3.3 does give us a characterization of sorts for the collection of 
connected, bipartite, leafless graphs in C it is a weak characterization in the sense 
that its use does not appear to make it easier to recognize such graphs. The follow
ing sequence of results, culminating in Theorem 3.6, will reveal much more of the 
structure of such a graph. 

Lemma 3.4. Suppose G is a connected, bipartite, leafless graph and a(G) = 

7(G). Every edge of G is on a 4-cycle. 

P r o o f . Let xy be an arbitrary edge of G. By Lemma 3.3 one of the color 
classes of G is a 7-set of G. We assume that X = {x} U (N2(x) U N4(x) U . . . ) is a 
7-set. Vertex y is not a stem and ip 7- N(y) - {x} C N2(x). Let w G N(y) - {x}. 

Since G is bipartite w has no neighbors in N2(x). If N(w) — {y} C N$(x), then 
A = (X — {x,w}) U {y} dominates G contradicting 7(G) = \X\. It now follows that 
there exists z G N(x) — {y} so that x, y, w, z is a 4-cycle in G. D 

This result can be strengthened as follows. 

Lemma 3.5. Suppose G is a connected, bipartite, leafless graph and G G C. Let 
x be any vertex belonging to the color class X of G where X is a 7-set ofG. Every 
w G N2(x) belongs to a basic 4-cycle that includes x, say xywz, where y and z are 
both of degree two. 

P r o o f . Let x G X and w G N2(x) be as in the statement of the lemma. If 
every common neighbor of x and w is heavy, then (X — {w,x}) U {y} dominates G 
where y is any common neighbor of x and w, and this is a contradiction. But if 
z G N(x) Pi N(w) is the only common neighbor of x and w with degree two, then 
(X — {x,w}) U {z} dominates G which is also a contradiction. Therefore w and x 
belong to a basic 4-cycle, say xywz, where y and z are of degree two. D 

Theorem 3.6. Let G be a connected, bipartite, leafless graph. G belongs to the 

class C if and only if the following two conditions hold in G: 
(i) Every edge of G belongs to a 4-cycle; and 

(ii) For every pair x, y of adjacent heavy vertices exactly one of them, say y, is 
neighborhood full and has the additional property that every pair u, v G N(y) are 
nonadjacent members of a basic 4-cycle. 

P r o o f . Assume G is connected, leafless and bipartite with color classes X and 
Y'. If a(G) = 7(G), then Lemma 3.4 guarantees that (i) holds. Let x and y be 
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adjacent heavy vertices and assume without loss of generality that X is a 7-set of 
G containing vertex x. By Lemma 3.5 every w G N2(x) n N(y) belongs to a basic 
4-cycle with x so that the two vertices on the cycle other than x and w have degree 
two. Thus x is not full. Let z G N(y) - {x,w}. Then z € X C\ N2(w) and Lemma 
3.5 will place z and w on a basic 4-cycle. It now follows that deg(uj) ^ 3 and so y 

is a full vertex. Another application of Lemma 3.5 to an arbitrary pair u, v G N(y) 

shows that (ii) is necessary as well. 

To prove the sufficiency of (i) and (ii) we first establish the following two state
ments: (I) All full vertices of G belong to the same color class of G; (II) All heavy 
vertices which are not full belong to the same color class of G. 

Suppose that (I) does not hold. Let P: y\, v\, v2, ..., vn, y2 be a shortest path 
in G between 2 full vertices with y\ G X and y2 G Y. Then v\ and vn are heavy but 
not full and they belong to opposite color classes. Choose Vi, Vj G P with i < j to be 
the pair of heavy vertices from P which are closest to each other and from opposite 
color classes. Then Vi and Vj are not adjacent by our hypothesis (ii) and so each of 
Ui+i, . . . , Vj-\ is of degree two. However, each of these degree two vertices is on a 
4-cycle by (i), and so it must be the case that j = i + 3 and V{, Vi+\, Vi+2, Vj is a 
4-cycle. This implies ViVj G E(G) which contradicts our choice of the path P. Hence 
(I) holds. (II) is proved in a similar manner. 

Assume then that X is the color class containing the set of heavy, but not full, 
vertices. Let D be a 7-set of G for which \D n X\ is a maximum. Suppose first that 
there exists a full vertex y in D. Let N(y) = {x\,x2,... ,xn}. If there is a unique 
1 ^ j ^ n so that Xj £ D, then let D' = (D - {y}) U {x5}. If x{ $. D and Xj £ D 

(i 7- j), then Xi, a, Xj, b forms a basic 4-cycle [by (ii)] for some vertices a and b of 
degree two and a, b G D. In this case let D' = (D - {a, b}) U {xi, Xj}. In either case 
D' is a 7-set but (IT n K| > |F> n K|. Therefore D contains no full vertices. 

If D = X, then since X is a vertex cover it follows that G G C. Suppose then 
that there exists v G X — D. If deg(U) = 2, then by (i) there is a 4-cycle v, w, x, 
y and at least one of w and y belongs to D. Note that deg(u) = 2 = deg(uf). If 
w and y both belong to D, let D' = (D - {w,y}) U {v,x}. If only one of w or y 
belongs to D, then let D' = (D — {w, y}) U {v}. In both cases D' is a 7-set of G and 
again \D' n X\ > \D n X\ contradicts the choice of D. Thus all degree two vertices 
in X belong to D, and any v G X - D is heavy Since no full neighbor of v is in 
D there must be z G N(v) n D and deg(z) = 2. Let N(z) = {u,v}. The edge zu 
belongs to a 4-cycle which must be v, z, u, y for some y. If deg(u) = 2, then let 
D' = (D - {z}) U {v}. If deg(u) ^ 3, then u is heavy and by (ii) there is a degree two 
vertex w GY with v, z, u, w a basic 4-cycle. But the same choice for D' as above is 
a 7-set with \D' n X\ > \D n X\. 
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This final contradiction forces D = X and so X is a 7-set which is also a vertex 
cover, and G G C. • 

Figure 1 shows several connected, bipartite, leafless graphs belonging to the class 
C. In each the solid vertices are those of the color class which forms a 7-set for that 
particular component. Of course in some cases either color class will suffice. 

Figure 1. Hi and H2 satisfying Theorem 3.6. 

We now complete our characterization of graphs G with a(G) = 7(G) by detailing 
the manner in which a collection of components each of which is a bipartite leafless 
graph from C (as described in Theorem 3.6) or an isolated vertex can be "hooked 
together" to form a general graph G with a(G) = 7(C). As in Section 2 we let 
P = N(S) — (S U L) where S is the set of stems in G. In addition, if Hi, H2, . • •, 
Hm are the nontrivial components (necessarily leafless and bipartite) in G — N [5], 
then Xi will denote a color class of Hi with \Xi\ = 7(Hi). The proof of one of the 
implications of the following theorem is a direct consequence of Theorem 3.6. The 
other consists of checking that R U S U X\ U . . . U Xm is a 7-set which is also a vertex 
cover. The proof is omitted. 

Theorem 3.7. Let G be a connected graph with at least one leaf. Then a(G) = 
7(G) if and only if G — N[S] consists of nontrivial leafless, bipartite components Hi, 
H2, . . . , Hm along with a set of isolated vertices R so that the following conditions 
hold. 

(1) For each i, one of the color classes of Hi, say Xi, is a 7-set for Hi. 
(2) P is an independent set in G. 

(3) The subgraph induced by S in G is arbitrary. 

(4) The set of edges in G joining vertices in P and vertices in S is arbitrary. 
(5) N(P) - S C HU Xi U . . . U Km so that for every v e P, ifu\, u2 e N(v) - S, 

then u\ and U2 belong to a common Xi and there is a path of length two in Hi 
joining u\ and U2. 
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Figure 2. Graph in class C. 

Figure 2 shows one way in which H\, H2 and several isolates can be combined to 
give a graph in C. 

4 . BIPARTITE GRAPHS WITH ONE COLOR CLASS A 7-SET 

We observe that Theorem 3.6 gives a characterization of those connected, bipartite 
leafless graphs which have a color class serving as a minimum dominating set. Any 
nontrivial component of G — N[S] for a graph G satisfying a(G) = 7(G) must be of 
this type. Next consider a bipartite graph H with a(H) = 7(H) where neither of 
its color classes is a 7-set. By Lemma 3.3, such a graph H must have leaves. (See 
Figure 3 for an example.) 

Figure 3. An example. 

We now complete a characterization of the class of connected bipartite graphs 
which have one color class being a 7-set as follows. 
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Theorem 4 .1 . Let G be a connected bipartite graph with at least one leaf One 

of the color classes of G, say A, is a 7-set for G if and only if conditions (l)-(5) of 

Theorem 3.7 hold (with (3) and (4) modified only to require G to be bipartite) and 

so that (6) no member of P belongs to A and (7) if x is a stem adjacent to two or 

more leaves then x belongs to A. 

P r o o f . For each i let V(H;) = K; U Y{. If A is a 7-set for G then it follows that 
a(G) = 7(G) since A is certainly a vertex cover. By Theorem 3.7 RuSuXi U.. .UKm 

is also a 7-set for G where X = X\ U K2 U . . . U Xm contains all the connectors of 
the bipartite components Hi, H2, . . . , Hm. 

First we show that no member of P can belong to A. By Theorem 3.7 we note 
that each vertex in P is either (i) adjacent to a single member of R or (ii) adjacent 
to vertices in a single X{ or (iii) adjacent only to vertices in S. 

Consider any v e P which is adjacent to some r G it. Let Pr be those vertices 
in P adjacent to r. If v e A, then Pr C A and any stem adjacent to a vertex in Pr 

belongs to V — A. But then (Au {r}) — Pr dominates G and is smaller than A since 
\Pr\ ^ 2. This contradiction shows that such a v is not in A. 

Next consider any v G P which is adjacent to some subset of vertices in X{. Let 
P(Xi) be the set of all vertices in P which are adjacent to at least one vertex in X{. 

liv e A, then Y{ C A and P(X{) C A. But now (A U X{) - (Y{ U P(X{)) dominates 
G and is smaller than A (since X{ is a 7-set for Hi and so \X{\ ^ \Y{\). Thus it again 
follows that no such v can belong to A. 

Finally consider the set of vertices P(S) in P which are adjacent only to stems of 
G. If some v G P(S) also belongs to A, then let Sv = {x G S | xv is an edge} and 
let Lv = {w e L I wx is an edge for some x G Sv}. Note that Lv C A and that 
(A U Sv) — (Lv U {v}) is a smaller dominating set than A, a contradiction. 

Hence P has no members in A, and so any stem adjacent to a vertex in P must 
be in A. Furthermore, any stem x which is adjacent to two or more leaves must be 
in A or else A is not a minimum dominating set. Thus, the seven conditions have 
been shown to be necessary. 

If we assume (1) through (7) hold, then the stems adjacent to more than one leaf 
or adjacent to a member of P as well as the vertices of R U X\ U . . . U Xm all belong 
to the same color class, say A. If this does not force all stems to be in A, then only 
stems adjacent to a single leaf remain to be considered, and for each such stem-leaf 
pair we can choose whichever is in A and it follows that A is a 7-set for G. • 
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