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A Characterization of Integral Input-to-State Stability

David Angeli, Eduardo D. Sontag, and Yuan Wang

Abstract—The notion of input-to-state stability (ISS) is now mentioned books, let us merely cite a few additional references:
recognized as a central concept in nonlinear systems analysis. Itsingular perturbation analysis [3], powerful global small-gain
provides a nonlinear generalization of finite gains with respect to theorems [11], foundations of tracking design [19], supervi-

supremum norms and also of finite L? gains. It plays a central I . .
role in recursive design, coprime factorizations, controllers for sory/switching adaptive control [6], observers [8], almost-dis-

nonminimum phase systems, and many other areas. In this paper, turbance decoupling for non-minimum-phase systems [9], and
a newer notion, that of integral input-to-state stability (iISS), is feedback stabilization with bounded controllers [29]. Moreover,

studied. The notion of iISS generalizes the concept of finite gain this concept has many equivalent versions, which indicates that
when using an integral norm on inputs but supremum norms of j; js mathematically natural: there are characterizations in terms

states, in that sense generalizing the linearFI2" theory. It allows f dissipati bust . d classical L lik
one to quantify sensitivity even in the presence of certain forms of of dissipation, robustness margins, and classical Lyapunov-lixe

nonlinear resonance. We obtain here several necessary and suf-functions; see, e.g., [25] and [26].
ficient characterizations of the iISS property, expressed in terms  Ag remarked in [24], input-to-state stability is a nonlinear

of dlssma}tlor_l inequalities and othe_r al_ternatlve and nontrivial generalization both of finite gain with respect to supremum
characterizations. These characterizations serve to show that

integral input-to-state stability is a most natural concept, one that 10rMS and of flnlt(_EL_ ~gain ( horﬂlnearHC><> ); this property_
might eventually play a role at least comparable to, if not even takes account of initial states in a manner fully compatible

more important than, ISS. with classical Lyapunov stability and replaces finite linear
Index Terms—Dissipation inequalities, finite gain, input-to-state  gains, which represent far too strong a requirement for general
stability, nonlinear systems, tracking. nonlinear operators, with “nonlinear gains.”
A system that is ISS exhibits low overshoot and low total
I. INTRODUCTION energy response when excited by uniformly bounded or en-

ergy-bounded signals, respectively. These are highly desirable

O NE OF the main issues in control design concemns thg,,|itative characteritics. However, it is sometimes the case that
study of closed-loop sensitivity to disturbances, and, Mofgedpack design doewt render ISS behavior, or that only a

generally, of the dependence of state trajectories on actugiiaker property than ISS is verified in a step in recursive de-
and measurement errors, magnitudes of tracking signals, %

the like. In linear systems theory, classical frequency-domain . . .
: . One such weaker, but still very meaningful, property was
measures of performance such as root loci and gain-phase char-

acteristics have led to the modern theoriesBP*” controland o< the name ofntegral input-to-state stability (ilSS) in a
its variants recent paper [24]. This property reflects the qualitative property

During the last ten years or so, the notionioput-to-state of small overshoot when disturbances have finite enengy

. . . e 2 ” H
stability (ISS) was formulated (in [23]), and quickly became growdes a quqlltatlve analog. of f|n.|té{ norm for_ I|n.elar

. . ; Systems. This is a property with obvious physical significance
foundational concept upon which much of modewnlinear

feedback analysis and design rest. As an illustration, let us po?rﬁltd relevance. The paper [24] showed that iISS is, in general,

out Kokotovic's recent survey paper [10], intended as a su strictly weaker than ISS, and provided a very conservative

NS ; : rEyapunov—type sufficient condition. This paper provides sev-
mary of current work and future directions on nonlinear design ; . ) .
: . . o etal foundational results, showing that the iISS property is a
in which the notion of ISS plays a central unifying concept. Sev- .

mdost natural one to be expected for well-behaved nonlinear

eral current textbooks and monographs, including [12]-[14] aq stems, being equivalent to the combination of well-known

. . .S
[ezsls]e’z::izll(er}n:iigrf the 1SS notion and results, sometimes in gésipation and detectability properties, and admitting elegant

Applications of input-to-state stability are now wi despr(_}(,jmlj_yapunov—theoretic characterizations. We are confident that

. L . A once the results in this paper become more widely known,
Besides the many applications to recursive design in the aboleg—s will play a role at least as prominent as the one that 1SS

currently has.
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assumption that each controller stabilizes the respective plant
in an iISS sense with respect to an input that is related to a
measure of estimator performance, their motivation being that
it is natural to define performance signals using integrals of

output estimation errors. Another example of the use of the

iISS concept can be found in the recent work of Liberzon [15],

who approached the task of achieving disturbance attenuation
in the iISS sense for nonlinear systems using bounded controls.
He derived a universal formula based on hysteresis switching,
in the context in particular of switched and hybrid systems, .
The notion of integral input-to-state stability played a key role¥ 1. A manipulator
in this work. Yet another direct motivation for the study of the _ . . )
iISS property is as follows. or ngyalently, in classical first-order control system form (de-

1) Tracking Problems:In [19], Marino and Tomei proposed noting ¢ by )

the reformulation of tracking problems by means of the notion
of input-to-state stability. Their goal was to strengthen the ro-
bustness properties of tracking designs, and they found the no- G2 =72

qL = 21,

tion of ISS to be instrumental in the precise characterization of 3, — _ZmQQzlz; = kpar = ka2 . kp,
performance. In fact, they emphasized the novelty of using the maq; +ML?/3 mqz + ML?/3
ISS notion in this role. It turns out, however, that a typical pas- ; _ .2 _ bpoGe _ Faza | hp,u2 @)
sivity-based tracking design may walhtresultin ISS behavior, m m m

as we illustrate now by means of an example in robotic contrgyhere
Consider the manipulator shown in Fig. 1. A simple model

is obtained considering the arm as a segment with mAssd up = —kg,diy — kp, (di2 — 04)

length L, and the hand as a material point with masslIf we

denote withr the position of the hand and withthe angle of and

the arm, the equations for such a system are wp = —ka,day — ke, (doz — 74)

(mr? + ML%/3)0 4 2mrif = 7 can be thought of as external inputs to the closed-loop system.
mi—mr® =F (1) The goal stated earlier is to qualitatively analyze the sensi-

tivity of the full state(q, =) as a function of the measurement er-

where I’ and 7 indicate external torques. We now study thé&orsd;. As these errors are potentially arbitrary functions, this
closed-loop system, which is obtained by choosirapd ' as  problem amounts to the study of stability properties with respect
to arbitary input functions = (g, u2).
= _/%9' — kp (0 — B4) It is worth pointing out that we are led to exactlye same
F = kgt — ky, (r —14) @) mathematical problenif interested, instead, in another very
da P2 d . h . A .
obvious question, namely, in the analysis of the behavior of
the state(q, z) in response to attempts to follotime-varying
acking signals even in the absence of observation errors.
ndeed, in that case thg;’s would be zero, but the different
possible tracking functiong8; andr, would still give rise to
tentially arbitrary inputs:; andus. In summary, either of
se two basic control questions—sensitivity to measurement
error or analysis of time-varying (instead of merely constant)
tracking signals—gives rise to the problem of studying stability

with kp, , kp, , k4, , k4, > 0. (For notational simplicity, we will
also writeg = [6,7]*.) This represents a typical passivity-base
tracking design, when we think of; andé, as signals to be
followed byr andé.

Normally, one establishes tracking behavior, as well as tfgg
closed-loop stability of the system when the reference sig
g4 = (84,74) is constant; for such signals; one obtaifis— 0
andg — g4 ast — +oo. In the spirit of input-to-state stability, ) .
however, it is natural to ask what is the sensitivity of the desidﬁ the system with respect to the Inpuats

to additive measurement nois€hat is, suppose that the input, Alsglnf currenkt_ nonhng;’:lr control studles,ka?]d sgecrzllflcally as
applied to the system is, instead of (2) in [19] for tracking problems, one may ask then if the system

(4) is ISS when is taken as an input. (The authors of [19] re-
quired tracking controllers to have an ISS property with respect
km (9 + dio — 9(1) . . .

to disturbances acting on the system. In the special case when
Fop, (7 + d22 — 74) the disturbances are matched to the control, this amounts to the
, i problem studied here). In particular, if the system were to be
where thed;(t)'s are observation errors. The closed-loopss, then hounded inputsshould result in bounded trajectories

T = —kd1 (9 + du)
= _k'dz (7 + dgl)

system that results is then as follows: (ISSis a stronger property than “bounded-input bounded-state”
) o o . . stability). However, there are bounded inputs that procare
(mr® + ML"/3)0 + 2mr70 = w1 — ka, 0 — kp, 0 linear resonancéehavior, resulting in unbounded state trajec-

uomi — mré? = up — ka,™ — kp,m (3) tories, which implies that this system is not ISS. Indeed, the
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input shown in Fig. 2 has the property that, for a suitable initial
state, the ensuing trajectory is unbounded. Fig. 3 showsthe “ W h
component of the state of a certain solution, which corresponds n
to this input (in Appendix A—C, we explain how this input and
trajectory were calculated).

In conclusion, the tracking system behavior exhibits unstable
behavior with respect to measurement disturbances and/or with
respect to time-varying reference signals. One might hope, how- 3 VJ IJ
ever, given the simplicity and common use of these designs, that
some sort of robustness property is veriffedthis system. The 0 20 20 60 80 100
study of this question, for this example, led to the work reported
in this paper. The answer turns out to have wide applicabilifyig. 2. Input signal.

We discovered that the weaker but still very useful property of
iISSis always satisfied for the passivity controller in our robotic al T
example, even though ISS is not. This property is defined pre-
cisely in the next section; after stating the main results, we will
show why it holds for the example.

2) Outline of Paper: In this paper, we provide a complete,
necessary, and sufficient Lyapunov-like characterization of the
iISS property. Just as the equivalences for ISS, which have found
wide applicability and serve to justify the ISS concept, are de-
rived from its Lyapunov characterization, we expect that the cur-
rent paper will be the first step in the understanding of which 00 20 40 60 0 100
system properties are equivalent to iISS. In addition, the char-
acterizations allow one to consider “LaSalle” types of dissip&ig- 3. Nonlinear resonance.
tion inequalities (semidefinite derivatives), filling in a theoret-
ical gap in the ISS literature. Definition 1.1 ([24]): System (5) is ilSS if there exist func-

Section Il discusses the main concepts and states the nf#@st « € Koo, 8 € KL, andy € K, such that, for al € R™
results. It also explains how the notion presented here repf@d allu, the solutionz(z, &, v) is defined for allt > 0, and
sents the obvious generalization of “finii& gain” under non- +
linear coordinate changes. After that, we return, in Section Ill, allz(t, & w)]) < BELT) +/ v(Ju(s)|) ds (6)
to the robotics example discussed earlier, and we verify, using 0
the characterizations presented in the paper, why the systemfgi-all ¢ > 0, where] - | denotes the standard Euclidean noln.
deed satisfies the iISS property. Then, in Section IV, we provideObserve that a system is ilSS if and only if there exist func-
the main proofs of this paper. In Section V, we provide a coufions 5 € K£ and~;,v. € K such that
terexample to the conjecture (which would seem true at first) .
that iISS might be equivalent to simply forward completeness lz(t, &, u)| < BUELE) +m </ Yo (Ju(s)]) ds) @)
plus 0-GAS. Section VI discusses several related remarks for 0
dual notions of observability. Section VIl summarizes the cofg; 5 ¢ > ¢, all¢ € R, and allu.
clusions of the paper. Finally, the Appendix collects some tech-a 54 note that if system (5) is ilSS, then it is 0-GAS, that is,
nical lemmas and the details on the numerical calculations that, 0-input system
led to Figs. 2 and 3.

9,

(=]

jj:f(aj’o)

Il. DEFINITIONS AND STATEMENTS OFMAIN RESULTS is globally asymptotically stable (GAS). (That is, the zero solu-
tion of this system is globally asymptotically stable.)

Definition 11.2: A continuously differentiable functioiy” :
R™ — R is called anilSS4Lyapunov functioror system (5) if

Consider the system

. there exist functionsy;, s € K, ando € K, and a contin-
z = f(x,u) (5) i . )
uous positive definite functionrz, such that
with statese(t) evolving in Euclidean spad&™. Here, controls ar(|€]) S V(€) < an(J€]) ©)

(or inputs) are measurable and locally essentially bounded func-

tionsu : Rsg — R™, andf : R* x R™ — R" is assumed to be 1we use standard terminology (see [H)is the class of functionf), oc) —
L= [0,20) that are zero at zero, strictly increasing, and continudis; is the

Ioca_lly Lipschitz. . . subset ofC functions that are unbounded;is the set of functionf), +-o0c) —

Given any controlk: and any¢é € R™, there is a unique [0, +o0) that are continuous, decreasing, and converging to zero as their argu-

maximal solution of the initial value problemh = f(x u) ment tends te-oo; andKC L is the class of functionl), co)? — [0, o0) thatare
> /7 . classK on the first argument and clagson the second argument. A positive

z(0) = &. Th!s solution is defined on some maximal open INgefinite function[0, o) — [0, c0) is one that is zero at 0 and positive other-
terval, and it is denoted hy(-, &, u). wise.



ANGELI et al: INTEGRAL INPUT-TO-STATE STABILITY 1085

for all ¢ € R™ and if there exists a (smooth) proper and positive defiftiteand a
o € K, so that
DV(E)f(&n) < —as([€]) +o(|n C)
(176 ) = =aslleh ot DV(©)1(6.0) < () (1)
forall { € R™ and all € R™. U holds for allé € R and all;: € R™, we say that the system (5)

Note that the estimate (8) amounts to the requirement thatero-output (smoothly) dissipative
V' must be positive definite (i.e}’(z) > Oforallz # 0  we are now able to state the main conclusions of this paper.
andV(0) = 0), and proper (i.e., radially unbounded, namely, Thoerem 1: For any system (5), the following properties are
V(z) — oo as|z| — oo). equivalent.

Notice the difference between Definition 11.2 and the dissipa- 1) The system is ilSS.
_tion ch_aracterization o_f ISS (see [25] and [26]): the IS_S pr_operty 2) The system admits a smooth iISS-Lyapunov function.
is equivalent to the existence oflaas here but for whichvs is 3) There is some output that makes the system smoothly dis-
required to be unbounded (in fact, class,). As an example, sipative and weakly zero-detectable.

consider the one-dimensional system 4) The system is 0-GAS and zero-output smoothly dissipa-

tive.
T = —arctanx + u. The main step of the proof of Theorem 1 is given in Sec-
tion 1V, where we show &2 and also prove Proposition 11.5
Let V(z) = zarctanz. Then, DV()f(¢,u) equals (see below), which characterizes the 0-GAS property. The im-

arctan &(— arctan & + p1) + (& /1+£2)(— arctan & + z1), which plication 4=-2 will be immediate from Proposition 11.5. The re-
is < —(arctan|é])? + 2|u, showing thatV is an iISS-Lya- maining implications are routine, so we can dispose of them
punov function for the system. But in the estimate (9), we hay@mediately, as follows. First of all, notice that23. To see
as(r) = (arctanr)2, which is not of classC.., so one does this, take the iISS-Lyapunov functidi as a storage function,
not have an 1SS-type estimate. Indeed, this system does 1’%\6@ consider the inequalityin(9)._Weintroduce the outputfur_lc-
admit any 1SS-Lyapunov function, since the system is not I8N /(x) := as(|z|). The system is weakly zero-detectable (in
(the trajectory withz(0) = 1 andu(t) = /2 is unbounded). ~ fact, it is even “zero-observable”), becausgr) = 0 implies
Our main result will establish that the existence of a smooth = 0, Sincea is positive definite. Moreover, withv, equal
iISS-Lyapunov function is necessary as well as sufficient for tfi@ the identity, we have that,(|h(¢)]) = as([¢]), so (10) is
system to be ilSS. the same as (9). Finally, we show that-8. Suppose that (10)
This fact will be stated in several essentially equivalent way80!ds- Withy = 0, we takeV” as a Lyapunov function for the
One possibility is to relax the positive definiteness requiremef@o-input systeni = f(z, 0). The zero-detectability condition
on as to just nonnegativity, or simply omit it, but to assumdnéans that the LaSalle invariance principle, with the Lyapunov
explicitly that the system is 0-GAS. functionV, can be applied, and we conclude 0-GAS. And since
Another possibility is to deduce the 0-GAS property fromr @+(A(&)) < 0, also (11) holds. N
LaSalle’s invariance principle. This last variant is of consider- Rémark 11.3: We stated Theorem 1 requiring that the corre-
able interest in applications such as the robotics example di®onding functiond” (ilSS-Lyapunov, storage) be smooth, that
cussed in Section IIl, and it may be stated using concepts'df infinitely differentiable. This makes the existence of such
detectability, as is by now standard in the nonlinear dissip4-S: Which is the hardest part to prove, more interesting. The
tion literature (see, e.g., [30, Section 3.2]). Let us say that 8Hfficiency parts of the proofs do not require smoothness, how-
outputfor the system (5) is a continuous map: R* — R €Ver. In other words, system (5) is ilSS if it admits an iISS-Lya-
(for somep), with 2(0) = 0. For each initial staté € R, and PUnov fgnction, or if it has an output that mgkgs the system
each input:, we lety(%, £, u) be the corresponding output func-dissipative aqd yvegkly zero-detectable or if it is 0-GAS and
tion, i.e.,y(t, &, u) = h(z(t, &, w)) (defined on some maximal Z€ro-output d|§S|pat|ve. o ) =y
interval [0, 7¢ ,.)). The system (5) with output is said to be ~ Rémark 1.4: We used the adjective “weak” when defining
weakly zero-detectabié for each¢ such thatl; o = oo and zero-detectability in order to distinguish this notion from true
y(t,€,0) = 0, it must be the case thatt, ¢, 0) — 0Dast — oo, detectability, or “(zero-input) output-to-state stability”; see [27]
Finally, we will say for the purposes of this paper that the syste@fid also Section VI below, whe,r,e one asks that “small output
(5) with outputh is dissipativeif there exists a continuously dif- (Wh?‘““ = 0) implies small state, as“opposed to merely asking
ferentiable, proper, and positive definite functin(a storage that “zero output implies small state” as here. m

functionfor the system), together with@ € K and a contin- 1) A Characterization of 0-GAS Control Systema: the
uous positive definite function., such that proof Theorem 1, we utilize the following characterization of

0-GAS systems. ltis in itself a result of some interest.
We call a positive definite functio® : R®* — Ry
DV(&)f(& 1) < —au([(§)]) + o(|pl) (10)  semipropeif there exist a function () of classk’ and a proper
positive definite functionW;, such thatW = 7 o Wy. (It is
for all £ € R™ and all;z € R™. If this property holds with a easy to see that a continuous positive defifite R* — Rxq
V that is also smooth, we say that the system (5) with outputis semiproper if and only if, for eachin the range oft’, the
is smoothly dissipativeFinally, if (10) holds withs = 0, i.e., sublevel sefx |V (z) < r} is compact.)
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Proposition 11.5: System (5) is 0-GAS if and only if there for all ~ € R™, and, similarly, we can writgS(v)|? < ~(|v|) for
exist a smooth semiproper functidi, ac € K, and a contin- eachv € R™, for somey € K,. Therefore, the estimate (13)

uous positive definite functiop : R>o — R>¢, such that gives us, in terms of andv
t
W(&) f(& 1) < —p(l&]) +o(|ul) (12) i (2(0)]) < ceMan(|C]) + c/ v(|lu(s)))2ds V>0
0
forall ¢ € R™ and allp € R™. _ _ _
The sufficiency part follows from the standard Lyapunov re—(h)n =(?) _( )T(In(o)t)h:p\(jvzgd)s S((®)) for all # and¢ =

sults for autonomous systems: if (12) holds with= = o W,
thenW, is a Lyapunov function for the O-input system. (This is t
because (12) implies thd@W (&) f(£,0) < 0 forall £ # 0.) l2(t)| < B(<],8) + ot </ 2cy(Ju(s)])? ds) vt >0
The necessity implication will be proved in Section IV. 0

Proof of 4=-2 in Theorem 1:Let the functiond” ands be at . ,
so that (11) holds. Since the system is 0-GAS, by Propositif'e"e We let3(r, £) := ar " (20az(r)e™™). This is precisely as

I1.5, there exists a smooth semiproper, positive definite functioR the estimate (7), except thdthas what appears to be a very
Vi, such that special form. Surprisingly, however, ayC function /3 can be

majorized by a function of this special form (see [24]), so indeed
N ., one obtains the general notion of iISS with this reasoning.
DVo(§) (&, 1) £ —po(§) +oo(ul), VEER", VuweR

[ll. THE ROBOTICSEXAMPLE ISilSS
for some continuous positive definite functign and some

K-functionagg. Let Vi (&) = V(&) + Vo(£). It then clear that;
is an iISS-Lyapunov function: it is proper becadggs, and

In this section we verify the iISS property for the robotics
system (3) discussed earlier. (The same example was used, for
a different purpose—namely, to illustrateddferentnonlinear
tracking design that produces ISS, as opposed to merely iISS,

DV +Vo)(€) (& 1) < —po(€) + oo(|p]) + o)) behavior—in [1].) One interesting feature of this example,
which in fact motivated much of the research reported here, is
gives an estimate as in (9). m that it illustrates the use of the LaSalle-type condition that we

2) Motivation: Finite-Gain Under Coordinate Change#is obtained.
mentioned in the introduction, we wish to explain briefly how To prove the iISS property, we introduce, as usual for me-
the notion of iISS arises in an extremely natural manner whehanical manipulators, the following matrix notation:
generalizing linearL? to L> gains (sometimes calledH?
gains”) to nonlinear systems. (See also [24], which explainsH( ) =
why, when we apply the same reasoning id to L? stability” U=
or to “L®° to L stability,” we recover input-to-state stability,
as well as [4] for more on changes of coordinates and ISS.) whereH (g) is the inertia matrix and’(q, ¢) expresses the Cori-
For linear systems, one defines finite-gain stability, with reslis torques. Then (3) can be rewritten as
spect to square norm on inputs and supremum norm on states,
by requiring the existence of constaatand A, with A > 0, so H(g)i+Clg. )i =—Kplg—qu) — Kag
that, for each input(-) and each initial staté, the solutione(¢)
of & = Az + Bu, z(0) = ¢, satisfies the following estimate: whereK, = diag{k,,, ky, }, Kq = diag{kq,, ka, }, andqy =
[64,74]F. We take the mechanical energy of the system as a
candidate Lyapunov function

mrQ—l—M%2 0

: P40
0 m ’ C(Qv‘])_ﬂw |:_9 0:|

t
|a:(t)|§ce_’\t|£|+c/ u(s)[2ds forallt>0. (13)
0

Vig o) = 2 H0)
(Actually, most textbooks omit the initial state, but this is the 7 - _2 T
appropriate estimate if nonzero initial states are taken into ac- _ T H(@i+q Kpq (14)
count.) In a nonlinear context, it is natural to require that no- 2

tions of stability should be invariant under (nonlinear) chang
of variables. Let us see what this leads us to. Suppose that wi
take an origin-preserving state change of coordinatesI’(z) (d/d)V(q(t), 2(2)):
and an origin-preserving change of variables S(v). Thatis, N
T :R" — R*andS : R — R™ are invertible, and they, as .
well as their inverses, are continuous; furthermore, we suppose;(¢)% H (q(t))(t) + q( Y H (q(1)4(t) + a(t)T K,q(t)
that7(0) = 0 andS(0) = 0. Then, there are two functions 2
a1, as € Koo S0 that = —¢(t)" Kag(t) + 4(1)" Kpqa(t)
—c1|g®) + e2lga(t)]?
ar(lz]) < |T(z)| < aa(lz]) = —c1|2() + ezlu(t)]? (15)

elsakmg derivatives in (14) with respect to time along trajec-
{Ofies of (3) vyields the following passivity-type estimate for
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for some sufficiently small number > 0 and some sufficiently ~ Pick now anyt € [0, o). We have then thag(t) > ||vt]|co >
large numbegr; > 0. Inspection of the equations shows thaty(+) for all + € [0,¢] (the last inequality by definition
whenu = 0 andz = 0, necessarilyy = 0 as well. Thus, of ||u|.). Since y is nonincreasing, this means that also
thinking of z as an output, the system is weakly zero-detectab}ér) > y(¢) > v(r) for all suchr. Therefore

and dissipative; applying Theorem 1, one concludes that the

system is ilSS. 0 < y(r) < y(r) +v(r) < 2y(r)

IV. MAIN PROOFsS forall - € [0,¢]. From (17) and the fact that is nondecreasing,

The following lemma will be needed several times during thee conclude that

proofs.
Lemma IV.1:Letp : R>o — Rxo be a continuous positive 7 < —p1()p2(2y) (19)
definite function. Then there exigf € K., andps € £ such
that almost everywhere qf), ¢]. Sincet € [0, tp) was arbitrary, (19)
p(r) > pi(r)p2(r). (16) holds on[0,?) a.e. By the choice of, it follows thaty(¢) <
B(y(0),¢) for all t € [0,%0). Thus (18) holds for all suchas
The lemma will be proved in the Appendix; it is used in esyell. m
tablishing the following comparison theorem. The following is a consequence of Lemma IV.2.

Lemma IV.2: Given any continuous positive definite function - Corollary IV.3: Given any continuous positive definite func-
p : R>o — Ryxo, there exists &L-function 3 with the fol-  tion p : Ryo — Rxo, there exists & £-function 8 with the

lowing property. Suppose that for soe< ¢ < oo following property. For any) < ¢ < oo, and for any (locally)
. . absolutely continuous function: [0,7) — Rs( and any mea-
v:[0,1) =R and y:[0.7) - R surable, locally essentially bounded function [0, ) — Rso,
are, respectively, a continuous and a (locally) absolutely contllﬁ—
uous function withy(0) > 0. Assume further that 9(t) < —ply(t)) + v(t) (20)
y(t) < —p(max{y(t) + v(t),0}) (17)  holds for almost alt € [0, 7), then the following estimate holds:

holds for almost alt € [0,7). Then, letting||v:||- be the ;

supremum of the restriction af to the interval[0, ¢), the fol- y(t) < By(0),t) + / 2u(s)ds forallt e [0,t). (21)
lowing estimate holds: 0

y(t) < max{B(y(0),t), |ve]loc} forallte[0,£). (18) Proof: First observe that one may always assume that the
functionp is locally Lipschitz, for otherwise one may replace

Proof: We start by pickingy; € K, po € £ asin Lemma by any such function majorized ky Take now anyy, v as in
IV.1, for the functionp. Without loss of generality, we may as-the statement, and consider the solutioft) to the following
sume thatp; andp, are locally Lipschitz. Otherwise, we mayinitial value problem:
always pick locally Lipschitz functiong, € K andg, € £ that
are majorized by; andp., respectively, to replace; andp», (t) = —p(lw®)]) + v(t), w(0) = 5(0).
respectively.

A standard comparison principle asserts the existence o . . <
function 3 € KL having the following property: ig : [0, 7] — rt%ollows from the standard comparison principle that<

R>q is any absolutely continuous function that satisfies the dii%(s?ei dwo(ft)(ﬁg(?;lg ﬁ] [t?]’é)élbrgsgrgcﬂLat:’ovr\]/eNcgchégtf?égg%)d
ferential inequalityy < —p1(q)p=2(2¢) almost everywhere, thenw as foIIOpWS' d '

it must be the case that¢) < 3(¢(0),¢) for all ¢ € [0,T]. ' '
(See, for instance, Lemma 4.4 in [16]; the statement in that ref- ‘

erence applies tg defined on all of[0, o), but exactly the vy (t) = / v(s)ds, wi(t) = w(t) —vi(t).
same proof works for a finite interval. One choice feéys, ¢) 0

is (s, t) = z(t), wherez is the solution of the scalar initial
value problent = —p;(2)p2(22), 2(0) = s.)

Let nowwv andy be as in the statement of the Lemma, and
define w1 (t) = —p(w(t)) = —p(max{wi(t) +vi1(t),0})

Taking the derivative ofv; with respect ta yields

to == min{t 2 0]y(t) < vl } for almost allt € [0, ), where the last equation holds because

(with o := £ if y(t) > ||vs]|eo for all ¢ € [0,7)). Forallt > ¢, @ is nonnegative. Let be axX’L-function as in Lemma IV.2 for
(if to < %), y(t) < |lut]|ls (becausey is nonincreasing, since this o. It follows that

y(t) < 0forall ¢, ands — ||vs||- IS NONdecreasing), so (18)

holds for allt > t,. wy(t) < max{B(w1(0),1), |[vielleot V£ E[0,7)
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from which it follows that

y(#) < w(t) < Aw(0),1) + flvrelloo +A v(s) ds

Bly(0),t) + /Ot 2v(s) ds

forall t € [0,7). [ ]

We also need the following result in our proofs.

Let NV denote the class of all functiois: R — R that are:

1) nondecreasing;

2) continuous;

3) unbounded below (i.einf, g k(z) = —00).

We will prove the following.

Proposition IV.4: Suppose that : R?> — R is such that
c(-,y) € N for eachy € R andc(z,-) € A for eachz € R.
Then, there exists some functiéne A such that

(@, y) < k(x) + k(y)

for all (z,y) € R?.

This result generalizes the one given in [24], which applied

only to functions of the forme(z,y) = g(z + v) with g € N.

We will need the “exponential” form of this result, which is as

follows.

Corollary IV.5: Suppose thay : RZ, — R is such that
v(+, ) € K for eachs € R> andy(r, -) € K for eachr € Rxo.
Then, there exists some functienc K such that

v(r,s) < o(r)o(s)
for all (z,y) € (R0)>.

Proof: Considerc(x,y) := Iny(e”, ¢¥); thenc is a class
N function with respect to both arguments. ket A" be as in

Proposition 1V.4; without loss of generality, we may assume that

k is strictly increasing. Them(r) := (") (ando(0) = 0)
establishes the corollary.

forall s < r, allt > T,.(e).
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for almost allz. We let/3 be associated toas in Corollary 1V.3.
It then holds that

vw@»smvu®»w+ﬁ2dm@nm
for all t > 0. Hence

(O SVE®)
5MW®@+A2MMﬂMs

SﬁmMM®m0+A2dM®D%

for all £ > 0, and so the sufficiency proof is complete.
Proof of 1=-2 in Theorem 1: We first remark that the proof
of Lemma 3.1 in [16] can be used to show the following:
Lemma IV.6: For each giveriCL-function /3, there exists a
family of mappings{Z..},o with:
« for each fixedr > 0, 7, : Rso 2R is continuous and
is strictly decreasing;
« for each fixede > 0, T,.(¢) is
increases antm,._,., 7;.(¢) =
such that

(strictly) increasing as
0,
B(s,t) < e

O
Assume now that system (5) is iISS with 3, v as in Defini-

tion 11.1. Lety be any smoothC.,, function such that (¢ (s)) <

a(s) for all s > 0. Consider the following system:

&(t) = f(z(@®), A (D)) (23)

m Where we restrict the inputs thought of here as “disturbances,”

The proof of Proposition IV.4 will be given in the Appendix.!0 have values in the closed unit bail:) : [0,o0) — B, where
Proof of 21 in Theorem 1:We first prove that existence 5 denotes the closed unit ball € R™ : [u[ < 1} in R™. We
of a [just continuously differentiable (see Remark 11.3)] ilsslet M denote the set of all such inputs, and wedet?, £, d)
Lyapunov functionV implies iISS. So pick’ so that (8)—(9) denote the trajectory _of _(23) c_orrespondlng to tht_e |n|t|§1l Sate
hold. Letp; € K. andps € £ be functions as in Lemma IV.1 and the functiond. This is defined on some maximal interval
for ai3. We let s be any positive definite function that is locally(0: Z¢a) With 0 < 7%, < c. It then follows from (6) that for

Lipschitz and satisfies

A(r) < p1 (o () p2 (a7 (1)

for all » > 0. By (8), we have

—p1([€Dp2(1€]) + o (|u])

DV (& n) <
< =p(V(&) +o(lul)

(22)
for all £ and ..

Now pick any trajectory(-) corresponding to a contral-).
Equation (22) says that

V(@) < —p(V(a(t) + o (|u(®)])

any giverg, d, and each € [O,ngd), and defining3, := j5(-,0)

oz (t.€,d)]) < A(E]. 1)
+AwMﬂﬂm@@@mm

S%%D+AWWWM&§MD%

< Ale) + [ alle (5.6 ds.

It thus follows, using Gronwall’s inequality, that

al|zg(t,€ d)]) < Po(l€])e’
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forall 0 < ¢t < TJr Hence the maximal solut|0n stays in dor any¢ € Ky, anyt € [0,7T], and anyd € M. Sincev is
bounded set (the baII of radivik (|¢]) exp( D)) if I, < co. smooth, and in particular locally Lipschitz, there exiSts> 0

Thus, T, = +o0c. In conclusion, we have he followmg such that
Lemma IV.7: If system (5) is iISS, then there exists a smooth
Ko-function such that system (23) is forward complete, that [7(r1) =~(r2)] < Culry =72
I/?/,t%(t’g’d) is defined for allt > 0, all ¢ € R®, and alldéI for all 71,75 € [0, L]. Consequently,
Because of forward completeness, this follows from [16] (see
Propositions 5.1 and 5.5 of [16]). [v(ld(s)| ez, (s, € D)) — v([d(s)|e(|ze (s, 7, D))
Lemma IV.8: Assume system (5) isiISS, and{ebe given as < Crle(|z,(s, &, d)]) — e(|lzs(s,n, d)|)]

in Lemma IV.7. For any fixed” > 0 and any compadk’ C R™,

there is a compadk; C R™ such thate,(t,¢,d) € Ky forall  forall ¢, € Ko, all ¢ € [0,77], and alld € M. Sincea andyp

t €[0,7],all ¢ € K and alld € M. Furthermore, there is a are smooth, and (s, £, d) is locally Lipschitz in¢ uniformly
constant”’ > 0 (which only depends off and the sef() such in ¢ ¢ [0,7] and ind € M (this is what is asserted by the last
that statement in Lemma 1V.8). There exists so@esuch that

|2o(8,€, d) — oty m, d)| < ClE — 7|

foranyé,n € K,any0 <¢ <7, and anyd € M. O
We now continue with the proof of the implicatiors12 of gng

Theorem 1. Without loss of generality, one may assumectheat

a smoothiC,-function. Otherwise, one can always repladay _ _

a smooth..-functiona majorized byee. We will first prove the [ele(s & ) = ellzy(s.m.d))] < Cole =

result under the assumption theas a smoothcC,,,-function, and

then we show how to prove the result without this assumptio
Defineg : R» — Rxo by

||z (2, € D)) — allea(tn, D) < Col€ =

'Iﬁr all¢,n € Ko, allt € [0,7], and alld € M. It then follows
that the difference

9(&) = sup{2(t,{,d) : £ 2 0,d € M} (24) /0 Y(ld(s)le(ze(s, & D)) — v(|d($)e(|zo (s, n, d))) ds

where for eaclf € R™ andd € M, 2(-,¢, d) is defined by is upper bounded in absolute value ®y|¢ — 7| for all £, €

Ko, allt € [0,T),alld € M,whereCs = C;C,T. Thisimplies
Z(t7£7 d) = Oé(|$(;(t,£, U’)D that

- / VA e[z o(s, & D)) ds.  (25)

Z(tvgvd) - Z(tvnvd” S C4|£ - 77|

Note that this function is well defined and that fgr a“éﬂ? € Ko, allt € [0,1], and alld € M, whereCy =
2 + C3.
a(l€]) < g(&) < Bo(€]) (26) Pick anye > 0. Then for eacly € K, there is some; . €

[0,7] andd, . € M such that

for all £ € R™. In particular,g(0) = 0.
Let 7;.(¢) be defined as in Lemma IV.6. Then one sees that if 9(Q) S 2tz Cdee) + €
0 <7 <€ < 7o, then
Leté,n € Ko. Then
9(&) = sup{z(t,£,d) [0 < ¢t < T, (1)), d € M}
9(5) - 9(77) < Z(tf,ﬁv & d:f,c’«) te— Z(tff«v R d:f,c’«)
Lemma IV.9: The functiong is locally Lipschitz onR™\{0} < Cylé —nl +e. (27)
and continuous everywhere.
Proof: Fix any &y # 0, and letsg = |&o|. Let Ky =
B(&, s0/2), the closed ball centered&tand with radiusso /2.
Let?l = TQSO (04(80/2)) Then

Note that (27) holds for alt > 0, so it follows that

9(&) — g(n) < Cylé —n)|.

g(&) =sup{z(t,£,d) : t €0, 7], de M
© t ) (0.7] J By symmetry,g(n) — g(&) < C4|é€ — n|. This proves that

forall £ € Ky. According to Lemma IV.8, one knows that there
exists somd. > 0 such that 19(§) — g(m)| < Cal§ —

lze(t, &, d)| < L for all ¢, € Ky. Thus,g is locally Lipschitz orR™\{0}.
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To show thay is continuous af = 0, note thag(0) = 0,and for somea. € K., and it holds that, for allu| < 1
9(&) £ fo(€) — 0as¢ — 0. Thusg is continuous everywhere.
, - DVA(E) (& mp([€])) < —p(I€]) + 71 (lele([€])
We next show tha cannot increase too fast along trajecto-
ries. Pick any # 0, h > 0, and|u| < 1. Letd, denote the

almost everywhere, whe = . By Theorem
constant functioni(¢) = pi. Then yw Mi(s) = o(s) +7(s). By

B.1in [16], one sees that there exists a continuous fundtion
smooth onR™\{0}, such that
9(@e(h, €, dy))

= sw oo, (6d. ) D <vie) s 2m0), veerr
t>0,deM
t
- /0 Y(ld(s)e(lwe(s, 2o (h, €, dy), d)))) ds} and
B . _p(lED
~ sup %m%@+mgap DV3(©) (& mollel)) < =202+ (lule(iel)
t>0,deM
t
_ / y(|d(s)|¢(Jzo(s + R, &, CZ)D) ds} for all £ # 0, all || < 1. By Proposition 4.2 in [16], one sees
0 that there exists some smodth,-functionp such thap’(s) >
—  sup {a(|a: (r.¢ J)|) 0 forall s > 0 andp o V5 is smooth everywhere. Without loss
F>h,dEM eAS of generality, one may assume théfs) < 1 forall s > 0.
B ™ N Otherwise, one may replageby any smooth..-function p
- / Y(|d(s1 = B)[e(|ze(s1, €, d)])) dé’l} with the property thag’(s) = p/(s) in a neighborhood of zero
" wherep’(s) < 1 and andi’(s) < 1 everywhere else. Finally,
<  sup {04(|%(Tv ¢, CZ)|) we letV = po V5. ThenV satisfies (8) for some, as € Ko,
7>0,dEM and

—[:%W@ﬂ@@w@bé@bﬂﬁ}

P'(V2()p(IED/2 + P (Va(E)n(lnle(lED)

h
rp(51,€,d, dsy
[ Hlelinto1:6. 01 i) + Ll (1€D)

DV (&) (& me(I€]))
<
<

s¢@+A7mmwuxa@@m»ml

for all ¢ € R™ and all || < 1, whereas is any continuous
positive definite function with the property thats(|¢]) <
whered is the concatenation @f, andd: d(t) = nif 0 <t < h, P/ (V2(£)p([€])/2 (e.9. as(s) = p'(a(s)/2)p(s)/2). It then
andd(t) = d(t — h) if t > h. Let £,(&) = f(&, up(|€])). Since follows that

g is locally Lipschitz onR™\{0}, it is differentiable almost ev-

erywhere orR™\{0}, and hence, for any;| <1 DV (&) f(&,v) < —az(l€]) + (V)
Ly, g(&) = lim 92 (h, & dy)) — 9(§) forall £ € R™ and all|v| < ¢(|€]). To show thal” satisfies an
LINS) = 10 h estimate of type (9), we let = ¢ % and let
1 h
< lim = , .. .
Sl 7, 1o S, e e DV e+ i)
lel<x (v, lv|<r
It then follows that and
Ly, 9(&) < ~v(lule(l€]) k(r) = max{i(r), n(r)}.

Thenx € K, and for all¢ € R™ and allv € R™
almost everywhere.

Observe that, since an iISS system is necessarily 0-GAS,
it follows from Proposition 11.5 that there exists a smooth DV(&) f(&v) < —as([€]) + w(|])
semiproper functiol; satisfying (12) with some continuous
positive definite functionp and someX-function o. Let (consider the two case| < x(|v|) and|¢] > x(]»[)). This
Vi : R® — R be defined by¥;(¢) = Vo(€) + ¢g(¢). ThenV, shows that is indeed an iISS-Lyapunov function for system

is locally Lipschitz onR™\{0} and continuous everywhere.(5).
Furthermore Finally, we show how to obtain the result without assuming

that~ is smooth. First of all, one may always assume-tjaj >
a([€]) < V1(6) < ax(|€)) r for all ». (Otherwise, replace(r) by v(+) + r.) Pick any
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K o-function @ such tha#( /s) is smooth and/(s) < y~1(s) Consider now the following function:

for all s > 0. Consider the system
. R ;?(Ta 3) = <II%ELX< |f(£a N) - f(ga 0) - f(Ov N)| (33)
#(t) = f(z(®), w(®)) = f(a(), o(w®)o(u(@®)])  (28) eIl <s

wheres : R™ — Ris defined byr(11) = /(|u|)if || # 0, and Notice that¥(r, s) is continuous, nondecreasing with respect

(1) = 0if |u| = 0. Sinced is continuously differentiable and © each_argument, and var;)ishes_fo_r: dObor Sf: 0 (si)nce
8(0) = 6'(0) = 0, it follows thato()é(|]) is C*, and hence, /(0:0) = 0). Hence, it can be majorized by a functioty )
; separately of clask (e.g., we can tak&(r, s) +r + s). We pick

f is also a locally Lipschitz map. We lef (¢, £, «) denote the . .
trajectory of this system corresponding té the irzitial stated © as in Corollary IV.5. Then, it follows from (32) and Corollary
IV.5 that

the inputw. It then holds that

t DV F(€.1)
ll(6.€.0) < B+ | O = DV(OU(E. 1) — £ 01+ DV(O (&0
o)l

Sﬁ(l&l,t)Jr/Ot lu(s)| ds < DV(OIf (& 1) = F(£,0) — £(0, )]

+ DV(£) (0, ) — as([€])

)
for all ¢ and allu. Hence, the system = f(x, ) is ilSS with < [DVOREL ey + 1DV, ] = as(l¢])
a smooth “gain”-function (which is the identity function). Ap- < [DV©lo(leDa((ul)
plying the above proved result to this system, one sees thatthere =+ [DV(E)|[£(0, )| — az(|€]). (34)
exists a smooth iISS-Lyapunov functidhsatisfying
It follows from (31) that = 0 is a global minimum fo” (&)

DV f(& a(m)0(|ul)) < —as([€]) + r2(]ul) and hencé)V (0) = 0; so, since/’ is smooth, continuity oDV
gives that
for some continuous positive definite functiery and some ) i
K-function x». Observe that R(r) =r+ N DV (&) (35)
= U(L,)9(9—1(|L,|)) is a classK function. By local Lipschitz continuity off (-, -),
also|f(0, )| < x(Ju]) for somex € K. Thus, recalling (34)
for all » € R™. Hence and (35) we have
DV f(&,v) < —as([€]) + r2 (671 (|v]) DV(E) (& n)
< —as([é]) + s(EDa([EDa(|nl) + £(EDx ()
forall ¢ € R” and ally € R™. < —as(€]) + A(EDE( )

Proof of Proposition 11.5: To prove Proposition 11.5, we

need the following result, . . . . with A(r) = k(r)o(r) + &(r) andé(r) = o(r) + x(r). [ |
Lemma IV.10_:Syster: (5)isO-GASIf "fmd only if there exist Ren(1a)rk IV.(li:'Igh)e sar(ne) resulg gan al(scz be (()b)tained along
a smooth functio” : R* — R, Ko functlgnsm, a2, 43, and  ifferent lines, exploiting a result appeared in [22]. It is shown
K-functionsA ands such that, for alg € R andu € R there that the 0-GAS property for system (5) implies the exis-
tence of an everywhere nonzero smooth functigi) such that
ar(lé]) < V() < a(lé]), @9) ;= f(z, G(z)v) is ISS with respect te. Then, the result fol-
lows from the Lyapunov characterization of input-to-state sta-
and bility. O
_ We now can complete the proof of Proposition 11.5. Define
DV m) < —oalléh + Mgl (30) e Fo oo e e
Proof: Again, one direction of the implication is easy to
prove by the Lyapunov direct method applied to system (5) for L[ ds 36
u = 0. The reverse is more interesting. Assume (5) is 0-GAS. w(r) = /0 14 x(s) (36)
Then we havef(0,0) = 0, and by a converse Lyapunov argu-
ment (see, e.g., [16]), there exist a smobth R* — R and with x a suitable clas& function to be defined later. It follows
functionsay , a2, a3z in K, such that from 0-GAS that there exists a smodtiié) as in Lemma IV.10.
Composingr with V' and taking derivatives yields

a1 ([€]) < V(&) < a([€]) (31) DY)
_ DV©S&m)
for all ¢ € R™, and D[(m o VYOI 1) = ~ )
< _—oslé) - AEDS(lnD)
DV(£)f(§,0) < —as([S])- (32) T 1+x(V(€)  1+x(V()
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Then, lettingx(r) = Ao o], W = mo V, and recalling (29) 1) ¢(r) = 0 when+ € [4k + 1,4k 4 2], for all k =

we obtain 0,1,2,..,;

2) ¢(r) = 2¥Ay, + 1 whenr € [4k + 3,4(k + 1)], for all
DW (&) f(& ) < —p([€]) + 8(|]) 37) k=012, _

30 < o(r) < 2*Ap +1ifr < 4(k+ 1), forall k =

wherep is the continuous positive definite function defined as 0,L2,.. J

4) o(r)y =0if r < 0.

as(r) The hypotheses imply that(r) < M(r) for all », whereM is
14\ (afl(a2(7,))) : some increasing function that is zero for negatiyall we need,

forr > 0,is M(r) > 2*A;, + 1, wherek is the least positive
integer so that < 4(k + 1)). See Fig. 4 for an illustration of
the orbits off andy. Now we letG(z) = ¢(z1)I (thatis,G
depends only on the first coordinate) and consider the two-input
As already remarked in Section II, iISS implies 0-GAS. Theystemz = f(z) + G(z)u. We will show that this system is
converse is easily seen to be false, taking any 0-GAS systeBmplete but is not iISS; it is 0-GAS by construction.
that exhibits a finite escape time for some constant input signalClaim: This systemi: = f(z) + G(z)u is complete.
u # 0. In fact, it follows by definition (6) that iISS implies Proof: Let z(-) be a maximal trajectory corresponding to
forward completenessf the control system (5), that is, for anya given controk., and initial conditionz(0), and suppose that
control« and any¢ € R, the unique maximal solution of the ;; is defined on an intervdD, T'), with T < oo. Let K be an
initial value problem: = f(z,w), z(0) = ¢, is defined over the ypper bound on the supremum nornuofcontrols are locally
interval [0, +00). It is reasonable to conjecture that iISS mighgssentially bounded, by definition). We will show that the tra-
be equivalent to simply forward completeness plus 0-GAS. Thisctory is bounded, thus contradictifig< co. We look at the

would make the iISS concept less interesting. In this sectidf}st coordinates:; of the states along this trajectory. There are
we provide a counter-example to this conjecture, exhibitingt@o cases to consider.

system that is forward complete and 0-GAS, but is not iISS. i) {z1(t),¢ € [0,7)} is bounded above
In other words, this example shows that, even when restricting Sulppc;se thaZt () < L for all . Then, sincdG(x)| =
attention to forward complete systems, iISS is a strictly stronger (1) < M(a:ll) for all z. the vélocitie,s are bounded by

property than 0-GAS. 14+ M(L)K and so the trajectory stays in the ball about

V. A COUNTER-EXAMPLE

We begin the construction with a differential equation 2(0) of radius(1 + M(L)K)T.
i) {x1(¢),t €[0,7)}is not bounded above
&= f(x) There must be an infinite number of intervals of the form
[4k + 1,4k + 2] which are transversed by, (). That
which evolves inR? and satisfies: is, there are a countable set of disjoint closed intervals
1) itis GAS; J1,J2,... included in[0,T"), eachJ; = [s;,¢;], so that
2) |f(x)] < 1forall z € R?; x1(s;) = 4k; + 1 andx(¢;) = 4k; + 2, for somek;’s.
3) there is a sequence of states We claim that every/; has length at least one, which
then contradictd” < oc. Indeed, take any interval and
20,20 ol St a2 2 suppose that; — s; < 1. Observe that, od;, ¢ = 0, SO
the system equations aie= f(z). By the mean value
so thatz(Ty, %) = 2* for eachk, for some sequence of theorem
positive numberg§73}, (wherexz(-, p) denotes the trajec-
tory of the system with initial valug), and 1< Ja(ts) — 2(s)| < | fla®)] t —si) < 1
k 4k k 4k + 3 o _
T = < * ) 2= < * ) a contradiction. This completes the proof of complete-
ness.
for eachk, where " is arbitrary. Claim: This system is not ilSS.

It is easy to construct such differential equations. For example, Proof: We will show that there is an initial stateand a
one may start with a linear systein= Az, having and matrix ~control v so that|z(¢,¢,u)| — oo ast — oo, whereu has
that is Hurwitz with nonreal eigenvalues, and constructed e following property: there is some increasing sequepee
that its orbits are clockwise-turning converging spirals. One therpe SO that
scales the equation so that sequences of points as claimed exist,
and finally one dividesiz by 1 + |Az|? in order to guarantee ()| <1 it t€ [t tr +27F]
that|f(x)| < 1 for all z.
Let us denoted;, := max{|zit!| - 2°:0 < i < k}, k =
0,1,2,..., and pick any scalar functiop : R — R which andu(t) = 0otherwise; moreover, the sequence is also assumed
satisfies the following properties: to satisfyty, — t, > 27F.
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ORE The_\ control on the intervdd, , ¢; +1/2] is defined as follows.
: We wish to force
o(t) = 2t + 2t —t) (@2 — 21, te[ty,t +1/2]

so that we go fromx(t;) = 2! to z(t; + 1/2) = 22 along a
straight line. The equatioh = f + Gu along this line is

2(2” — 27) = f(2(t)) = G(a(t)u(t) = (241 + Lju(?)

SO we may let

SO B 2 = 2N = 2t - t)(a? - 2Y)
: : 2A; +1 .

@ Since |2 — 2| < A; (by definition of the Ax’s) and
|f(z(t))] < 1 for all t, we conclude thatu(t)] < 1 on
[t1,t1 + 1/2], as was desired. Finally, we left) = 0 for
t € [t1 + 1/2,t], wherety := T + (t1 + 1/2), which makes
x(ta) = 2%
Now we do the case of arbitraky We pick the curve

z(t) = 2F + 28t — ) (@M = 2R, te [t tr +277)

_ Lk —ky — k+1
Fig. 4. Flowf and functiony for example of forward complete, 0-GAS but so that we go from(tk) =2z"1to x(tk +2 ) =t along a

not iISS system. line, and the equation along this line becomes
The existence of such, « means that the system cannot be 2k (gh 2Ry — flx(t)) = Gla(t)u(t)
iISS. To see this, suppose that the system would be iISS. Then, = (2"Aw + 1) u(t)

for someq, v € K, it holds that
so we may let(¢) be as follows:

limsupa(fo(r.&0) < [ 2(luls))ds

t—oo

2k($k+1 _ Zk) _ f(zk + 2k(t _ tk)($k+1 _ Zk))
>/ +(1)ds Eas+1)

ot 2= F . 4 ‘
k=0 [t 27 Since|z*t! — 2*| < Ay and|f(z(t))| < 1 for all t, we have
=2y(1) <0 lu(t)| < 1 for all ¢ in this interval of lengtl2—*. Finally, we let

but this contradicts the fact that(¢, £, «)| — oo ast — oc. u(t) =0 forte [t + 9=k ti]

We start with¢ = x!, andletx = 0on[0, #,], wheret; = T}.
So,x(t1,&,u) = 2t andt, 2 1 becgu_se of the assumption tha%heretk+1 i= Thoy1 + (tx +1/2%), s0 that we have(ty,1) =
|f(z)] < 1. Next we continue building the contrel and the ,x+1 55 needed for the induction step. -
trajectoryz(-) = z(-, £, ), inductively on the intervals

VI. COMMENTS ON RELATED NOTIONS

tr, Tt . . . -
[t thesa] The notion of iISS differs from ISS in its use of %(|u|)”

instead of $up~(|u|).” The same substitution may be used to
define analogues of input/output stability and of detectability
notions. We briefly discuss some of these now. Reasons of space
w(tr) = 2 preclude a detailed discussion, but proofs of the various claims
are not difficult to obtain by following steps like those used in
and the rest of the paper. In this section, we deal with systems with
outputs

We do the construction in such a fashion that

T (tk + 2_’“) = ght!

o . &= flz,u), y=h() (38)
fork =1,2,.... The idea is to switch between an uncontrolled
motion on every interval of the forrft;, + 27%,#.,1] and ap- where, as earlier, the output map: R* — RP? is assumed to
propriate control motions on the small intervals. To clarify thee continuous anél(0) = 0. For eacht € R™ and each input
construction, we first do separately the case 1. u, we lety(t, &, u) be the output function of the system, i.e.,
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y(t, &, u) = h(xz(t,&,u)) (defined on some maximal intervaland (44), then the following holds for all trajectories of the
[0, T¢ u)). system:
Consider the following type of estimation:
IoP a(ly(t, &, w)) < B(lyol. )

t
t
et €l) < B0 + [ nlls. & ds + [ Autoas, el 7

0

t
+/ v2(|u(s)]) ds (39) forsomea € K, € KL andy € K, whereyy = 4(0,&, u).
0
forallt € [0,T¢ .), whered € KL, o € K, andy, 2 € K. VIl. CONCLUSION

If (39) holds for every trajectory of (38), then we say that system
(38) isintegral input-output-to-state stablglOSS). This is a

notion of detectability: inputs and outputs are “small” implie rouah a tracking oroblem and other aoplications. We proved
that states are also small; see [27] for the corresponding notion 9 gp pp ‘ P

of (sup-norm) I0SS. We say that a smooth functioris an a necessary and sufficient Lyapunov-like characterization of

[10SS-Lyapunov functioffor system (38) if there existfunctionsf_hesllﬁstprOpj.rtyf af’. We.” as alltchar%ctderltzattloglI'ktJasec:. on a
a1, az € Ko, 01,02 € K, and a continuous positive definite asaie-type dissipation inequaliity and detectability notions.

function s, such that We also proylded_a counterexample showing that ilSS is not
just the conjunction of forward completeness and 0-GAS.

The iISS notion was introduced and motivated both as a
%atural mathematical concept, generalizing fidé gain, and

a1 ([€]) < V() < aa([€]) (40) We are confident that the results presented here, besides their
for all ¢ € R™ and intrinsic interest, will motivate much further research into the
theory and applications of iISS.
DV(E)f(& 1) < —as([&]) + o1(|R(E)]) + o2(lul)  (41)
for all ¢ € R™ and alli, € R™. A proof analogous to that of APPENDIX

Theorem 1, by virtue of Corollary IV.3, shows the following: If

a system admits an 110SS-Lyapunov function, then the systéin Proof of Lemma IV.1

is 10SS. Assume without loss of generality thet-) — 0asr — +oo
The area of input-to-output (as opposed to input-to-state) satherwise one can always consigér) = min{p(r),1/(1 +

bility deals with properties which may be described, informally;)}). Then the functiorp admits a global maximum over the

as “small inputs produce small outputs.” Such properties apterval [0, +oc). Let M = max,>o p(r), and definep(r) =

pear naturally in regulation problems. In particular, one mayr)/M. Pick nowry; > 0 such thap(ry,) = 1. Then, we can

define a concept of I0S (input-to-output stability), see [23] argkfine the following functions:

[28]. This is yet another obvious candidate for the replacement

of sup norms by integrals. So let us call system (iB&ggral p(r) = {

input-to-output stabl€llOS) if there exist € Ko, § € KL, . ¢

R orr < ra
and~y € X such that t pa(r) {minwgsgr is) forr > ra. (46)
o[y (t, & w)) < B(€,2) +/0 Y(lu(s))ds  (42)  Notice thatpy, (p2) is a nondecreasing (nonincreasing) func-

. . . tion, and, by (46), considering separately the cases, and
holds on the maximal intervé, 1¢ .,) for every trajectory of the < ru y (46) gsep y M

system. Correspondingly, we may define a Lyapunov concept™

as follows. A smooth functio®V is called an 110S:yapunov p(r) = pr(r)pa(r). (47)
functionfor system (38) if there exist functions , as € Koo,

o € K, and a continuous positive definite functiag, such that Then, we can choos® andp. according to

ming<,<,,, p(s) forr <rpy
1 forr > rpr

a1 ([R(O) < V() < aa(f€]) (43) p1(r) = Mpy(r)r
forall ¢ € R* and p2(r) = pa(r) /(1 +1).
DV(E)fé, n) < —ag(V(E)) + ol|u) (44) Notice thatp; € Ko, andp, € L. Taking into account (47), we

for all ¢ € R™ and all, € R™. Again, by virtue of Corollary have

IV.3, one can prove: If a system adimits an lIOS-Lyapunov func-  p(r) = M p(r) = M p1(r)p2(r) = p1(r)pa2(r) (48)

tion, then the system is 110S. forallr> 0. -
Note that the difference between (8) and (43) is that the func- -

tion V" in (8) is proper (i.e., radially unbounded), while in (43)3  pyoof of Proposition V.4

the functionV’ only majorizes aC..-function of |y|. It is also

interesting to consider the following type of condition Bin Proposition [V.4 will follow from the following result.

Lemma A.1:Letc be as in the statement of Proposition IV.4.
a1 ([R(&)]) S V(&) < ax(|R(&)]) (45)  Then, there exists a functiane A" such that, for each € R

for some/C.,-function a1, ao. It then follows, again appealing
to Corollary V.3, that if system (38) admitsia satisying (45) cx,y) — glz) > —c0  as|z| — oo. (49)
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Proof: We will assume without loss of generality thaBy constructiong € N. We show the desired limit property.
¢(0,0) > 0. (If ¢(0,0) < 0, we simply pick any constantso Pick anyy € R.
thatae < ¢(0,0), apply the Lemma te@’ := ¢ — o to obtain Forz > max{Z,y}

H / PO
some functiorny’, and then leyy := ¢’ + a). Let oz, y) —g(x) = c(x,y) —c(w,z) —x+c<c—u

z = sup{z | c(z,0) = 0}. wherec := Z 4 ¢(Z, &), soc(x, y) — g(x) — —o0 sz — +oc.
zER On the other hand, for any < z such thatyy(z) > v
1
(Note that, since:(-, 0) is continuous, unbounded below, and c(z,y) = g(z) = c(z,y) + 5 90(2)
achieves the some positive value, there is indeed at least one 1
 so thate(z,0) = 0; and by continuityc(z,0) = 0). Now < e(&, 9o0(«)) + 90(2) = 5.90()
introduce the following set: 1
= —590()
2
G:={(z,y) Ry 2 0,c(z,y) +y =0} and—(1/2)go(z) — —oc asz — —oc. |

We now complete the proof of Proposition IV.4. Lgbe as
Claim: g is the graph of a continuous, nonincreasing, onfa Lemma A.1, and define the following functidgn: R — R
function
h(y) := sup|c(z, y) — g(=)].
: (=00, 7] — [0, 00) oer
g0 ’ e (As ¢(-,y) — g is continuous, and is negative for largd, the
To establish this claim, we first prove thatif < z; and Supremum is indeed finite.)

(z1,11) € G, then there is @ so that(zz,1,) € G, and any  Sinceh is the sup of a familyc(z, ) — g(z), » € R} of con-
suchy, must satisfyy; < y,. Consider the functiof(y) := tinuous functionsk is itself continuous, and since each member

z2,y) + y. As of this family is nondecreasing is also nondecreasing. We
prove now thati(y) — —oo wheny — —oo, which will then
allow us to conclude that € A.

Pick anyK € R. ForthisK, we pick ap > 0 so thate(z, 0) —
g(x) < K whenever|z| > p. Next we pick anL < 0 so

andC(y) — +oo asy — +oo (because(wy, ) is nonde- a0, 1) « K + g(—p). (Such anL exists because(p, -)
creasing), we conclude, using continuity@fthat there is some is unbounded below.) We claim that

32 S0 thatC(y=) = 0, as required. And, given any so that
(z2,92) € G, if it were the case thaf; > y» then it would hold y<L=hy) <K
that

C(y1) = c(z2, 1)+ < clx1, 1) +y1 =0

Take one sucly, and anyr € R; we need to see thatx,y) —
g(x) < K. Consider first the case| < p; then

- c(z,y) — 9(z) < c(p, L) — g(—p) < K.

a contradiction. Thus, as stated, < . )

In particular, it follows that if(z, ;) and(z, y») are both in If instead|z| > p, then also
g then necessarily, = y» (apply withz; = x5 = x), s0G is o(z,y) — g(x) < e(z,0) — g(z) < K
the graph of some functiogy,, andgg is nonincreasing. ]

Next, we note that the projection ¢f on thex coordinate (Using thaty < L < 0). _
(that is, the domain of the functiom,) is (—oc, z]. Pick any SO We have constructedand? in A" such that
(? y))e—i-g Sugpose(tﬁ?)g ZJS?I’.IJ?P?;I,ci(5f7n03ndse(c:fgégi)ng§in oz +y) < g(x) + h(y)
clz,y y =0 = cz, c
each variable, ang > 0). Then,¢(x,0) = 0, sox < Z by < max{g(z), h(w)} +maxig(y), h(y)}  (50)
maximality of Z, a contradiction. Thusy < z. Conversely, for all z andy. Thus,k := max{g, h} is as wanted for Propo-

0=clz1,y1)+y1 > c(x2,92) +y2=0

given anyz < z, we may apply again the argument given earliesition 1V.4. [ |
(now withz, = z andz; = Z) to obtain that there is somgeso
that (z,) € G. C. Resonance Example

The projection ofj on they coordinate i§0, 0o). Indeed, pick ~ We explain here how the bounded control and the trajectory
anyy > 0;asc(z, y)+y > ¢(z,0) = 0ande(-, ) is continuous  leading tor(¢) in Figs. 2 and 3 were generated. To obtain this
and unbounded below, there is somso thatc(x,y) +y = 0.  trajectory, we did as follows. We started with the initial state

To complete the proof of the claim, we need to see that (0,0.1,0,0.1)’, and took the feedback contre] = 3tanh(z;)
is continuous. But this is an immediate consequence of the féet3 tanh(#)) andu, = 0. Since|tanh(z)| < 1 forall z €
that go is monotonic and onto an interval. R, the input signal, resulting from this destabilizing feedback,

Finally, we define shown in Fig. 3, is bounded. Note that a sort of “nonlinear reso-

1 . nant behavior” is obtained. (It is worth pointing out that a sim-
g(z) = { —590() ifr<z ilar effect is met also for vanishing references, if the conver-

2 - . . .
c(z,z) —c(z,z)+z—z ifxr>az. gence ofu, to 0 is sufficiently slow.) The simulation used the



1096 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 6, JUNE 2000

TABLE | [23] ——, “Smooth stabilization implies coprime factorizationlEEE
PARAMETER VALUES FOR THE Trans. Automat. Contrvol. 34, pp. 435-443, 1989.
SIMULATION [24] ——, “Comments on integral variants of ISSYst. Contr. Letfvol. 34,
pp. 93-100, 1998.
Parameter | Value | Parameter | Value [25] E. D. Sontag and Y. Wang, “On characterizations of the input-to-state
m 1 MI? 3 stability property,”Syst. Contr. Lett.vol. 24, pp. 351-359, 1995.
k 2 ky 9 [26] —, “New characterizations of the input to state stability property,”
km 1 k ! 1 IEEE Trans. Automat. Conjfwvol. 41, pp. 1283-1294, 1996.
P2 d2 [27] ——, “Output-to-state stability and detectability of nonlinear systems,”
Syst. Contr. Letf.vol. 29, pp. 279-290, 1997.

[28] —, “A notion of input to output stability,” ifProc. European Control
parameters values shown in Table I, and were obtained using the ec‘égéggpefWE'E A2, Brussels, July 1997. CD-ROM ile ECC958.pd,
ode23 MATLAB routine, with tolerance).001 and initial con- [29] J. Tsinias, “Input to state stability properties of nonlinear systems and
dition [0,0.1,0,0.1]". applications to bounded feedback stabilization using satura&SRIM

Control Optim. Calc. Var.vol. 2, pp. 57-85, 1997.
[30] A.van der Schaftl..-Gain and Passivity Techniques in Nonlinear Con-
trol, London, U.K.: Springer-Verlag, 1996. (Lecture Notes in Control
and Information Sciences, 218).
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