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A Characterization of Integral Input-to-State Stability
David Angeli, Eduardo D. Sontag, and Yuan Wang

Abstract—The notion of input-to-state stability (ISS) is now
recognized as a central concept in nonlinear systems analysis. It
provides a nonlinear generalization of finite gains with respect to
supremum norms and also of finite 2 gains. It plays a central
role in recursive design, coprime factorizations, controllers for
nonminimum phase systems, and many other areas. In this paper,
a newer notion, that of integral input-to-state stability (iISS), is
studied. The notion of iISS generalizes the concept of finite gain
when using an integral norm on inputs but supremum norms of
states, in that sense generalizing the linear “ 2” theory. It allows
one to quantify sensitivity even in the presence of certain forms of
nonlinear resonance. We obtain here several necessary and suf-
ficient characterizations of the iISS property, expressed in terms
of dissipation inequalities and other alternative and nontrivial
characterizations. These characterizations serve to show that
integral input-to-state stability is a most natural concept, one that
might eventually play a role at least comparable to, if not even
more important than, ISS.

Index Terms—Dissipation inequalities, finite gain, input-to-state
stability, nonlinear systems, tracking.

I. INTRODUCTION

ONE OF the main issues in control design concerns the
study of closed-loop sensitivity to disturbances, and, more

generally, of the dependence of state trajectories on actuator
and measurement errors, magnitudes of tracking signals, and
the like. In linear systems theory, classical frequency-domain
measures of performance such as root loci and gain-phase char-
acteristics have led to the modern theories of “” control and
its variants.

During the last ten years or so, the notion ofinput-to-state
stability (ISS) was formulated (in [23]), and quickly became a
foundational concept upon which much of modernnonlinear
feedback analysis and design rest. As an illustration, let us point
out Kokotovic’s recent survey paper [10], intended as a sum-
mary of current work and future directions on nonlinear design,
in which the notion of ISS plays a central unifying concept. Sev-
eral current textbooks and monographs, including [12]–[14] and
[21], make use of the ISS notion and results, sometimes in an
essential manner.

Applications of input-to-state stability are now widespread.
Besides the many applications to recursive design in the above-
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mentioned books, let us merely cite a few additional references:
singular perturbation analysis [3], powerful global small-gain
theorems [11], foundations of tracking design [19], supervi-
sory/switching adaptive control [6], observers [8], almost-dis-
turbance decoupling for non-minimum-phase systems [9], and
feedback stabilization with bounded controllers [29]. Moreover,
this concept has many equivalent versions, which indicates that
it is mathematically natural: there are characterizations in terms
of dissipation, robustness margins, and classical Lyapunov-like
functions; see, e.g., [25] and [26].

As remarked in [24], input-to-state stability is a nonlinear
generalization both of finite gain with respect to supremum
norms and of finite gain (“nonlinear ”); this property
takes account of initial states in a manner fully compatible
with classical Lyapunov stability and replaces finite linear
gains, which represent far too strong a requirement for general
nonlinear operators, with “nonlinear gains.”

A system that is ISS exhibits low overshoot and low total
energy response when excited by uniformly bounded or en-
ergy-bounded signals, respectively. These are highly desirable
qualitative characteritics. However, it is sometimes the case that
feedback design doesnot render ISS behavior, or that only a
weaker property than ISS is verified in a step in recursive de-
sign.

One such weaker, but still very meaningful, property was
given the name ofintegral input-to-state stability (iISS) in a
recent paper [24]. This property reflects the qualitative property
of small overshoot when disturbances have finite energyand
provides a qualitative analog of “finite norm” for linear
systems. This is a property with obvious physical significance
and relevance. The paper [24] showed that iISS is, in general,
strictly weaker than ISS, and provided a very conservative
Lyapunov-type sufficient condition. This paper provides sev-
eral foundational results, showing that the iISS property is a
most natural one to be expected for well-behaved nonlinear
systems, being equivalent to the combination of well-known
dissipation and detectability properties, and admitting elegant
Lyapunov-theoretic characterizations. We are confident that
once the results in this paper become more widely known,
iISS will play a role at least as prominent as the one that ISS
currently has.

In fact, the notion of iISS, and the results in this paper,
which were previously announced in electronic preprint form,
have already played a role in several recent control works. For
example, the iISS property appears in the latest approaches to
supervisory design in adaptive control. In [7], Hespanha and
Morse—citing preprints of this work—studied the closed-loop
system obtained when a high-level supervisor directs the
switching among a family of candidate controllers for an
uncertain plant. Their convergence analysis was based on the
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assumption that each controller stabilizes the respective plant
in an iISS sense with respect to an input that is related to a
measure of estimator performance, their motivation being that
it is natural to define performance signals using integrals of
output estimation errors. Another example of the use of the
iISS concept can be found in the recent work of Liberzon [15],
who approached the task of achieving disturbance attenuation
in the iISS sense for nonlinear systems using bounded controls.
He derived a universal formula based on hysteresis switching,
in the context in particular of switched and hybrid systems.
The notion of integral input-to-state stability played a key role
in this work. Yet another direct motivation for the study of the
iISS property is as follows.

1) Tracking Problems:In [19], Marino and Tomei proposed
the reformulation of tracking problems by means of the notion
of input-to-state stability. Their goal was to strengthen the ro-
bustness properties of tracking designs, and they found the no-
tion of ISS to be instrumental in the precise characterization of
performance. In fact, they emphasized the novelty of using the
ISS notion in this role. It turns out, however, that a typical pas-
sivity-based tracking design may wellnotresult in ISS behavior,
as we illustrate now by means of an example in robotic control.

Consider the manipulator shown in Fig. 1. A simple model
is obtained considering the arm as a segment with massand
length , and the hand as a material point with mass. If we
denote with the position of the hand and withthe angle of
the arm, the equations for such a system are

(1)

where and indicate external torques. We now study the
closed-loop system, which is obtained by choosingand as

(2)

with . (For notational simplicity, we will
also write .) This represents a typical passivity-based
tracking design, when we think of and as signals to be
followed by and .

Normally, one establishes tracking behavior, as well as the
closed-loop stability of the system when the reference signal

is constant; for such signals; one obtains
and as . In the spirit of input-to-state stability,
however, it is natural to ask what is the sensitivity of the design
to additive measurement noise. That is, suppose that the input
applied to the system is, instead of (2)

where the ’s are observation errors. The closed-loop
system that results is then as follows:

(3)

Fig. 1. A manipulator.

or equivalently, in classical first-order control system form (de-
noting by )

(4)

where

and

can be thought of as external inputs to the closed-loop system.
The goal stated earlier is to qualitatively analyze the sensi-

tivity of the full state as a function of the measurement er-
rors . As these errors are potentially arbitrary functions, this
problem amounts to the study of stability properties with respect
to arbitary input functions .

It is worth pointing out that we are led to exactlythe same
mathematical problemif interested, instead, in another very
obvious question, namely, in the analysis of the behavior of
the state in response to attempts to followtime-varying
tracking signals, even in the absence of observation errors.
Indeed, in that case the ’s would be zero, but the different
possible tracking functions and would still give rise to
potentially arbitrary inputs and . In summary, either of
these two basic control questions—sensitivity to measurement
error or analysis of time-varying (instead of merely constant)
tracking signals—gives rise to the problem of studying stability
of the system with respect to the inputs.

As in current nonlinear control studies, and specifically as
in [19] for tracking problems, one may ask then if the system
(4) is ISS when is taken as an input. (The authors of [19] re-
quired tracking controllers to have an ISS property with respect
to disturbances acting on the system. In the special case when
the disturbances are matched to the control, this amounts to the
problem studied here). In particular, if the system were to be
ISS, then bounded inputsshould result in bounded trajectories
(ISS is a stronger property than “bounded-input bounded-state”
stability). However, there are bounded inputs that producenon-
linear resonancebehavior, resulting in unbounded state trajec-
tories, which implies that this system is not ISS. Indeed, the
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input shown in Fig. 2 has the property that, for a suitable initial
state, the ensuing trajectory is unbounded. Fig. 3 shows the “”
component of the state of a certain solution, which corresponds
to this input (in Appendix A–C, we explain how this input and
trajectory were calculated).

In conclusion, the tracking system behavior exhibits unstable
behavior with respect to measurement disturbances and/or with
respect to time-varying reference signals. One might hope, how-
ever, given the simplicity and common use of these designs, that
some sort of robustness property is verifiedfor this system. The
study of this question, for this example, led to the work reported
in this paper. The answer turns out to have wide applicability.
We discovered that the weaker but still very useful property of
iISS is always satisfied for the passivity controller in our robotic
example, even though ISS is not. This property is defined pre-
cisely in the next section; after stating the main results, we will
show why it holds for the example.

2) Outline of Paper: In this paper, we provide a complete,
necessary, and sufficient Lyapunov-like characterization of the
iISS property. Just as the equivalences for ISS, which have found
wide applicability and serve to justify the ISS concept, are de-
rived from its Lyapunov characterization, we expect that the cur-
rent paper will be the first step in the understanding of which
system properties are equivalent to iISS. In addition, the char-
acterizations allow one to consider “LaSalle” types of dissipa-
tion inequalities (semidefinite derivatives), filling in a theoret-
ical gap in the ISS literature.

Section II discusses the main concepts and states the main
results. It also explains how the notion presented here repre-
sents the obvious generalization of “finite gain” under non-
linear coordinate changes. After that, we return, in Section III,
to the robotics example discussed earlier, and we verify, using
the characterizations presented in the paper, why the system in-
deed satisfies the iISS property. Then, in Section IV, we provide
the main proofs of this paper. In Section V, we provide a coun-
terexample to the conjecture (which would seem true at first)
that iISS might be equivalent to simply forward completeness
plus 0-GAS. Section VI discusses several related remarks for
dual notions of observability. Section VII summarizes the con-
clusions of the paper. Finally, the Appendix collects some tech-
nical lemmas and the details on the numerical calculations that
led to Figs. 2 and 3.

II. DEFINITIONS AND STATEMENTS OFMAIN RESULTS

Consider the system

(5)

with states evolving in Euclidean space . Here, controls
(or inputs) are measurable and locally essentially bounded func-
tions , and is assumed to be
locally Lipschitz.

Given any control and any , there is a unique
maximal solution of the initial value problem

. This solution is defined on some maximal open in-
terval, and it is denoted by .

Fig. 2. Input signal.

Fig. 3. Nonlinear resonance.

Definition II.1 ([24]): System (5) is iISS if there exist func-
tions1 , and , such that, for all
and all , the solution is defined for all , and

(6)

for all , where denotes the standard Euclidean norm.
Observe that a system is iISS if and only if there exist func-

tions and such that

(7)

for all , all , and all .
Also note that if system (5) is iISS, then it is 0-GAS, that is,

the 0-input system

is globally asymptotically stable (GAS). (That is, the zero solu-
tion of this system is globally asymptotically stable.)

Definition II.2: A continuously differentiable function
is called an ISS-Lyapunov functionfor system (5) if

there exist functions and , and a contin-
uous positive definite function , such that

(8)

1We use standard terminology (see [5]):K is the class of functions[0;1)!
[0;1) that are zero at zero, strictly increasing, and continuous;K is the
subset ofK functions that are unbounded;L is the set of functions[0;+1)!
[0;+1) that are continuous, decreasing, and converging to zero as their argu-
ment tends to+1; andKL is the class of functions[0;1) ! [0;1) that are
classK on the first argument and classL on the second argument. A positive
definite function[0;1) ! [0;1) is one that is zero at 0 and positive other-
wise.
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for all and

(9)

for all and all .
Note that the estimate (8) amounts to the requirement that
must be positive definite (i.e., for all

and ), and proper (i.e., radially unbounded, namely,
as ).

Notice the difference between Definition II.2 and the dissipa-
tion characterization of ISS (see [25] and [26]): the ISS property
is equivalent to the existence of aas here but for which is
required to be unbounded (in fact, class ). As an example,
consider the one-dimensional system

Let . Then, equals
, which

is , showing that is an iISS-Lya-
punov function for the system. But in the estimate (9), we have

, which is not of class , so one does
not have an ISS-type estimate. Indeed, this system does not
admit any ISS-Lyapunov function, since the system is not ISS
(the trajectory with and is unbounded).

Our main result will establish that the existence of a smooth
iISS-Lyapunov function is necessary as well as sufficient for the
system to be iISS.

This fact will be stated in several essentially equivalent ways.
One possibility is to relax the positive definiteness requirement
on to just nonnegativity, or simply omit it, but to assume
explicitly that the system is 0-GAS.

Another possibility is to deduce the 0-GAS property from
LaSalle’s invariance principle. This last variant is of consider-
able interest in applications such as the robotics example dis-
cussed in Section III, and it may be stated using concepts of
detectability, as is by now standard in the nonlinear dissipa-
tion literature (see, e.g., [30, Section 3.2]). Let us say that an
output for the system (5) is a continuous map
(for some ), with . For each initial state , and
each input , we let be the corresponding output func-
tion, i.e., (defined on some maximal
interval ). The system (5) with output is said to be
weakly zero-detectableif, for each such that and

, it must be the case that as .
Finally, we will say for the purposes of this paper that the system
(5) with output is dissipativeif there exists a continuously dif-
ferentiable, proper, and positive definite function(a storage
function for the system), together with a and a contin-
uous positive definite function , such that

(10)

for all and all . If this property holds with a
that is also smooth, we say that the system (5) with output

is smoothly dissipative. Finally, if (10) holds with , i.e.,

if there exists a (smooth) proper and positive definite, and a
, so that

(11)

holds for all and all , we say that the system (5)
is zero-output (smoothly) dissipative.

We are now able to state the main conclusions of this paper.
Thoerem 1: For any system (5), the following properties are

equivalent.

1) The system is iISS.
2) The system admits a smooth iISS-Lyapunov function.
3) There is some output that makes the system smoothly dis-

sipative and weakly zero-detectable.
4) The system is 0-GAS and zero-output smoothly dissipa-

tive.
The main step of the proof of Theorem 1 is given in Sec-

tion IV, where we show 1 2 and also prove Proposition II.5
(see below), which characterizes the 0-GAS property. The im-
plication 4 2 will be immediate from Proposition II.5. The re-
maining implications are routine, so we can dispose of them
immediately, as follows. First of all, notice that 23. To see
this, take the iISS-Lyapunov function as a storage function,
and consider the inequality in (9). We introduce the output func-
tion . The system is weakly zero-detectable (in
fact, it is even “zero-observable”), because implies

, since is positive definite. Moreover, with equal
to the identity, we have that , so (10) is
the same as (9). Finally, we show that 34. Suppose that (10)
holds. With , we take as a Lyapunov function for the
zero-input system . The zero-detectability condition
means that the LaSalle invariance principle, with the Lyapunov
function , can be applied, and we conclude 0-GAS. And since

, also (11) holds.
Remark II.3: We stated Theorem 1 requiring that the corre-

sponding functions (iISS-Lyapunov, storage) be smooth, that
is, infinitely differentiable. This makes the existence of such

’s, which is the hardest part to prove, more interesting. The
sufficiency parts of the proofs do not require smoothness, how-
ever. In other words, system (5) is iISS if it admits an iISS-Lya-
punov function, or if it has an output that makes the system
dissipative and weakly zero-detectable or if it is 0-GAS and
zero-output dissipative.

Remark II.4: We used the adjective “weak” when defining
zero-detectability in order to distinguish this notion from true
detectability, or “(zero-input) output-to-state stability”; see [27]
and also Section VI below, where one asks that “small output
(when ) implies small state,” as opposed to merely asking
that “zero output implies small state” as here.

1) A Characterization of 0-GAS Control Systems:In the
proof Theorem 1, we utilize the following characterization of
0-GAS systems. It is in itself a result of some interest.

We call a positive definite function
semiproperif there exist a function of class and a proper
positive definite function such that . (It is
easy to see that a continuous positive definite
is semiproper if and only if, for each in the range of , the
sublevel set is compact.)
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Proposition II.5: System (5) is 0-GAS if and only if there
exist a smooth semiproper function, a , and a contin-
uous positive definite function , such that

(12)

for all and all .
The sufficiency part follows from the standard Lyapunov re-

sults for autonomous systems: if (12) holds with ,
then is a Lyapunov function for the 0-input system. (This is
because (12) implies that for all .)
The necessity implication will be proved in Section IV.

Proof of 4 2 in Theorem 1:Let the functions and be
so that (11) holds. Since the system is 0-GAS, by Proposition
II.5, there exists a smooth semiproper, positive definite function

such that

for some continuous positive definite function and some
-function . Let . It then clear that

is an iISS-Lyapunov function: it is proper becauseis, and

gives an estimate as in (9).
2) Motivation: Finite-Gain Under Coordinate Changes:As

mentioned in the introduction, we wish to explain briefly how
the notion of iISS arises in an extremely natural manner when
generalizing linear to gains (sometimes called “
gains”) to nonlinear systems. (See also [24], which explains
why, when we apply the same reasoning to “to stability”
or to “ to stability,” we recover input-to-state stability,
as well as [4] for more on changes of coordinates and ISS.)

For linear systems, one defines finite-gain stability, with re-
spect to square norm on inputs and supremum norm on states,
by requiring the existence of constantsand , with , so
that, for each input and each initial state, the solution
of , satisfies the following estimate:

for all (13)

(Actually, most textbooks omit the initial state, but this is the
appropriate estimate if nonzero initial states are taken into ac-
count.) In a nonlinear context, it is natural to require that no-
tions of stability should be invariant under (nonlinear) changes
of variables. Let us see what this leads us to. Suppose that we
take an origin-preserving state change of coordinates
and an origin-preserving change of variables . That is,

and are invertible, and they, as
well as their inverses, are continuous; furthermore, we suppose
that and . Then, there are two functions

so that

for all , and, similarly, we can write for
each , for some . Therefore, the estimate (13)
gives us, in terms of and

when and for all and
. In other words

where we let . This is precisely as
in the estimate (7), except thathas what appears to be a very
special form. Surprisingly, however, any function can be
majorized by a function of this special form (see [24]), so indeed
one obtains the general notion of iISS with this reasoning.

III. T HE ROBOTICSEXAMPLE IS iISS

In this section we verify the iISS property for the robotics
system (3) discussed earlier. (The same example was used, for
a different purpose—namely, to illustrate adifferentnonlinear
tracking design that produces ISS, as opposed to merely iISS,
behavior—in [1].) One interesting feature of this example,
which in fact motivated much of the research reported here, is
that it illustrates the use of the LaSalle-type condition that we
obtained.

To prove the iISS property, we introduce, as usual for me-
chanical manipulators, the following matrix notation:

where is the inertia matrix and expresses the Cori-
olis torques. Then (3) can be rewritten as

where and
. We take the mechanical energy of the system as a

candidate Lyapunov function

(14)

Taking derivatives in (14) with respect to time along trajec-
tories of (3) yields the following passivity-type estimate for

:

(15)
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for some sufficiently small number and some sufficiently
large number . Inspection of the equations shows that,
when and , necessarily as well. Thus,
thinking of as an output, the system is weakly zero-detectable
and dissipative; applying Theorem 1, one concludes that the
system is iISS.

IV. M AIN PROOFS

The following lemma will be needed several times during the
proofs.

Lemma IV.1: Let be a continuous positive
definite function. Then there exist and such
that

(16)

The lemma will be proved in the Appendix; it is used in es-
tablishing the following comparison theorem.

Lemma IV.2: Given any continuous positive definite function
, there exists a -function with the fol-

lowing property. Suppose that for some

and

are, respectively, a continuous and a (locally) absolutely contin-
uous function with . Assume further that

(17)

holds for almost all . Then, letting be the
supremum of the restriction of to the interval , the fol-
lowing estimate holds:

for all (18)

Proof: We start by picking as in Lemma
IV.1, for the function . Without loss of generality, we may as-
sume that and are locally Lipschitz. Otherwise, we may
always pick locally Lipschitz functions and that
are majorized by and , respectively, to replace and ,
respectively.

A standard comparison principle asserts the existence of a
function having the following property: if

is any absolutely continuous function that satisfies the dif-
ferential inequality almost everywhere, then
it must be the case that for all .
(See, for instance, Lemma 4.4 in [16]; the statement in that ref-
erence applies to defined on all of , but exactly the
same proof works for a finite interval. One choice for
is , where is the solution of the scalar initial
value problem .)

Let now and be as in the statement of the Lemma, and
define

(with if for all ). For all
(if ), (because is nonincreasing, since

for all , and is nondecreasing), so (18)
holds for all .

Pick now any . We have then that
for all (the last inequality by definition

of ). Since is nonincreasing, this means that also
for all such . Therefore

for all . From (17) and the fact that is nondecreasing,
we conclude that

(19)

almost everywhere on . Since was arbitrary, (19)
holds on a.e. By the choice of , it follows that

for all . Thus (18) holds for all suchas
well.

The following is a consequence of Lemma IV.2.
Corollary IV.3: Given any continuous positive definite func-

tion , there exists a -function with the
following property. For any , and for any (locally)
absolutely continuous function and any mea-
surable, locally essentially bounded function ,
if

(20)

holds for almost all , then the following estimate holds:

for all (21)

Proof: First observe that one may always assume that the
function is locally Lipschitz, for otherwise one may replace
by any such function majorized by. Take now any as in
the statement, and consider the solution to the following
initial value problem:

It follows from the standard comparison principle that
for all . In particular, we can write

instead of in the above equation. Now define and
as follows:

Taking the derivative of with respect to yields

for almost all , where the last equation holds because
is nonnegative. Let be a -function as in Lemma IV.2 for

this . It follows that
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from which it follows that

for all .
We also need the following result in our proofs.
Let denote the class of all functions that are:

1) nondecreasing;
2) continuous;
3) unbounded below (i.e., ).
We will prove the following.
Proposition IV.4: Suppose that is such that

for each and for each .
Then, there exists some function such that

for all .
This result generalizes the one given in [24], which applied

only to functions of the form with .
We will need the “exponential” form of this result, which is as
follows.

Corollary IV.5: Suppose that is such that
for each and for each .

Then, there exists some function such that

for all .
Proof: Consider ; then is a class

function with respect to both arguments. Let be as in
Proposition IV.4; without loss of generality, we may assume that

is strictly increasing. Then (and )
establishes the corollary.

The proof of Proposition IV.4 will be given in the Appendix.
Proof of 2 1 in Theorem 1:We first prove that existence

of a [just continuously differentiable (see Remark II.3)] iISS-
Lyapunov function implies iISS. So pick so that (8)–(9)
hold. Let and be functions as in Lemma IV.1
for . We let be any positive definite function that is locally
Lipschitz and satisfies

for all . By (8), we have

(22)

for all and .
Now pick any trajectory corresponding to a control .

Equation (22) says that

for almost all . We let be associated toas in Corollary IV.3.
It then holds that

for all . Hence

for all , and so the sufficiency proof is complete.
Proof of 1 2 in Theorem 1:We first remark that the proof

of Lemma 3.1 in [16] can be used to show the following:
Lemma IV.6: For each given -function , there exists a

family of mappings with:

• for each fixed is continuous and
is strictly decreasing;

• for each fixed is (strictly) increasing as
increases and ;

such that

for all , all .
Assume now that system (5) is iISS with as in Defini-

tion II.1. Let be any smooth function such that
for all . Consider the following system:

(23)

where we restrict the inputs, thought of here as “disturbances,”
to have values in the closed unit ball: , where

denotes the closed unit ball in . We
let denote the set of all such inputs, and we let
denote the trajectory of (23) corresponding to the initial state
and the function . This is defined on some maximal interval

with . It then follows from (6) that for
any given , and each , and defining

It thus follows, using Gronwall’s inequality, that
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for all . Hence the maximal solution stays in a
bounded set (the ball of radius ) if .
Thus, . In conclusion, we have the following.

Lemma IV.7: If system (5) is iISS, then there exists a smooth
-function such that system (23) is forward complete, that

is, is defined for all , all , and all
.
Because of forward completeness, this follows from [16] (see

Propositions 5.1 and 5.5 of [16]).
Lemma IV.8: Assume system (5) is iISS, and letbe given as

in Lemma IV.7. For any fixed and any compact ,
there is a compact such that for all

, all and all . Furthermore, there is a
constant (which only depends on and the set ) such
that

for any , any , and any .
We now continue with the proof of the implication 12 of

Theorem 1. Without loss of generality, one may assume thatis
a smooth -function. Otherwise, one can always replaceby
a smooth -function majorized by . We will first prove the
result under the assumption thatis a smooth -function, and
then we show how to prove the result without this assumption.

Define by

(24)

where for each and is defined by

(25)

Note that this function is well defined and that

(26)

for all . In particular, .
Let be defined as in Lemma IV.6. Then one sees that if

, then

Lemma IV.9: The function is locally Lipschitz on
and continuous everywhere.

Proof: Fix any , and let . Let
, the closed ball centered atand with radius .

Let . Then

for all . According to Lemma IV.8, one knows that there
exists some such that

for any , any , and any . Since is
smooth, and in particular locally Lipschitz, there exists
such that

for all . Consequently,

for all , all , and all . Since and
are smooth, and is locally Lipschitz in uniformly
in and in (this is what is asserted by the last
statement in Lemma IV.8). There exists somesuch that

and

for all , all , and all . It then follows
that the difference

is upper bounded in absolute value by for all
, all , all , where . This implies

that

for all , all , and all , where
.

Pick any . Then for each , there is some
and such that

Let . Then

(27)

Note that (27) holds for all , so it follows that

By symmetry, . This proves that

for all . Thus, is locally Lipschitz on .
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To show that is continuous at , note that , and
as . Thus is continuous everywhere.

We next show that cannot increase too fast along trajecto-
ries. Pick any , and . Let denote the
constant function . Then

where is the concatenation of and : if ,
and if . Let . Since

is locally Lipschitz on , it is differentiable almost ev-
erywhere on , and hence, for any

a.e.

It then follows that

almost everywhere.
Observe that, since an iISS system is necessarily 0-GAS,

it follows from Proposition II.5 that there exists a smooth
semiproper function satisfying (12) with some continuous
positive definite function and some -function . Let

be defined by . Then
is locally Lipschitz on and continuous everywhere.
Furthermore

for some , and it holds that, for all

almost everywhere, where . By Theorem
B.1 in [16], one sees that there exists a continuous function,
smooth on , such that

and

for all , all . By Proposition 4.2 in [16], one sees
that there exists some smooth -function such that

for all and is smooth everywhere. Without loss
of generality, one may assume that for all .
Otherwise, one may replaceby any smooth -function
with the property that in a neighborhood of zero
where and and everywhere else. Finally,
we let . Then satisfies (8) for some ,
and

for all and all , where is any continuous
positive definite function with the property that

(e.g., ). It then
follows that

for all and all . To show that satisfies an
estimate of type (9), we let and let

and

Then , and for all and all

(consider the two cases: and ). This
shows that is indeed an iISS-Lyapunov function for system
(5).

Finally, we show how to obtain the result without assuming
that is smooth. First of all, one may always assume that

for all . (Otherwise, replace by .) Pick any
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-function such that is smooth and
for all . Consider the system

(28)

where is defined by if , and
if . Since is continuously differentiable and

, it follows that is , and hence,
is also a locally Lipschitz map. We let denote the

trajectory of this system corresponding to the initial stateand
the input . It then holds that

for all and all . Hence, the system is iISS with
a smooth “gain”-function (which is the identity function). Ap-
plying the above proved result to this system, one sees that there
exists a smooth iISS-Lyapunov functionsatisfying

for some continuous positive definite function and some
-function . Observe that

for all . Hence

for all and all .
Proof of Proposition II.5: To prove Proposition II.5, we

need the following result.
Lemma IV.10:System (5) is 0-GAS if and only if there exist

a smooth function functions , and
-functions and such that, for all and

(29)

and

(30)

Proof: Again, one direction of the implication is easy to
prove by the Lyapunov direct method applied to system (5) for

. The reverse is more interesting. Assume (5) is 0-GAS.
Then we have , and by a converse Lyapunov argu-
ment (see, e.g., [16]), there exist a smooth and
functions in such that

(31)

for all , and

(32)

Consider now the following function:

(33)

Notice that is continuous, nondecreasing with respect
to each argument, and vanishes for or (since

). Hence, it can be majorized by a function
separately of class (e.g., we can take ). We pick

as in Corollary IV.5. Then, it follows from (32) and Corollary
IV.5 that

(34)

It follows from (31) that is a global minimum for
and hence ; so, since is smooth, continuity of
gives that

(35)

is a class function. By local Lipschitz continuity of ,
also for some . Thus, recalling (34)
and (35) we have

with and .
Remark IV.11:The same result can also be obtained along

different lines, exploiting a result appeared in [22]. It is shown
there that the 0-GAS property for system (5) implies the exis-
tence of an everywhere nonzero smooth function such that

is ISS with respect to. Then, the result fol-
lows from the Lyapunov characterization of input-to-state sta-
bility.

We now can complete the proof of Proposition II.5. Define
of class as follows:

(36)

with a suitable class function to be defined later. It follows
from 0-GAS that there exists a smooth as in Lemma IV.10.
Composing with and taking derivatives yields
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Then, letting , and recalling (29)
we obtain

(37)

where is the continuous positive definite function defined as

V. A COUNTER-EXAMPLE

As already remarked in Section II, iISS implies 0-GAS. The
converse is easily seen to be false, taking any 0-GAS system
that exhibits a finite escape time for some constant input signal

. In fact, it follows by definition (6) that iISS implies
forward completenessof the control system (5), that is, for any
control and any , the unique maximal solution of the
initial value problem , is defined over the
interval . It is reasonable to conjecture that iISS might
be equivalent to simply forward completeness plus 0-GAS. This
would make the iISS concept less interesting. In this section,
we provide a counter-example to this conjecture, exhibiting a
system that is forward complete and 0-GAS, but is not iISS.
In other words, this example shows that, even when restricting
attention to forward complete systems, iISS is a strictly stronger
property than 0-GAS.

We begin the construction with a differential equation

which evolves in and satisfies:

1) it is GAS;
2) for all ;
3) there is a sequence of states

so that for each , for some sequence of
positive numbers , (where denotes the trajec-
tory of the system with initial value), and

for each , where “ ” is arbitrary.
It is easy to construct such differential equations. For example,
one may start with a linear system , having an matrix
that is Hurwitz with nonreal eigenvalues, and constructed so
that its orbits are clockwise-turning converging spirals. One then
scales the equation so that sequences of points as claimed exist,
and finally one divides by in order to guarantee
that for all .

Let us denote
and pick any scalar function which

satisfies the following properties:

1) when , for all
;

2) when , for all
;

3) if , for all
;

4) if .

The hypotheses imply that for all , where is
some increasing function that is zero for negative(all we need,
for , is , where is the least positive
integer so that ). See Fig. 4 for an illustration of
the orbits of and . Now we let (that is,
depends only on the first coordinate) and consider the two-input
system . We will show that this system is
complete but is not iISS; it is 0-GAS by construction.

Claim: This system is complete.
Proof: Let be a maximal trajectory corresponding to

a given control and initial condition , and suppose that
is defined on an interval , with . Let be an

upper bound on the supremum norm of(controls are locally
essentially bounded, by definition). We will show that the tra-
jectory is bounded, thus contradicting . We look at the
first coordinates of the states along this trajectory. There are
two cases to consider.

i) is bounded above.
Suppose that for all . Then, since

for all , the velocities are bounded by
and so the trajectory stays in the ball about

of radius .
ii) is not bounded above.

There must be an infinite number of intervals of the form
which are transversed by . That

is, there are a countable set of disjoint closed intervals
included in , each , so that

and , for some ’s.
We claim that every has length at least one, which
then contradicts . Indeed, take any interval and
suppose that . Observe that, on , so
the system equations are . By the mean value
theorem

a contradiction. This completes the proof of complete-
ness.

Claim: This system is not iISS.
Proof: We will show that there is an initial stateand a

control so that as , where has
the following property: there is some increasing sequence

so that

if

and otherwise; moreover, the sequence is also assumed
to satisfy .
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Fig. 4. Flowf and function' for example of forward complete, 0-GAS but
not iISS system.

The existence of such means that the system cannot be
iISS. To see this, suppose that the system would be iISS. Then,
for some , it holds that

but this contradicts the fact that as .
We start with , and let on , where .

So, and because of the assumption that
. Next we continue building the control and the

trajectory , inductively on the intervals

We do the construction in such a fashion that

and

for . The idea is to switch between an uncontrolled
motion on every interval of the form and ap-
propriate control motions on the small intervals. To clarify the
construction, we first do separately the case .

The control on the interval is defined as follows.
We wish to force

so that we go from to along a
straight line. The equation along this line is

so we may let

Since (by definition of the ’s) and
for all , we conclude that on

, as was desired. Finally, we let for
, where , which makes

.
Now we do the case of arbitrary. We pick the curve

so that we go from to along a
line, and the equation along this line becomes

so we may let be as follows:

Since and for all , we have
for all in this interval of length . Finally, we let

for

where , so that we have
, as needed for the induction step.

VI. COMMENTS ON RELATED NOTIONS

The notion of iISS differs from ISS in its use of “ ”
instead of “ .” The same substitution may be used to
define analogues of input/output stability and of detectability
notions. We briefly discuss some of these now. Reasons of space
preclude a detailed discussion, but proofs of the various claims
are not difficult to obtain by following steps like those used in
the rest of the paper. In this section, we deal with systems with
outputs

(38)

where, as earlier, the output map is assumed to
be continuous and . For each and each input

, we let be the output function of the system, i.e.,
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(defined on some maximal interval
).

Consider the following type of estimation:

(39)

for all , where and .
If (39) holds for every trajectory of (38), then we say that system
(38) is integral input-output-to-state stable(IIOSS). This is a
notion of detectability: inputs and outputs are “small” implies
that states are also small; see [27] for the corresponding notion
of (sup-norm) IOSS. We say that a smooth functionis an
IIOSS-Lyapunov functionfor system (38) if there exist functions

, and a continuous positive definite
function , such that

(40)

for all and

(41)

for all and all . A proof analogous to that of
Theorem 1, by virtue of Corollary IV.3, shows the following: If
a system admits an IIOSS-Lyapunov function, then the system
is IIOSS.

The area of input-to-output (as opposed to input-to-state) sta-
bility deals with properties which may be described, informally,
as “small inputs produce small outputs.” Such properties ap-
pear naturally in regulation problems. In particular, one may
define a concept of IOS (input-to-output stability), see [23] and
[28]. This is yet another obvious candidate for the replacement
of sup norms by integrals. So let us call system (38)integral
input-to-output stable(IIOS) if there exist ,
and such that

(42)

holds on the maximal interval for every trajectory of the
system. Correspondingly, we may define a Lyapunov concept
as follows. A smooth function is called an IIOS-Lyapunov
functionfor system (38) if there exist functions

, and a continuous positive definite function, such that

(43)

for all and

(44)

for all and all . Again, by virtue of Corollary
IV.3, one can prove: If a system adimits an IIOS-Lyapunov func-
tion, then the system is IIOS.

Note that the difference between (8) and (43) is that the func-
tion in (8) is proper (i.e., radially unbounded), while in (43)
the function only majorizes a -function of . It is also
interesting to consider the following type of condition on:

(45)

for some -function . It then follows, again appealing
to Corollary IV.3, that if system (38) admits a satisying (45)

and (44), then the following holds for all trajectories of the
system:

for some and , where .

VII. CONCLUSION

The iISS notion was introduced and motivated both as a
natural mathematical concept, generalizing finite gain, and
through a tracking problem and other applications. We proved
a necessary and sufficient Lyapunov-like characterization of
the iISS property, as well as a characterization based on a
LaSalle-type dissipation inequality and detectability notions.
We also provided a counterexample showing that iISS is not
just the conjunction of forward completeness and 0-GAS.
We are confident that the results presented here, besides their
intrinsic interest, will motivate much further research into the
theory and applications of iISS.

APPENDIX

A. Proof of Lemma IV.1

Assume without loss of generality that as
(otherwise one can always consider

). Then the function admits a global maximum over the
interval . Let , and define

. Pick now such that . Then, we can
define the following functions:

for
for

for
for

(46)

Notice that is a nondecreasing (nonincreasing) func-
tion, and, by (46), considering separately the cases and

(47)

Then, we can choose and according to

Notice that and . Taking into account (47), we
have

(48)

for all .

B. Proof of Proposition IV.4

Proposition IV.4 will follow from the following result.
Lemma A.1:Let be as in the statement of Proposition IV.4.

Then, there exists a function such that, for each

as (49)
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Proof: We will assume without loss of generality that
. (If , we simply pick any constant so

that , apply the Lemma to to obtain
some function , and then let ). Let

(Note that, since is continuous, unbounded below, and
achieves the some positive value, there is indeed at least one

so that ; and by continuity, ). Now
introduce the following set:

Claim: is the graph of a continuous, nonincreasing, onto
function

To establish this claim, we first prove that, if and
, then there is a so that , and any

such must satisfy . Consider the function
. As

and as (because is nonde-
creasing), we conclude, using continuity of, that there is some

so that , as required. And, given any so that
, if it were the case that then it would hold

that

a contradiction. Thus, as stated, .
In particular, it follows that if and are both in
then necessarily (apply with ), so is

the graph of some function , and is nonincreasing.
Next, we note that the projection of on the coordinate

(that is, the domain of the function ) is . Pick any
. Suppose that . Then,

(using that is nondecreasing in
each variable, and ). Then, , so by
maximality of , a contradiction. Thus, . Conversely,
given any , we may apply again the argument given earlier
(now with and ) to obtain that there is someso
that .

The projection of on the coordinate is . Indeed, pick
any ; as and is continuous
and unbounded below, there is someso that .

To complete the proof of the claim, we need to see that
is continuous. But this is an immediate consequence of the fact
that is monotonic and onto an interval.

Finally, we define

if

if

By construction, . We show the desired limit property.
Pick any .

For

where , so as .
On the other hand, for any such that

and as .
We now complete the proof of Proposition IV.4. Letbe as

in Lemma A.1, and define the following function

(As is continuous, and is negative for large, the
supremum is indeed finite.)

Since is the sup of a family of con-
tinuous functions, is itself continuous, and since each member
of this family is nondecreasing, is also nondecreasing. We
prove now that when , which will then
allow us to conclude that .

Pick any . For this , we pick a so that
whenever . Next we pick an so

that . (Such an exists because
is unbounded below.) We claim that

Take one such, and any ; we need to see that
. Consider first the case ; then

If instead , then also

(using that ).
So we have constructedand in such that

(50)

for all and . Thus, is as wanted for Propo-
sition IV.4.

C. Resonance Example

We explain here how the bounded control and the trajectory
leading to in Figs. 2 and 3 were generated. To obtain this
trajectory, we did as follows. We started with the initial state

, and took the feedback control
and . Since for all

, the input signal, resulting from this destabilizing feedback,
shown in Fig. 3, is bounded. Note that a sort of “nonlinear reso-
nant behavior” is obtained. (It is worth pointing out that a sim-
ilar effect is met also for vanishing references, if the conver-
gence of to 0 is sufficiently slow.) The simulation used the
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TABLE I
PARAMETER VALUES FOR THE

SIMULATION

parameters values shown in Table I, and were obtained using the
MATLAB routine, with tolerance and initial con-

dition .
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