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Abstract

The complete set of measurements that could ever be
used by a stereo algorithm is the plenoptic function or light-
field. We give a concise characterization of when the light-
field of a Lambertian scene uniquely determines its shape,
and, conversely, when stereo is inherently ambiguous. We
show that stereo computed from the complete light-field is
ambiguous if and only if the scene is radiating light of a
constant intensity (and color) over an extended region.

1. Introduction

Although stereo has been studied extensively, it has
never been precisely delineated when the process has a
unique solution and when it is inherently ambiguous. Ku-
tulakos and Seitz[10] recently pointed out that stereo is not
always unique and proposed the concept of thephoto-hull
to quantify any ambiguity. They provided very little insight,
however, into when stereo is actually ambiguous and when
the solution is in fact theoretically unique.

Stereo has traditionally been thought of as primarily a
2-camera problem. More recently it has increasingly been
treated as ann-camera problem wheren � 2. As pointed
out in [5, 15] (for example) the complete set of visual infor-
mation that could ever be made available to a stereo algo-
rithm is theplenoptic function[1] or light-field [12]; i.e. the
radiance of light in free space given as a function of 3D
position, 2D direction, wavelength, polarization, and time.

In this paper we analyze stereo computed from the en-
tire light-field. In particular we present a characterization
of when the light-field of a Lambertian scene uniquely de-
termines its shape, and conversely when stereo is inherently
ambiguous. (Since the light-field is the set of all passive vi-
sual measurements that could ever be made, this question is
the same as asking whether the shape of the scene can ever
be uniquely determined without actively changing the illu-
mination conditions.) It turns out that our characterization
is particularly concise and intuitively very natural; stereo is

unique (given the light-field)if and only if there is no ex-
tended region on the surface of an object in the scene that is
radiating a constant intensity, (color, and polarization.)

Our analysis shows that constant intensity regions are the
only inherent ambiguities in stereo; i.e. the only ambiguities
that cannot be resolved by using more visual measurements.
It also shows that constant intensity regions arealwaysam-
biguous for stereo, for any number and arrangement of cam-
eras. (Constant intensity regions are not always ambiguous
for shape-from-silhouetteand so part of our analysis con-
sists of formalizing the difference between these two pro-
cesses.) Our analysis unfortunately does not prove anything
about the uniqueness ofn-camera stereo. The most we can
say is that, in the absence of constant intensity regions and
given enough cameras,n-camera stereo isunlikely to have
significant inherent ambiguities. Complete absence of am-
biguity is not guaranteed though (at least by this paper.)

Proving these claims is quite involved and requires that
a number of technical details be addressed. To avoid bur-
dening the reader with all of the details at once, we organize
this paper as follows. In Section 2 we introduce the question
of whether the shape of the scene is unique given the light-
field. We proceed to informally outline the major arguments
in the proof of our claims. In Section 3 we formally state
our claims as a theorem and discuss its implications. We
sketch the proof of the theorem in Appendix A. A complete
proof will be provided in a future technical report[2].

2. Stereo Ambiguities and Uniqueness

2.1. The Plenoptic Function or Light-Field

The plenoptic function[1] or light-field [12] is a function
which specifies the radiance of light in free space. It is typ-
ically assumed to be a 5D function of position (3D) and
orientation (2D). In addition, it is also sometimes modeled
as a function of wavelength, polarization, and time, depend-
ing on the application. We ignore these effects in this pa-
per because: (1) our results can easily be generalized to the
case that light can be distinguished based on its wavelength
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Figure 1. An illustration of the 2D light-field of a 2D scene[12]. The scene is conceptually placed within a circle, radiusr. The
angle to the viewpointv around the circle is measured by the angle�, and the direction that the viewing ray makes with the radius
of the circle is denoted�. For each pair of angles� and�, the radiance of light reaching the viewpoint is denotedL(�; �), the
light-field. Although the light-field of a 3D scene is actually 4D, we will continue to use the 2D notation of this figure in this paper
for ease of explanation. Everything derived here also holds for the 4D light-fields of 3D scenes. The circle can also be replaced with
an arbitrary piecewise smooth curve (surface in 3D) in more complex scenes (and need not even be connected.)

or polarization, and (2) there is an implicit assumption in
stereo that the images are captured at the same time, or
equivalently that the scene and illumination do not change.

Assuming there is no absorption, scattering, or emission
of light through the air[14], the light-field is only a 4D func-
tion, a function of 2D direction defined on a 2D surface[7,
12]. (Similarly, the light-field of a 2D scene is 2D rather
than 3D, as illustrated in Figure 1.) We make the “no ab-
sorption” assumption in this paper, and also, for ease of
explanation, assume that the surface that the light-field is
defined on is a sphere (a circle in 2D.) At no point is this
spherical surface property required in our analysis. All of
our results do generalize to the case that the light-field is
defined on an arbitrary piecewise smooth surface (consist-
ing of a finite number of connected components.)

2.2. Uniqueness from Lambertian Light-Fields?

There are three components in the formation of a light-
field: (1) the shape of the scene, (2) its reflectance proper-
ties, and (3) the illumination conditions. We make piece-
wise smoothness assumptions about the shape of the scene,
piecewise smoothness assumptions about the illumination,
and the Lambertian assumption (made by all brightness
constancy algorithms) about the reflectance properties.

Light-fields of Lambertian scenes contain shape infor-
mation in that any two rays which image the same point
in the scene must necessarily have the same intensity. Is
this information enough to constrain the shape of the scene
uniquely? Kutulakos and Seitz studied this question (in the
n-camera stereo case) and showed thatif there is any ambi-
guity there is one special solution (thephoto hull) which is
the union of all of the solutions and therefore contains them

all [10]. But, is there ever any ambiguity in the solution?
Kutulakos and Seitz did give one example where there

is ambiguity (albeit ignoring inter-reflections. See Figure 3
in their paper.) Is this generally the case, or is the solution
unique most of the time? In this paper, we attempt to an-
swer this question by characterizing when the light-field of
a scene uniquely determines its shape, and conversely when
there are multiple scenes that generate the same light-field.

We formulate our results in terms of the light radiating
outwards from the surface of the scene (i.e. the light-field)
rather than in terms of the shape, reflectance, and incoming
illumination. This leads to a much more concise character-
ization than would otherwise be possible. The light-field
is also the information that a stereo algorithm has to work
with. Our characterization will therefore be more useful to
a stereo algorithm that is trying to determine whether there
is a unique solution or not (rather than a characterization in
terms of quantities that are unknown to the algorithm, such
as, shape, reflectance properties, and illumination.)

2.3. The Ambiguous Cases

There are two simple scenarios in which the shape of the
scene cannot be uniquely determined from the light-field.
The first such case, illustrated in Figure 2(a), occurs when
there are points in the scene that are not visible in the light-
field. (The shape of the scene is, of course, completely un-
constrained anywhere it is not visible.) This trivial case is
really just an artifact of our parameterization of the light-
field by points on a sphere (or by a circle in 2D). Since the
light-field can always be defined on a piecewise smooth sur-
face, possibly disconnected, so that every point in the scene
is visible somewhere, this scenario can be ignored.
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(a) Non-Visible Regions Are Ambiguous (b) Constant Intensity Regions Can Lead to Ambiguities

Figure 2. Examples of situations in which the shape of the scene is ambiguous given the light-field: (a) if there are parts of the
scene that are not visible in any part of the light-field, the shape of those regions cannot be uniquely determined, and (b) if the light
radiated from the scene is constant over an extended region, in this case the entire bottom face of the rectangle on the left and the
entire curved bottom of the “carved-out” rectangle on the right, the shape of the two scenes can sometimes be in-distinguishable;
i.e. their light-fields can be set up to be exactly the same with an appropriate choice for the albedo variations. The curved region in
case (b) does not have uniform albedo, but has an albedo distribution that leads to the same amount of light being radiated from each
point after inter-reflections are taken into account. (See the body of the text for a derivation of what the albedo variation must be.)

The second ambiguous case is more significant. It oc-
curs when the intensity of the light radiated from the scene
is constant over an extended area. See Figure 2(b) for an
example of such a scenario. In this case, the rectangle and
the modified “carved-out” rectangle with the concavity both
have the samevisual hull[11]. If the albedo variation in the
concavity is set up in a way that the intensity of the light ra-
diated outwards is constant across the concavity (and is the
same as that for the rectangle), the two scenes haveexactly
the same light-field.The shape of the scene is therefore
ambiguous, even given the entire light-field. (The ambigu-
ous example presented in[10] also has constant intensity
regions, as mentioned above, ignoring inter-reflections.)

To complete the proof that this is an ambiguous case
we must show that it is actually possible to configure the
albedo variation to achieve a constant radiance over an ex-
tended region. Supposex is a point in the region that we
wish to make radiate a constant intensity. (See Figure 3 for
an illustration.) Supposex has albedoalb(x). The light
falling onx can be divided into two components, that inter-
reflected from the constant intensity region, and that com-
ing from the rest of the scene (which may be either direct
illumination or inter-reflected from some other part of the
scene.) Suppose that the radiance of the constant intensity
region isinter. Denote the foreshortened solid angle (see
[8]) subtended by the non-constant “rest” of the scene by
fssa(x). The foreshortened solid angle subtended by the
constant intensity region is therefore� � fssa(x). Finally,
denote the foreshorten-weighted average incoming illumi-
nation radiance from the rest of the sceneillum(x); i.e. the
total incoming irradiance from the rest of the scene divided
by fssa(x). The total incoming irradiance is therefore:

fssa(x)� illum(x) + [� � fssa(x)]� inter: (1)

Multiplying this expression by the albedo gives the amount

of light radiated by pointx. The constraint to be solved to
obtain a constant intensity region is therefore:

inter = (2)

alb(x) (fssa(x)� illum(x) + [� � fssa(x)]� inter) :

This equation can always be solved foralb(x). We just have
to make sure that the resulting albedo is valid (the surface
does not radiate more light than it received); i.e. we need to
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Figure 3. A derivation of the albedo variation required
to create a constant radiance region. Consider a pointx

with albedoalb(x). Suppose that the required constant ra-
diance isinter, the foreshortened solid angle of the scene
that does not have the constant radiance isfssa(x), and that
the foreshorten-weighted average incoming radiance from
that part (i.e. the rest) of the scene isillum(x).

check thatalb(x) � 1=� [8]. Substituting this inequality
into Equation (2) and simplifying gives:

inter � illum(x): (3)

3



������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

-dφ

θ

φ
r

r

r

z

φ
φ

O

φ

θ
OO0 360

90

O-90

Direction uniquely defines

+

φ

d

Center of light-field circle

Scene point

Viewpoint

φ

Scene point

Viewpoint

Center of light-field circle

distance from the circle

in (at least) one direction

Light-Field constant

z
+ d

d
θ

θ

θ

dθ

+d (See text for more details)

Figure 4. If the light-field is differentiable at(�; �), it is locally constant in at least one direction (the direction orthogonal to
the gradient.) If the gradient is non-zero, the light-field is locally constant in only one direction and that directionuniquelydefines
the distance to the point in the scene (i.e. the depthz.) The depth is therefore uniquely defined wherever the gradient exists and is
non-zero. The depth (scene shape) is also globally unique if the light-field is not constant in an extended region (i.e. one containing
an open subset) since under this assumption (and appropriate smoothness assumptions about the scene shape), there can only be
“isolated points and curves” whereL(�; �) is either not differentiable or has zero gradient. The depth at these points is then
uniquely determined because of the assumed continuity of the scene. This argument can be extended to the 4D light-fields of 3D
scenes where there is a 3D hyper-plane in which the light-field is locally constant and which uniquely defines the scene depth.

Equation (3) means that we can always find an albedo varia-
tion to create a constant intensity region so long as the con-
stant radiance desired is less than or equal to the minimum
(computed over the constant radiance region) foreshorten-
weighted average incoming radianceillum(x) (the total in-
coming irradiance divided by the foreshortened solid angle
subtended by the rest of the scene.) The scenario in Fig-
ure 2(b) is therefore realizable in practice. It is a valid am-
biguous case where more than one differently shaped scenes
share exactly the same light-field.

2.4. Uniqueness of Stereo from Light-Fields

We have just shown that there are ambiguous cases
where two differently shaped scenes generate the same
light-field. In the example that we exhibited, there are ex-
tended regions that are radiating a constant intensity. We
now argue that if there are no such regions, the light-field
uniquely determines the shape of the scene; i.e. all ambigu-
ous cases include an extended constant intensity region.

The main step in the (2D) proof is illustrated in Figure 4.
Suppose that� and� are a pair of angles defining a point in
the light-fieldL(�; �). If � changes to�+d� and� changes
to � + d� in a way that the same point in the scene is im-
aged, the geometry is as sketched in the middle of Figure 4.
Applying the sine rule to the solid triangle gives:

sin [180
Æ � (�d�+ d�) � (90

Æ � �)]

z
=

sin [�d�+ d�]

r � d�
(4)

wherez is the distance to the scene point (measured from

the viewpoint circle.) Rearranging this expression gives:

d�

d�
= 1�

r

z
� cos�: (5)

This equation means that there is aone-to-onerelationship
between the directiond�

d�
in the light-field and the distancez

to the point in the scene. The 2D light-field of a Lambertian
scene will therefore be locally constant in the direction de-
fined by Equation (5). If the light-field is differentiable and
has non-zero gradient, this direction will be the direction
orthogonal to the gradient. The (direction of the) gradient
of L(�; �), if it exists and is non-zero, therefore uniquely
determines the distance to the scene. (Note that this argu-
ment is similar to the analysis of the extraction of depth
from epipolar-plane imagesor EPIs[3] and the extraction
of depth from calibrated normal flow.)

In general, of course, there will be many points at which
the light-fieldL(�; �) is either not differentiable or has zero
gradient. The argument above therefore does not apply at
these points. However, assuming that the light-field is not
constant in an extended region (i.e. one containing an open
subset or equivalently a small disk with non-zero radius) the
gradient can be zero (or undefined) only on a set of “isolated
points and curves.” (See Appendix A.1 for more details.)
The depth will then also be uniquely defined at these iso-
lated points and curves using the assumed piecewise con-
tinuity of the shape of the scene. So, assuming that every
point in the scene is visible somewhere in the light-field, the
light-field uniquely defines the scene shapeso long as there
are no extended constant intensity regions.
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Figure 5. An example of a scene which contains an ex-
tended constant intensity region, and yet which has a unique
light-field. The uniqueness can be deduced using ashape-
from-silhouetteargument[6, 13]. (See the body of the text
for more details.) To distinguish stereo from shape-from sil-
houette, we exclude the use of any tangent rays (or rays in-
finitesimally close to tangent rays) from stereo. Once such
rays are excluded, the scene shape is thenalways ambigu-
ousif there is an extended constant intensity region.

2.5. Stereo Versus Shape-From-Silhouette

In Section 2.3 we showed that there are ambiguous cases
where the light-field does not uniquely define the shape of
the scene. In Section 2.4 we argued that all ambiguous cases
contain an extended region that is radiating a constant inten-
sity. Are all cases that contain such a region ambiguous?

Perhaps surprisingly, the answer is no. For example, Fig-
ure 5 illustrates a scene which contains an extended constant
intensity region (the black disk, or sphere in 3D, in the mid-
dle of the scene) and which has a unique light-field.

The fact that the light-field of this scene cannot be gen-
erated by any other scene can be deduced using a similar ar-
gument to that used inshape-from-silhouettealgorithms[6,
13]. Since the walls are textured, the argument of the pre-
vious section implies that the volume outside the black disk
(the region to the right of the dashed ray in the figure) is
empty space. We can then deduce that there is a black object
in the middle of the room, thevisual hull [11] (defined by
an infinite number of cameras) of which is a disk (a sphere
in 3D). Since the only shape which has a disk (sphere) as its
visual hull is the disk (sphere) itself, the object in the middle
of the room must be a disk (sphere.) The shape of the scene
is therefore unique. (Note that if the disk is replaced with a
rectangle, the situation is the same as Figure 2(b), and the
scene shape is then ambiguous instead.)

As pointed out, the uniqueness of the scene shape in this
example is deduced using a shape-from-silhouette like ar-

gument. We would like to distinguish stereo algorithms and
shape-from-silhouette algorithms. The key distinguishing
aspect of shape-from-silhouette is that it uses rays that are
tangent to the surfaces of the objects in the scene. Stereo,
on the other hand, primarily only “matches” rays that are
radiated from the body of the objects in the scene.

It turns out that if we exclude tangent rays from the light-
field, and thereby remove the source of information used by
shape-from-silhouette algorithms, the situation is changed
completely. The shape of the scene is thenalways ambigu-
ous if there is an extended constant intensity region. The
proof of this fact is constructive and operates by “carving”
out a concave hole in the constant intensity regionwithout
changing the visual hull.The albedo is then modified in the
carved region to restore the constant intensity region. (The
fact that this can always be done was shown in Section 2.3.)
The details of the proof are included in Appendix A.2.

3. Formalization as a Theorem

So far our arguments have been presented informally in
order to provide the reader with a brief overview of our re-
sults. We now formally state our claims as a theorem.

Theorem: Consider the set of Lambertian scenes consist-
ing of an occupied volume (a 3D sub-manifold of[0; 1]3

with boundary[4] ) bounded by a finite collection of contin-
uously differentiable surface patches (each a connected 2D
manifold with possibly overlapping 1D boundaries.) Each
surface patch has a piecewise continuously differentiable
albedo variation on it (the 2D manifold can be partitioned
into a finite collection of 2D sub-manifolds with possibly
overlapping 1D boundaries where the albedo variation is
continuously differentiable on each sub-manifold in isola-
tion.) Suppose that some of these surfaces are also area
light-sources and are radiating (finite valued) light in an
isotropic manner, piecewise differentially across their sur-
faces. Suppose thatS1 is a scene in this set andL1 a light-
field of that scene with the following properties: (1)L1 is
defined on a finite collection of continuously differentiable
closed surface patches within(0; 1)3 and is a closed 4D
manifold (with or without boundary), (2) every point (in
free space and) on the surface ofS1 lies in an open sub-
set of (free space or) the surface ofS1 that is everywhere
visible in a 4D open subset ofL1, and (3) no ray inL1 is
tangent toS1. Then, there is another sceneS2 (that has a
different occupied volume) in the set (and for which point
(2) above holds) that also generatesL1 if and only ifL1 is
constant in a 4D open subset.

Although this formulation is quite lengthy, the only real
assumptions are that the scene contains: (1) a collection
of Lambertian objects with piecewise smooth surfaces and
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Figure 6. Our characterization of when the light-field of
a Lambertian scene uniquely determines its shape. If the
light-field contains no extended constant intensity regions,
the shape of the scene isalways unique.If the light-field
does contain any such regions, but does not contain any
tangent rays, the scene shape isalways ambiguous.If the
light-field also contains tangent rays, the shape may or may
not be unique. (See the body of the text for more details.)

piecewise smooth albedo variations, and (2) a collection
of extended isotropic light sources. Point light-sources in
particular are not allowed. In the real world, there are, of
course, no such things. Moreover, it is always possible to
approximate a point light-source by a very small source. (It
is also possible to approximate a “laser-beam” by placing a
light source behind a “wall” with a small hole in it.)

We also assume that the scene is contained in[0; 1]3.
This is to avoid technical problems with rays of light that go
off into infinity and do not intersect the scene. The “walls”
of [0; 1]3 can reflect or absorb any light that reaches them,
contain light-sources, or can even be textured like in Fig-
ure 5. These scenarios are all compatible with the theorem.

3.1. Interpretation of the Theorem

The theorem has two parts, theif and theonly if. The if
part says that the shape of the scene isalways ambiguous
whenever there is an extended region in the scene that is
radiating a constant intensity,even if the entire light-field is
given.This result also clearly holds for any collection of im-
ages, and under weaker assumptions, such as in the absence
of the Lambertian assumption. Constant intensity regions
are thereforeinherent ambiguitiesand in the sense that they
cannot be resolved by adding more visual measurements.
The importance of this result is that it means that as soon
as a stereo algorithm encounters a constant intensity region,
it can immediately deduce that it will need to usea priori
assumptions in order to resolve the inherent ambiguity.

This result applies to stereo algorithms that do not take

advantage of the shape-from-silhouette information pro-
vided by tangent rays. When this information is added,
the shape of the scene may or may not be unique. In par-
ticular, the example in Figure 5, in which the scene shape
is unique, can easily be turned into an ambiguous case by
simply adding a pair of black hemispheres to the scene and
placing them against the walls, diagonally across from each
other. Although the shape of the two hemispheres can be
uniquely determined, the silhouette of the black sphere in
the center of the scene can no longer be determined and the
overall scene shape is ambiguous. A complete characteri-
zation of when the combination of stereo and shape-from-
silhouette is uniquegiven the full light-field including tan-
gent raysappears to be much more complex than for stereo
or shape-from-silhouette alone and is beyond the scope of
this paper. (This question is probably much harder than
characterizing the information in silhouettes themselves be-
cause it is the light-field that is given, not the silhouettes.)

The only if part of the theorem says that the shape of
the scene isalways unique, so long as the light-field is not
constant anywhere in an extended region. (This result holds
whether the stereo algorithm uses the shape-from-silhouette
information or not.) It does of course require that the en-
tire light-field be given and that the Lambertian assumption
holds. Although this second result does not apply to then-
camera stereo problem, it does at least indicate that there are
unlikely to be stereo ambiguities in practice if every point
in the scene is imaged by enough cameras (and assuming
that there are no extended constant intensity regions.)

Stereo ambiguities can therefore be categorized into two
types: (1) those caused by constant intensity regions, and
(2) those caused by the fact that only a finite number of
cameras are available rather than the entire light-field. One
way to interpret the analysis in this paper is that ambiguities
of the first kind areinherentand will always be a problem,
whereas the ambiguities of the second kind will be unlikely
to occur if enough cameras are used. Figure 6 contains a
schematic diagram illustrating the results of this paper.
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A. Sketch of the Proof of the Theorem

We now sketch a proof the theorem. A more complete
proof will be provided in a future technical report[2].

A.1. No Constant Regions Implies Uniqueness

The first step in the proof that the occupied volume of the
scene is unique if there are no extended constant intensity
regions is to argue that if the distance to the surface of the
scene is uniquely defined everywhere in the light-field then
the occupied volume of the scene is unique. This follows
from the assumption that all of the scene, and all of the free
space, is visible from somewhere in the light-field; i.e. it
follows from point (2) in the theorem. The formal proof of
this step proceeds by assuming that there is a point that is
occupied in one ofS1 andS2 and not in the other. Since
the unoccupied point is visible in the light-field there is a
ray that sees it. The distance to the scene along this ray is
therefore different in the two scenes. The contra-positive of
the required result has therefore been proven.
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Figure 7. The incoming irradiance is continuous since
it is an integral (except at the boundaries of the surface
patches where the surface normal is discontinuous.) The ra-
diated light is therefore also continuous except at the albedo
and illumination source discontinuities. The incoming ra-
diance is therefore differentiable since it is the integral of
a piecewise continuous function (except at the discontinu-
ities; i.e. where the visibility changes at bi-tangent points
with the surface patches, their boundary curves, and the
albedo and illumination source discontinuities.)

The second step is to argue that if the distance to the
surface of the scene is unique at at least one point in every
open subset of the surface, the occupied volume of the scene
is still unique. The proof of this is similar, but just adds in
some continuity arguments. If there is a point that is occu-
pied in one ofS1 andS2, but not in the other, then there is
an open subset of 3D space that is occupied in one and not
the other because the occupied volumes are 3D manifolds.
It is then possible to find an open subset on one of the sur-
faces, which is in that 3D open subset, and for which the
distance to every point in it is different in the two scenes.
Again, this is the contra-positive of the required result.

In Section 2.4 we presented an argument that the dis-
tance to the surface of the scene is unique: (1) for points in
the light-field where the gradient is well defined (i.e. where
the light-field is differentiable), and (2) for points where the
gradient is non-zero. (We just showed this for 2D scenes.)
So, to complete the uniqueness proof, we need to show that
the light-field is differentiable (and non-zero) at some point
(and an open subset of that point) in every open subset. The
non-zero gradient part of this is trivial; it follows directly
from the assumption that there are no constant intensity
open subsets. We now show that the light-field is differen-
tiable at at least one point in every open subset (and an open
subset of that point.) Afterwards, we extend the proof of
Section 2.4 to 3D scenes. The proof will then be complete.

The incoming radiance at any point on a surface in the
scene is a (foreshorten-weighted) integral of the incoming
scene radiance over the hemisphere of incoming directions.
See Figure 7 for an illustration. Since it is an integral of a
real valued function, it is continuous (except at the bound-
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ary of the surface patches where the surface normal is dis-
continuous.) The light radiated from the surface patches
is therefore also a continuous function, except, in addition,
where the albedo variation is discontinuous and at the illu-
mination source boundaries.

The incoming irradiance is therefore a differentiable
function (since it is the integral of a continuous function,
the scene radiance) except where the “visibility” of surface
patches changes. This only occurs at points of bi-tangency
between surface patches, and at points of bi-tangency be-
tween surface patches and the 1D boundaries of surface
patches, and the 1D boundaries where the albedo variation
or illumination source is discontinuous. The radiance of
light is differentiable at the same points that the incoming
irradiance is differentiable. The radiated light is therefore
differentiable on the surfaces in the scene, except: (1) at the
surface patch boundaries, (2) at the albedo and illumina-
tion source discontinuities, (3) at points of bi-tangency, and
(4) at points of bi-tangency with the surface patch bound-
aries and the albedo and illumination source discontinuities.
All of these types of points are 1D manifolds at most. The
first two follow by definition. The set of bi-tangency points
of a pair of surfaces and the set of bi-tangency points of a
surface and a curve are also 1D[9].

Since the sets of non-differentiable points are all (con-
tained in) 1D manifolds, there is always a point in any open
subset of the surface of the scene that is differentiable (and
is contained in a differentiable open subset.) Finally, the dif-
ferentiability of the radiated light across the surfaces in the
scene can then easily be transferred to the differentiability
of the light-field on the surfaces that it is defined upon.

The extension of the argument in Section 2.4 to 3D
scenes is messy. We therefore just sketch an outline of the
complete argument. In 3D the light-field is a 4D manifold.
If the gradient of the light-field is non-zero, the light-field
must be locally constant in a 3D subspace. This 3D sub-
space can be divided into a 1D subspace that is in the same
direction as the gradient in the 3D scene, and a 2D subspace
orthogonal to it. The same argument as in Section 2.4 can
then be performed in the 2D slice through the 3D scene de-
fined by the ray in the light-field being considered and the
direction in the 3D scene corresponding to the light-field
gradient. The 1D subspace then takes the role of the direc-
tion orthogonal to the light-field gradient in the 2D proof.

A.2. Constant Regions Imply Ambiguity

The proof that constant intensity regions are always am-
biguous is a combination of the arguments in Sections 2.3
and 2.5. Suppose that there is an constant open subset in
the light-field. We can then find a point on the surface ofS1
that is viewed by a point in the open subset of the light-field.
(If the constant intensity region did not originate from the

Constant intensity
(Open subset)

Constant intensity
(Open subset)

Surface normal

Carvable region

Cone of light-rays

Figure 8. The proof that constant regions are always am-
biguous is constructive and operates by finding a point on
the surface ofS1 in an constant intensity open region where
the surface can be “carved” away and made more concave.
To be able to do this without the light-field being changed
requires the assumption that there are no tangent rays in
the light-field. The incoming rays for an entire open region
therefore all lie in a cone (bounded away from the tangent
plane). The occupied volume ofS1 can be carved away be-
neath the open region without the visual hull being changed.

surface of the scene, it came from the boundary[0; 1]3. In
this case, it is possible to add a small black volume to the
scene close to boundary because the light-field is defined on
a closed surface in(0; 1)3. The scene is ambiguous in this
case and so w.l.o.g. we can assume the the constant intensity
region is on the surface of the scene.) We can also choose
this point so that is lies in an open region of the surface that
is all viewed by the constant open subset of the light-field.

We can then find a an open subset of the surface and a
cone in which all of the incoming light-rays lie, everywhere
in that open region. (This step requires the assumption that
there are no tangent rays in the light-field, combined with
the fact that the light-field is defined on a closed surface to
bound the rays away from the tangent plane over the entire
open subset. The open subset may have to be made smaller
in this process.) The open subset is then further reduced
until the boundary of the cone is tangent to the surface at the
boundary of the open region. A region is then carved out
of the occupied volume ofS1 beneath this open region of
the surface and the albedo changed there as in Section 2.3.
(Carving means removing the open region from the surface
patch and some of the scene volume beneath it and adding
in an additional surface patch to form the new surface.) As
is illustrated in Figure 8, neither the visual hull nor the light-
field is changed in this carving step; i.e. we have modified
S1 to create a different sceneS2 with the same light-field.

There is a minor technical detail to deal with here in that
changing the shape of the surface changesillum(x) and
may make it smaller thaninter and violate Equation (3).
This problem can be removed by noting: (1) there is a
global scale ambiguity between the illumination and the
albedo and so we can always find a new stereo solution with
illum(x)multiplied by an arbitrary constant, and (2) it is al-
ways possible to change the shape by a finite amount with-
out illum(x) dropping to zero because of the continuity of
the light-field. (See Figure 7 and Section A.1 above.)
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