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1. In  previous papers [9], [10], we introduced a class of functions of several real 

variables which we designated as linearly continuous. In  order to clarify the position of 

this class of functions, in relation to established classes, it is desirable to first describe 

matters  for functions of one variable. 

We shall consider only functions with compact support  and shall consider length, 

area, etc., of a function on a bounded interval containing the support. The functions of 

one variable whose derivatives are measures are then equivalent to functions of bounded 

variation. The functions whose derivatives are functions are equivalent to absolutely 

continuous functions. The set of functions which are continuous and of bounded variation 

lies between these two classes of functions. These functions are the ones (i) for which 

the length of the associated curve is equal to the Hausdorff one dimensional measure of 

the graph, (ii) for which the variation is given by the Banach indicatrix formula, and 

(iii) for which the derivative is a non-atomic measure. Moreover, the space of these func- 

tions is complete with respect to the metric given by  

d(l, g) = ~(1, g )+A(r  as), 

where (~ is the metric for convergence in measure, a s and ~g are the measures associated 

with the lengths of curves given by  / and g, respectively, and A(/z, v)=supl /z(E ) - v ( E ) ] ,  

for Borel sets E, for any  measures/z and v. 

For functions of several variables, the place of functions of bounded variation is 

assumed by  those whose partial  derivatives are totally finite measures. This class of 

functions was introduced by Cesari [5], and was studied, among others, by the author  

[8], Krickeberg [15], Fleming [7], Michael [16], Serrin [20], and de Vito [23]. (There 

(t) Research supported by National Science Foundation Grant No. GP-03513. 
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are various other notions of bounded variation for functions of several variables, but  they 

are not considered in this paper.) 

Functions with compact support  whose partial derivatives are functions take the 

place of the absolutely continuous functions. They were studied mainly by  Calkin [4] 

and Morrey [17]. One interesting property they possess is tha t  there is always a n  equi- 

valent function which is absolutely continuous on almost all lines in every direction. 

Incidentally, this result follows from facts proved in this paper. These functions have 

proved to be of great importance in partial differential equations and other branches of 

analysis, starting with the work of Morrey and of Sobolev [21]. 

Functions in these classes can be discontinuous everywhere [9]. Indeed, it is possible 

to construct a bounded funct ion/ ,  whose partial  derivatives are functions, such tha t  every 

function equivalent to / is discontinuous everywhere. The continuous functions whose 

partial  derivatives are measures Could accordingly hardly assume the same role, in several 

variables, tha t  the continuous functions of bouuded variation have in one Variable. A 

natural  candidate for this position is the set of linearly continuous functions whose partial  

derivatives are measures. For the case of 2 variables, these functions are precisely the 

ones for which the surface area is equal to the Hausdorff 2 dimensional measure of the 

graph [9]. Also for the  case 0f 2 variables, the linearly continuous functions whose partial  

derivatives are measures are the completion of the continuous functions whose partial  

derivatives are measures with respect to the metric 

d(l, g) = aft, g) +A(~  r, ~g), 

where now gi and ~g are the measures associated with the  a r ea s  of the surfaces defined 

by  / and g. There are indications tha t  a Banach indieatrix formula holds for this class of 

functions. Such a formula has recently been obtained by Ziemer (oral communication), 

for the continuous case. I t  also seems plausible tha t  the partial derivatives of these 

functions are characterized as measures which are zero for ridd sets [25], these seemingly 

being the analogues in several dimensions of the countable sets in 1 dimension. 

2. In  [10], for dimension 2, we characterized the linearly continuous functions of 

finite area (i.e. those whose partial  derivatives are measures), among all functions of finite 

area, as those functions / for which, for every s >0,  there is a continuous g such tha t  if 

E=[x:/(x) ~=g(x)], then a r ( E ) < s  and ~g(E)<e. We noted tha t  this implies tha t  linearly 

continuous functions are coordinate invariant. Indeed, it implies tha t  for every such ] 

there is an equivalent function which is continuous along almost all lines in every direc- 

tion. We also showed in [10] tha t  if / is merely linearly continuous in one coordinate 

system, but  its partial  derivative is not a measure, then it need not be linearly continuous 
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in another coordinate system. We have not been able to obtain an analogous charac- 

terization theorem for n > 2. However, by  using an induction argument  in [10] we showed 

that,  for every n, every linearly continuous function whose partial  derivatives are meas- 

ures is equivalent to a function which is continuous along almost all lines in every direC- 

tion. In  the present paper, the main result is a characterization theorem for arbi t rary n 

which is similar to the one proved in [10] for n = 2 .  In  fact, we show tha t  if / is linearly 

continuous and its partial  derivatives are measures then, for every e >0,  there is an 

approximately continuous g such tha t  if E = [ x : / ( x )  #g(x)] then ~f (E)<e  and ~g(E)<e, 

and tha t  the Converse also holds. For the latter, we show in particular tha t  every approxi- 

mately  continuous function whose partial derivatives are measures is linearly continuous. 

Since approximate continuity is invariant under Lipsehitzian transformations, it follows 

that  every function of the type considered has an equivalent function with very nice 

behavior. I t  accordingly matters  little, regarding the implications which may  be drawn, 

whether the approximating functions are continuous or, merely, approximately continuous. 

The space of linearly continuous functions whose partial derivatives are measures is 

complete with respect to the metric mentioned above. We show that  the approximately 

continuous functions are dense in this space. For n = 2, the continuous functions are dense 

in the space, but  we do not know whether or not  this holds for n > 2. 

3. We now give some notations and definitions and a few facts which will be needed 

in the sequel. We consider a rectangular coordinate system (Xl, ..., xn) in n space. For  

every i = l ,  ..., n,  we designate points in ( n - l )  space with coordinates @1, x~, ..., x~_l, 

x~+ 1 ..... xn) as ~ .  Thus a point in n space may  be designated as (x~, ~) .  We say tha t  a 

measurable real function / on n space is essentially linearly continuous in this coordinate 

system if, for every i = l  . . . . .  n ;  there is an /~ equivalent to / (i.e., / ~ = ]  except on a set 

of Lebesgue n measure zero) such tha t  for almost all ~ , /~  is a continuous function of the 

one variable x~. The function f is said to be linearly continuous in the coordinate system 

@1 .... .  xn) if, for every i = l  . . . . .  n ,  ] is a continuous function of xt for almost all xi. We 

showed in [9] tha t  if / is essentially linearly continuous and its partial  derivatives are 

measures then / is equivalent to a function which is linearly continuous. 

We shall consider the class A of functions whose 'par t ia l  derivatives are measures. 

These are the functions of finite area. We shall give a brief discussion of these notions. 

In  particular, we describe the partial  derivatives in terms of variations of special func- 

tions in the equivalence class, the linear Blumberg measurable boundaries. This has the 

advantage of freeing the definition from an unnatural  measurabili ty hypothesis on the 

linear variations which is customary. 
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Let  / be a measurable funct ion whose support  is contained in an n cube Q. We define 

the area of / in terms of the areas of quasilinear approximations.  B y  a quasilinear func- 

t ion p on Q, we mean a continuous funct ion which is linear on each simplex of a decompo- 

sition of Q. The area L(p, Q) of p on Q is the  sum of the Lebesgue n measures of the sim- 

plexes which form its graph. The area of / on Q is then defined as 

L(I, Q) = in /{ l im in/L(pn, Q)}, 

where {Pn} converges in measure to / and the in / imum is taken over all such sequences. 

Then L(/, Q) is a lower semicontinuous functional with respect to various types of con- 

vergence including convergence in measure and  convergence in the L 1 metric. I t  was 

shown in [5], see also [8] and [15], t ha t  L(/, Q) is finite if and  only i f / E  ,~. Then, let 

be Lebesgue n measure, and let/~1, ...,/~n be the partial  derivative measures of /. The 

vector  valued measure (~t,/~1 . . . . .  /~n) has an associated numerical valued measure :or, defined 

for Borel sets E by  
r n 

where the supremum is taken over all finite part i t ions E l ,  ..., Er of E into Borel sets. 

The area of / has an associated measure L(/, E), defined first for open intervals R c Q 

by  means of quasi linear approximations,  as above, and then by  extending to a measure 

on the Borel sets. I t  turns out  tha t  L(/, E)=af(E)  for every E (see [22], [9], [13]). 

Of most  importance to us will be the following representat ion of the partial  deriva- 

tives /~i, i = 1  . . . . .  n, of a f u n c t i o n / E • .  I n  this connection, we first consider, as in [8], 

a measurable funct ion g of one real variable. We define 

V(g, (a, b)) = in/v(h, (a, b)), 

where (a, b) is an  open interval, v is the variat ion of h on (a, b), and the inf imum is taken 

for all h equivalent  to g. This in / imum is realized by  the upper  measurable boundary  u 

of g, in the sense of Blumberg [2], which we define shortly. Thus 

V(g, (a, b)) = v(u, (a, b)). 

The function u is defined as follows: For  each y, let E~=[~:  g(~)>y] .  For  each x, let 

u(x) = i n / [ y :  densi ty of E~ at  x is 0]. 

Now, for each y, u(x)>~y if and  only if the densi ty  of .Ey_l/n at  x is not  zero for every  n. 

I t  follows f rom the  Lebesgue densi ty theorem tha t  u is measurable. The proof t ha t  

V(g, (a, b))=v(u, (a, b)) is easy, and will no t  be given here. 
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Now, let ] be a measurable funct ion of n variables. For  any  direction 0, we define 

the measurable bounda ry  of ] in direction 0 b y  letting, for each y, Ey=[~ :  ] (~)>y] .  For  

each x, let 
u(x) = inf [y: linear densi ty of Ey in direction 0 at  x is 0]. 

The measurabil i ty of u follows f rom the  fact  [19], t h a t  for a measurable set S in n space, 

the linear densi ty of S exists and is one almost  everywhere in S. 

For  every i = l ,  .,., n, let u~ be the  measurable boundary  of ] in direction x~. Let  

Q=-Q~ • (ai, bi). For  each m ~ l ,  2 . . . . .  let 

a~<$1<~2 < ... <~r <b~ 

be such tha t  m a x  ( ~ 1 - a , ,  ~2-~1, .-., b , -~ r )  < 1Ira and u(~,, ~j) is measurable in ~, for every 

~j, j = 1 .. . . .  r. Then the funct ion 

r -1  

is measurable, and it follows tha t  

v(u, ~,  (a~, b~)) = V(/, xi, (a~, b~)) 

is measurable. The funct ion )~EA whenever V(/, ~ ,  (a~, b~)) is summable,  i = 1  . . . . .  n. For  

an  open interval R = R  i • (a, b), R~Q,  where R~ is the projection normal  to the x i direc- 

tion, we let 

~(], ~ ,  (a, b)) = lim u i (x~, ~ )  - lim u~ (x~, ~).  
x~s b ~  xt.-..a.a + 

I t  follows from the dominated  convergence theorem tha t  

g~(R) = f 2 ( / ,  xi, (a, b)) 

as does I/~, I(R) = fRV(/, ~, (a, b)). e x i s t s  

The set f unc t i on /~  generates an  outer  measure, i----l, ..., n, for which the measurable sets 

include all Borel sets. The same m a y  be said of the associated ~r. Alternately,  we m a y  

s tar t  with the set funct ion L(/, R) to  obtain  the  outer measure at. This set funct ion is 

known to be (e.g. [6]) such tha t  

(i) if the distance between E and  F is positive, 

~r(E U F)  = ~r(E) + ~r(F), and 



170 CASPER G OF~W~'~ 

(ii) if E is measurable  and  e > 0  there  is a compac t  F and  an  open G such t h a t  

F c E c G and  m( G) < m( F) + e, and 

(iii) compac t  sets have  finite measure.  

We are accordingly able to  app ly  to  the  measure  ~f, /E A, a Vitali  Covering Theorem 

of Besicovitch [1], in a version due to A. P. Morse [18]. 

T H E O ~ .  I / a n  outer measure m, de/ined on the subsets o / n  space, satis/ies the condi- 

tions itemized above, then/or any set S, i / S  is covered by a [amily ~ el closed n cubes (with 

/aces parallel to the coordinate planes) in such a way that,/or every e > 0 and x E S there is a 

cube in ~ with center x el diagonal less than ~, then there is a countable set el cubes in 5, 

which are pairwise disjoint, such that almost all o/ S is contained in their union. 

We also ment ion  the measure  flf which is obta ined  f rom the vector  va lued measure  

(/~1 . . . . .  /~n) in the  same way  t h a t  ~ is obta ined  f rom (~,/~1 . . . .  , / ~ n ) .  The inequal i ty  ~1+g(Q) ~< 

~r(Q) § is of ten useful. 

Finally,  for e v e r y / E L 1 ,  an  impor t an t  set  of smoothing  funct ions is the  set  of inte- 

gral means  
1 

| /(x * ~), 

where a(x, I /m) is the n ball of center  x radius  1/m and  s m is its volume.  The  func t ions /m 

are continuous and  converge to ] in the  L 1 norm as well as a lmost  everywhere.  Moreover,  

if / E 14, then  

as(Q) = lira ~I=(Q). 
m 

I f  / E A is l inearly cont inuous wi th  respect  to a coordinate  sys tem and  R is an open in terval  

in this coordinate  system, it  was shown in [10] that, 

ai(R) = lira ~I,(R), 

and  if H is a hyperp lane  and  / is l inearly continuous then  ~ I ( H ) = 0 ,  for the  case n =2 .  

Moreover,  if /E • is l inearly cont inuous t hen  for a lmos t  all lines l, parallel  to  coordi- 

na te  axes, we have  {/m} converging uni formly  on l to ]. 

4. We fix a coordinate  sy s t em and say t h a t  /E s if i t  is in J4 and  is l inearly contin- 

uous in the  coordinate system.  We suppose t h a t  the  suppor t  of / is interior to a cube 

n 

Q = x [a~, bJ .  
t = 1  
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In  the next  few sections, we show tha t  if / ~ s then, for every s > 0, there is an approxi- 

mately  continuous g such that ,  if E is the set for which/ :~g,  then ~ ( E ) < ~  and r 

As a first step, we note tha t  we may  assume ] bounded. ]~or every ]c, the function 

/~ defined by  

/~(x) = i f  - ~ < / ( x )  < 

i f / ( x )  <<. - 

is linearly continuous: Moreover, it follows directly from the definition of L(/, Q) tha t  

~k(Q) • ztr(Q). Hence ]~ e g. 

Let Q, be a face of Q normal to the x, direction, i =  1 ..... n. Let (~ >0.  For every 

i = 1, ..., n, since ] is bounded on almost all lines in every coordinate direction, there is a 

natural  number/V,,  and a measurable set E, c Q ,  such that  m(Q, E~) <(~ and ]~(x)=/(x), 

on the entire line 1(2~)=[x=(xi, 2~) : x,E[a,, b~]], for every ~ E E i  and k>N~. Then, for 

k > m a x  (N 1 . . . . .  N n )  , ]k(x)=/(x) on the entire set 

n 

E~ = (J (E~x [a s. b~]). 
't =1 

Choose a > 0  so small that  ~ ( Q - E ~ ) < e .  (We indicate below why this is possible). By  

[9], since /k and / are both in s and ]~(x)=/(x) on E$, it follows that  ai(E~)=~I~(E~). 

We then have gf~(Q- E0)<  ~r (Q-  E$)<s ,  proving the desired result. 

We next  describe a decomposition of / e  s given for the 2 dimensional case in [9], 

which we need in the sequel. Let  g be equivalent to ] 'and such tha t  it is continuous in x~ 

for almost all ~ ,  i = l ,  ..., n. Then g is a continuous function, of bounded variation, in x~ 

for almost all ~ ,  i = l ,  ..., n. Choose x ~ so that  g(x e, ~.~) is measurable, and summable, in 

~ .  We then obtain, as in [9], a decomposition g = g + - g - ,  where g+ and g- are measurable, 

indeed summable, are monotonically non-decreasing in x~, for almost all ~ ,  and g+(x e, ~2~) = 

g(x e, ~.~) for all 2~ eQ~. 

Now, let gm be the ruth integral mean of if, r e = l ,  2 . . . . .  As in [9], for almost all 2~, 

the integral means (g+)m and (g-)~ converge uniformly in x~ to g+ and g-, respectively, 

for almost all ~ .  Since, gm= (g+)~-(g-)m, it follows that  (gm} converges uniformly in x~ 

to g, for almost all 2~, i ~ l ,  ..., n. 

Since the gm, r e = l ,  2 .... .  are continuous, it follows that,  for every ~>0 ,  there is a set 

E0 = b (E~x [a~, b~]) 
i=1  

on which ff is uniformly continuous and on which/~ =g~, m = 1, 2 ... . .  converges uniformly 

to g, with 
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m(Q~-E~)<8, i = 1  . . . .  ,n .  

I t  is also worthwhile for us to indicate why the fact used above that,  for all 8 > 0  

small enough, a1( Q - E ~ ) <  e holds. For every i = 1 ... . .  n, 

It~,l (Q) = fQ v(/, ~,, (a~, b,)). 

Let  e>0 .  There is a 8>0 ,  8 < e / ( n + l ) ,  such that  m(Q~-E~)<8 implies 

I ,1 (E x (a,, b,)) = V( / ,  e,, (a,, b,)) > I ,1 (Q) - 
i 

For E~ = U ~ I  (E~x (a~, bi)), we have 

n 

n 

<<-2 Ileal ((Q~- E~)• b,)} + m(Q- E~) 
~ - 1  

Remark. In  the remainder of this paper, we shall be concerned with the density of a 

set a t  a point. This density will always be the ordinary density using cubes containing 

the point with faces parallel to the coordinate faces, except in one place where balls are 

used. I f  the density is 1 in either case, then it is 1 in the other case. 

5. Let /E s and ~ > 0. We shall obtain a certain 0 dimensional closed set V such tha t  

a1(V) > a~(Q) - e .  

l~irst, there is a 8 > 0  such tha t  if E, cQ, with m(E,)>re(Q,)-8, i = 1 ,  ..., n, then 

as(Q - b (E,x (a,, b~)) < e. 
i - 1  

Let Ei, i = 1, ..., n, be such tha t  m(E,) >m(Q,) - 8 ,  and such that  the integral means {/m} 

of / converge uniformly to / on 

E ~  b (E~x (ai, b~)). 
i=1 

For each i=l ,  ..., n, let S~cE~ be the set of points in E~ at  which the ordinary ( n - l )  

density of Ei, using cubes in Q~, is 1. Then, if 
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S = U (S~X (a~, bi)), 
i = 1  

it follows tha t  ~ I ( Q - S ) < r  We next  let T~cS~ be closed, i = 1 ,  ..., n, and such tha t  

m(Q~- T~)<(3. Then, if 

T = tJ (T~ x (a~, b~)), 

we have o~f(Q-T)<e. Moreover, T is a closed set (relative to Q). 

We  next  apply  the  Besicovitch-Morse version of the Vitali Covering Theorem to the 

set T to obtain  a system of closed cubes. All cubes considered will have  their faces parallel 

to  the faces of Q. For  each x E T, interior to Q, let Rz be a collection of closed cubes, each 

in the interior of Q, with x as center, and with diagonal less than  �89 such tha t  for each 

> 0 there is a cube in Rx with diagonal less t han  ~]. Let  

R = U [R~ : x E (int Q) (1 T]. 

There is a finite set Ri, R 2 .. . . .  R,, ,  

of pairwise disjoint closed cubes in the collection R such tha t  

nl  

~ { Q -  U (Rs~ n T)} < ~. 

For  every  71 = 1 .. . . .  •1, and x E (int R j) f] T, let RJx ' be a collection of closed cubes, 

each in the interior of Rj,, with x as center, and  with diagonal less than  1/23, such tha t  

for each ~ > 0, there is a cube in R~ 1 with diagonal less than  ~. 

Let R j~ = U[R~: 1 : xE( in t  Rj,) (/T].  

There is a finite set Rj, 1 . . . . .  Rj,~jl, ~'1 = 1 . . . . .  n 1, 

of pairwise disjoint closed cubes in the collection R j' such tha t  

nl nj1 

~ { Q -  U U (Rj., n T)} < ~. 
11=1 J2=1 

B y  continuing in this way, and applying the Besicovitch-Morse covering theorem an 

infinite number  of times we obtain  a system 

Rh...j~, k = 1, 2 . . . . .  Jl = 1, .:., nl, 

for each 71, 72 : 1 . . . . .  nj~, 

for each J l J 2 '  J8 = 1  . . . .  , n ) ,12 ,  

. . .  

for each ]1 ... ]k-i, ]k =1 ,  ..., nh...&_l, 
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of closed cubes. Each Rj~...j~_~4 is contained in the interior of Rh...~,_l and is of diagonal 

less than 1/2 k. The cubes Rj~...j k are pairwise disjoint, for every k = l ,  2 . . . . .  Moreover, 

for every k = 1, 2 ... . .  we have  

~ ( Q -  O (~j~... j~ n T)) < ~, 

where the k-tuples ?'1 ... ?'~ vary  over the finite set of possibilities. 

The cubes R~... ~ chosen at  the kth stage will be designated as of rank k. Then every 

cube of rank k + 1 is contained in the interior of a cube of rank k. 

For every k = !, 2 ..... let 

V~ = U (Rj~...j~ n T) 

and let V = f'l Vk. 
k = l  

Since each Rj~... ~ f~ T is non-empty,  and T is closed, it follows tha t  V ~  T. We show that  

R V= n(u ~,...j~.). 
k = l  

Clearly, V~  ~ R I'lk=~(U j.. .  j~). 

Conversely, if xENk~c=l(URjr..jk), then x is a limit point of T. Since T is closed, 

x E T, so tha t  x E U (R~... 4 f3 T) = V~, for every k = 1, 2 . . . . .  Hence x ~ V. 

Finally, since ~ ( Q -  V~)<e, for every k =  1, 2 ..... it follows tha t  ~(Q-V)~<~.  

In  the above construction, all cubes involved m a y b e  chosen so tha t  {/~) converges 

uniformly to ] on almost all line segments on each of their boundary faces which are in 

any  coordinate direction. We make certain tha t  they are so chosen. 

6. The density of S is 1 at  every point of T, hence of V. The boundaries of the Rh... 4 

are pairwise disjoint. We consider a closed frame about the boundary of each Ril...4 so 

tha t  the frames are pairwise disjoint and their union has density 0 a t  each point of V. 

We accomplish this in the following way. 

For a cube R, with boundary ~R, the frame of width h about  ~R is the closed set 

between 2 closed cubes concentric with R, the  larger one having edges which exceed those 

of R by  h, and the smaller one having edges which are exceeded by  those of R by  h. Since 

the boundaries of the R,~... ,~ are pairwise disjoint we m a y  put  frames G,1...i k about  the 

sets ~R~I..., , in such a way tha t  the frames are pairwise disjoint and also meet no 

~R~l...**~k+~. Thus we may  choose the G~...,k so that,  even for different k, they .are pair- 

wise disjoint. A frame about  the boundary of a cube of rank k will be called a frame of 

rank k. 
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For every k = 1, 2 ... . .  there is an M e such t ha t  ff R is any cube such tha t  at  least one 

set R fl R~...~k~+ ~ is non-empty and the set R f3 G~...~k is non-empty,  then the measure 

of the portion of R which is inside G~...i~ but  outside all the G~...~+~ exceeds Mk. 

Let  {r be a sequence of positive numbers such tha t  ~ = ~  ~ < c~. Shrink each frame 

G~...~ to a frame F6...~ about  3R~.: .~ so that ,  for every k = l ,  2, ..., the sum of the 

measures of the F~...~ are less than e~Ma. Now, let x~ V and let R be a cube containing x. 

Let r be the smallest rank of frames G~...~ which meet  R. Then, 

re(R) > Mr + Mr+l + .... 

But, m(R I~ ( U Fh...ik)} <erMr+er+lMr+l + .... 

~{n n (UG...,p} 
< ~ /~r" so that  m(R)  ~_~ 

Since r goes to infinity as the diagonal of R goes to 0, it follows that  (J F~.. .~ has density 

0 at  x. In  other words, the density of S "  U_Fq...~k is 1 at  every xE V. 

7. We need the following lemma which was proved for n =2  in [10]. 

LEMMA 1. I /  / m E  and I is an open interval then 

lim :r = ~I(I). 
m 

Proo/. We first show t h a t  if H is any hyperplane parallel to a coordinate hyperplane 

then r Let H be normal to the x~ direction. Then, for every ~ # i ,  [/UjI(H)=0, 

since I/ujl is defined as the integral of a variation function with respect to ( n - 1 )  dimen- 

sional Lebesgue measure, and I/Uj[(H) is this integral on a set of ( n - l )  measure zero. 

Moreover, I/u,[ ( H ) = 0  since, for almost all points (x ~ 2~) in H, / is continuous in the x, 

direction. Then, using the Lebesgue dominated convergence theorem, we obtain 

]/U~ ](H) =~-.01im f V(/, &, (x = O, 

I t  follows that  ~,(H) <~(H)+ ~ I/u,I (H)=0. 
i=l  

I t  is known (e.g. [8]) tha t  for every /E.4  and every interval J ,  whose closure is contained 

in I ,  that  limm ~ r , ~ ( I ) ~ ( J ) ,  and that ,  for every op~rt interval K ,  which contains the 

closure of I ,  lira m ~rm(I)~<ar(K). Since f o r / E C ,  ~r(3I)=0,  for every ~1 > 0  there are J and 

K as above such tha t  :9(J) > ~r(K) - ~ .  We then have 
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I lim ~rm(I) - =,(I) [ < 7, 
m 

for every z/> O, proving the lemma. 

I t  is easy to give an example of an /E,4  for which the lemma fails to hold. 

8. We now consider t h e  restriction of the function / to the set V defined in w 5. We 

obtain an extension g of this function to O which is approximately continuous at  every 

xE V and is continuous at  every xEQ- V, except at  points on the boundaries of the cubes 

R~I...~ ~. Let Qk= URtl...ik, k = l ,  2 . . . . .  Then Q~ is the union of a finite set of pairwise 

disjoint closed cubes. Suppose ]/(x)[ < M, for every x E Q, and let Ak be the ( n -  1)-dimen- 

sional Lebesgue area of ~Qk, k =1,  2 . . . . .  We consider sequences {z/k}, {$k}, and {~k} of 

positive numbers such tha t  

~ k < e ,  ~lkAk<e  and ~ 2 ~ M < e .  
k = 1  k = l  k = l  

We first define g on Q - int Q1 as an integral mean/m, of / ,  where m 1 is chosen so tha t  

al) I/m,(Z)-/(x)l <1  for every xeS, 

bl) I/~,(X)--/m(X)[ <B~ on all of OQ~, 

except for a subset of ( n - l )  dimensional measure less than ~1, for each m>m~, and 

Cl) ~f~, (Q - i n t  Q0 <~I(Q - i n t  Q0 +$1. 

That  m 1 can be chosen so tha t  al) holds follows from the uniform convergence of {/~} 

to / on S, tha t  it may  be chosen so tha t  b 0 holds follows from the choice of the R~...~ k 

so tha t  {Ira} converges uniformly on almost all lines on their boundaries which are in 

coordinate directions. For Cl) , we appeal to Lemma 1. 

We next define g on Q l - i n t  Q2 as an integral mean/m, o f / ,  where m~>ml is chosen 

so tha t  

%) I/m,(x)-/(x)[ <�89 for every xeS, 

b 0  Ilm;(X)-/~(~)l < w  on all of ~Q2, 

except for a subset of ( n - 1 )  dimensional measure less thall ~ ,  for each m>m 2, and 

%) ar~,(Ql- int  Q~) < ~ ( Q x - i n t  Q~) + ~ .  

We continue by  induction. Having defined m~<m~<...<m~_x, and defined g on 

Q , _ l - i n t  Q, as 1~,, i = 1  .. . .  , k - l ,  we defin0 g on Q~-intQ~_~ as 1~, where m~>m~_i is 

chosen so tha t  
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as) I/ , , ,(x) ' /(x)[ < l / k ,  for every xeS ,  

b~) ]/,,k(x) - ]z (x) ]  <~]z on all of 0Qs, except for a subset of ( n - l )  dimensional meas- 

ure less than ~z for each m > ms, and 

%) ~r~k(Qk_ ~ - i n t  Qs) < e~(Q~-~-int Q~) + ~ .  

I n  this way, ff is defi~ed c a  aU of Q, and is equal to ] on V, since 

Q -  V = 0 (Qe-~ - i n t  Q~), 

where Q = Q0. The function ff is double valued on 0Qe for every k. We select either of the 

two continuous branches. The set for which/(x)  #g(x) is a subset of Q - V .  Now 

~ g ( Q - V )  = ~ ~mk(Qk-l--int  Qk)+ ~ c%(0Qk) 
k = l  k = l  

~< Z :r - int Qs) + ~ $~ + so (~Qs). 
k ~ l  k = l  k = l  

But ~ ~(Qk-1 - i n t  Qk) ~<~r(Q - V) < e, 
k = l  

and ~.~=1 ~s < r Moreover, 

k = l  k = l  = 

since ]/m~_l(x)-/m~(x)[ < ~  for all xEaQk except for a subset of measure less than ts, on 

which I / ~  l (x)- /~k(x)l  < 2 M .  This shows tha t  ~a(Q-  V) <4e. 

The function g we have constructed is approximately continuous at  every x E V. For 

this we first note tha t  S has density 1 at  x and / is continuous at x relative to S. So, let 

> 0  and let ~ > 0 be such tha t  if y E S and the distance from y to x is less than ~, then 

]/(y) - / (x)  [ < s/2. Moreover, let 1/k < s/2. There is an Rjl...j~ such tha t  x Eint Rj~... Jk" Then 

y e s  N int R~l...jk implies 

1 
I g(Y) -g(x)[ ~ i g(Y) -/(Y)I + I](Y) - / (x) l  < k + ~ < e. 

Thus, 9 is approximately continuous at  x. 

I t  is clear, by the construction, that  g is continuous at  every point in Q -  V, except 

at  points in aQk, k =  1, 2 . . . . .  On ~Q~, we may  define g as either the continuous function 

/m~_l or the continuous function/ms" The contribution of 0Q~ to :r is the n dimensional 

measure of the set between these continuous surfaces. 

12-  662903. Acta mathematica. 117. Imprim6 le 9 f6vrier 1967. 
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9. We now show how the discontinuities on the sets 0Qk, k = 1, 2, ..., may  be removed. 

We have a system F~...~ of pairwise disjoint frames about the boundaries 0Ri~...~ so 

tha t  the density of (JF~...ik is 0 at each xE V. Then, any  modification of g within the 

frames will not change the approximate continuity of g at  the points of V. We let R = R~... ~k 

be an arbi trary cube in our system, and let F be the corresponding frame about OR. The 

technique we use is to transfer the discontinuities of g from the surface OR to the surfaces 

of two other cubes, but  with the saltus of the function greatly reduced. By repeating 

the operation, we obtain a sequence of functions which converges uniformly to a contin- 

uous function h in F, which agrees with g on the boundary of F, and is such that  ~h(F) 

is not much greater than ~g(F). We proceed with the details. 

Let  ~ > 0  and let ~ = 1  ~k < co and ~~ 1 ~ < ~ .  Now, let A and B be cubes concentric 

with R, with 0A and 0B in the interior of F and with 

A ~ i n t  R and R c i n t  B. 

Then let {Am} be a decreasing sequence of cubes, and {Bin} an increasing sequence of 

cubes, all concentric with R, such tha t  

int R ~ A1, int B1 ~ R 

i n t A m ~ A  , i n t B ~ B m ,  m = 1 , 2  ..... 

and Am+lCint Am, B m c i n t  Bin+l, m =  l, 2 ..... 

Let Hm be the frame bounded by  eArn and OBm, m = 1, 2 ..... and let H be the frame 

bounded by  0A and aB. Then {Hm} is an increasing sequence of frames about  OR, all 

contained in the frame H, which in turn is contained in the interior of the frame F. 

We define a sequence {gin} of functions on F. Let  gi=g on F-H I. On HI, let 

gl = gk,, where k 1 is chosen so large that  

~ )  ]g(x)-gk, (x)] <~1 on the boundary of/ /1,  

fl) gg, (int H~) < ~g(int H~) + ~ ,  

rl) ~g,(0H1) < ~g(0H~) +~1, 

and for every x E F,  

61) ] f ( x ) -g (x ) [  <2K,  where K is the maximum of the saltus of g on OR. 

I n  particular, we have ~ g l ( F ) < ~ ( F ) + 2 ~ :  1, and the saltus of gl does not  exceed ~1 

at  any point of F. 

Let gZ=gl on F - H ~ .  On H 2, let g~ =g~,, where k 2 is chosen so large that  

a2) ]gX(x)-g~(x)] <~2 on the boundary of H~, 
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fl~) %, (int H 2 )  <: Ng, (int H2) + ~2, 

and, for every x E F,  

~,) Ig~( x)-g~(~)l <2~ .  

In  particular, we have %, (F)<~g , (F)+2~2  , and the saltus of g2 does not exceed $~ 

at  any  point of F. 

By continuing, we obtain ~ sequence {gin} of functions, all continuous and agreeing 

with each other on 2 ' - H ,  such tha t  

(i) gm is discontinuous only on OHm, 

(if) [gm+l(x)--g'n(x)l <2r for every xEF, 

(iii) ~ ( F )  <%~_~(F) +2~m, and 

(iv) the saltus of gm does not exceed ~m at  any  point of F. 

Since ~ = 1  ~m < co, the sequence {gin} converges uniformly to a function h. We note 

that  h is continuous on F, since for every x E F,  and every  m, the saltus of h at  x is less 

than  
Oo 

T ~ r n  

Since {tin} is a null sequence, the saltus of h at  x is zero. 

Moreover, by  lower semicontinuity, 

~h (F) ~ lim inf %~ (F) < a s (F) + 2 ~ ~m < as (F) + 2 ~. 
m m = l  

Having established this, we now order and relable the countable set of frames 2'~i...jk as 

F 1, F~ ..... F . . . . . . .  

Let  ~m>0 be such that  ~ = 1  ~m<e. For each r e = l ,  2 ... . .  modify g in the frame Fro, as in 

the above construction, so tha t  
~h(Fm) < ~(Fm) +Vm. 

The resulting function h defined on Q is equal to ] on V, is approximately continuous at  

every xE V, is continuous at every xEQ- V, and 

~(O) < ~s(O) + ~ .  

This completes the proof of the direct par t  of our main the0rem. Specifically, we 

have proved: 
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For  every ] E s and e > 0 there is an approximate ly  continuous g such tha t  if E = 

Ix:/(x) #9(x)] then  ~r(E) < e  and %(E) <e.  

10. We now turn  to a proof of the converse. I n  this connection, the main fact  is t h a t  

if /E 14 is approximate ly  continuous then /E s We consider /E ~4 with support  in the in- 

terior of a cube Q. For  a giver~ i = 1 . . . .  , n, we consider the  linear Blumberg measurable 

boundary  u, as defined in w 3, in direction xv Let  Q=Q, x (a, b). For  each 2,EQt and 

x, E (a, b), let V(x) = V(xl, 2~) be the var ia t ion of u(x,, 2~) on the interval  (a, x,). Then  V is 

a measurable funct ion on Q. To show this, we proceed as before and  let al<a2<... <a k 

,be such tha t  max  (ax-a, a2-a 1 . . . . .  b--ak)<l/m, and the  u(aj,'2,) are measurable for  

= 1 . . . . .  k. Then let 
~a(*,,z,)= ~ I~(aj, z,)-~(~j ~,~)l- 

aj<xt  

The functions v~ are measurable and 

V(x) = lim v~ (x). 
m 

Suppose now tha t  l E A  but  [(~E. Then  there is an  i = 1 ,  ..., n for which the  associated 

V(x) is discontinuous at  a set of points in Q~ which is no t  of measure 0. For  any  pair  of 

reals s and t, s<t, let T = [ x :  V(x)<s] and U = [ x :  V(x)>t]. Then T and  U are measurable 

sets. We associate functions ~ and vj, defined on Q~, with the sets T and U. For  each 

~EQ~, let 
r  = sup [x~: (xi, ~ )  E T] and yj(~) = inl [xv (x~, ~ )  E U]. 

� 9  r for every s EQv We note tha t  the functions ~ and  y~ are measurable. 

~Since their measurabil i ty does not  seem to be s tandard  knowledge, we indicate a proof. 

The measurable set T is the union of line segments l(~), with end points (a, ~ )  and 

,(r s Let  ~ > 0. There are intervals 

11 .. . . .  In ;  JD J2 .. . . .  K1, K2 .. . .  , 

~such tha t  ~ m(J~) < ~ and ~ m(K,) < ~/, 

m oo  m o r  

with z u Jj) and Z t u 

~(e.g. [12]). Associate with each interval  I = I j  • (c, d), the funct ion ~ defined b y  $ ( i t )=0 ,  

~ir  and ~(~i)=d-c, ~lEIj. Now, let rj be the funct ion associated with I~, j = l  ..... m, 

sj the  funct ion associated with J j ,  j = l ,  2 .. . . .  and  t~ the funct ion associated with Kj, 

] = 1 ,  2 .. . . .  in the above manner.  Then, let 
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m ~ m 

~ = s ~  re + j ~ s j ,  and ~2 = j . ~ r r  t i. 

The functions r and r are measurable and summable, r162162 for every 

~ E Q~, a n d  j'r r < ~Q~ r + 2~]. Since this holds for every ~ > 0, r is measurable. Similarly, 

is measurable. 

The set for which r is measurable. Since V(x) = V(x,  ~)  is monotonically 

non-decreasing in x~, for every ~ ,  and is discontinuous for some x~ for each ~ in a set 

which is not  of measure 0, there is a pair s, t, with s < t, for which the corresponding func- 

tions r and ~ are such tha t  the set 

A = [~,:r = ~(~)] 

has positive measure. We shall henceforth assume this holds and consider the function 

defined on the set A. 

11. We need a fact about  approximate differentiability of measurable functions. For 

the one variable case, such a result has been obtained by  Burkill and Has lam-Jones  [3], 

and for the two variables case, the kind of result we need follows from a theorem of Ward  

[24]. I t  seems tha t  the methods of neither author external readily to n dimensions. We are 

able to give a simple proof of the fact we need. 

Let  / be a bounded measurable function defined on a measurable sot A of positive 

measure. There is an increasing sequence {Am} of closed sets such that  / is continuous 

on each Am and m(I.Jn%l An)=m(A).  Let k > 0 ,  and for each xEA,  let 

B(:~ = [ ./(y) - / ( ~ )  < ~] [Y" ly-xl- 

Let a(x, r) be the notation for an open ball of center x and radius r. Let 0 < r  < 1. Let  r o > 0. 

Let  G c A  be the set of points x e A  such that, for some r<ro,  the relative measure of 

B(x ~) in ~(x, r) exceeds r Let  Gm be the set of points xeArn such tha t  for some r<r  o the 

relative measure of B y  ) f3 A m in a(x, r) exceeds r Then 

~ = ( U  am) u z ,  
m = l  

where Z has measure 0. Each am is easily seen to be open relative to A m, so tha t  G is 

measurable. 

This remark implies tha t  if, for each xEA ,  

A~ ~ [u /(u) -/(x) 
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then the set of points x e A  at  which the density of Ax is 1 is measurable, and for every 

0 < 0 < 1  and r0>0  the set of points x e A  for which, for all r < r  o, the relative measure of 

A,  in a(x, r) is at  least 0 is measurable. 

We now let 0 <1 be so large tha t  there is a r independent of r, such tha t  if 

xea(y,  r), yEa(x, r), S~a(x ,  r) has relative measure in a(x, r) at  least 0, and T c a ( y ,  r) 

has relative measure in a(y, r) at  least 0, then the diameter of S N T exceeds r 

Suppose the set of points x e A  at  which the density of A,  is 1 has positive measure. 

Then, there is an r0>0,  such tha t  the set E of points x such that ,  for every r < r  o the rela- 

t ive measure of A,  in a(x, r) is at  least 0 has positive measure. Let  x e A  be a point at  

which the density of E is 1. There is an r < r  0 such tha t  the relative measure of E in a(x, r) 

exceeds 0. Let  y e E t? a(x, r) be such that  

kr r 
/(y) > sup [/(z) : z 6 E f~ a(x, r)] - 2 

Now, A~ has relative measure at  least 0 in a(y, r). The diameter of the set 

A~ f3 a(y, r) f3 E f3 a(x, r) 

accordingly exceeds r There is thus a u in this set such that  / y - u / > r  Then 

kr r 
/ (u) - / (y )  >/k I ~ -  Y l ~ U 

But  then / (u )  >sup  [/(z):zEE N (~(x, r)]. Since u E E  n a(x, r), this contradiction shows that  

the set of points x e A  a t  which the density of Ax is 1 has measure 0. By  considering the 

function - / w e  obtain a similar result regarding sets a t  which ( ] (y ) - / ( x ) ) / ]y -x]  < - k .  

Finally, the boundedness restriction is redundant.  We thus have the 

L ~ M ~ A  2. _7/ / is a measurable/unction o / n  variables on a measurable set A, then/or 

every k > O,/or almost all x E A, the upper densities at x, el the sets/or which (/(y) - ] ( x ) ) / ] y -  x I 

> - k  and ( / ( y ) - / ( x ) ) / l y - x  I <k, are positive. 

Remark. In  contrast with Lemma 2 it is possible for the approximate limit of 

]/(y) - / ( x )  I / l Y - x ] to be infinite almost everywhere. 

12. We now show tha t  ]E•  a n d / ~ C  implies tha t  there is an x at  which / is not 

approximately continuous. We start  with the measurable function ~ defined on the set 

A c Q~ of positive measure. For  every ~ EA, 

I lira u ( x ~ , ~ ) -  lira u(x~,~)l>~t-s .  
x~ --> r + z~ ~ ~(~h) - 
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We may  assume then that,  for every ~,, in a subset of A of positive outer measure, 

lira u(x,, ~2,) ~ lira u(x,, s + (~- s). 
x~ ~r + x~-~ r - 

Letting q=�89 there is then a subset B c A  of positive outer measure, p > 0 ,  and r 

real, such that ,  for every 2, E B, we have 

u(x, 2~)<r, for x~(r163162 

and u(x~, s  for x~E(r162 

We now choose k > 0  so small that ,  for every cube R =  x~=l [xj-h,  xj+h] ,  h>O, the 

conical surface 

with vertex x, meets the lateral faces of R at  ordinates y~ < x~ + h/2, i.e., at  a distance more 

than  hi2 from the upper face of R. The choice k = 1/2n will accomplish this. 

Let  ~ E B be a point of approximate  continuity of r relative to A, using ( n - 1 )  cubes 

in Ql, and a point of outer density 1 of B, and such tha t  the upper densities of the sets 

and 

D~, = [ ~  �9 r - r k] 

D ~ - =  [ ~ , : r 1 6 2 1 6 3  
�9 

at  s are positive, say greater than  3w>0.  There is an h0>0, h0<p/2,  such tha t  for any  

( n - 1 )  cube IcQ~, with center s and edge less than  h0, the relative measure in I of the 

set C for which Ir162163 <p /2  exceeds l - w ,  and the relative outer measure of B 

in I exceeds 1 - w .  There is a sequence {Ira} of ( n - 1 )  cubes, with edges smaller than  he, 

and converging to zero, in each of which the relative measure of D~ exceeds 3w, and 

another such sequence {I~}, in each of which the relative measure of D '  ~ exceeds 3w. 

The relative outer measure of B N C N D~ exceeds w in each /,,, and the relative outer 

measure of B N C N D'- exceeds w in each I~.  
x~ 

For each lm, we consider the n cube K m with center (r s and projection Im 

in Q~, and for each Ira, we consider the n cube K~ with center (r163 ~ )  and projection 
p 

Im in Qe 

Let  S = B N C N D~ and T = B N C N Dx; also let hm be the edge of K~ and h~ the 

edge of K~, re=l,  2 . . . . .  For each ~ E I  m N S, we have 
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r v h~ 
- ~ < r < r + ~ .  

Now, since 9~ E B, u(y~, 9~) > r + q for all y E (r r +P)- I t  follows that  u(y~, ~ )  > r + q, 

for all y~E(r r  The relative outer measure in Im of the set for which 

u(x) > r + q  then exceeds �88 m = l ,  2, .... 

Similarly, for every ~ fi I~n/1 T, we have 

4"  

Also, u(yi, ?~)<r  for all y ~ E ( r  r so that  u(y~, ~ ) < r ,  for all y~E(r  

r  The relative outer measure in 1~ of the set for which u(x)<r  then exceeds 

�88 r e = l ,  2 . . . . .  Thus, since u is equivalent to ], / is not approximately continuous at 

(r xi). We thus have 

LEMMA 3. I / /E . ,4  is approximately continuous then ]E C. 

13. In  order to complete the proof of our theorem, it remains only to show that  if 

/EM a n d / r  then there is a k > 0  such that,  for every gEE, if E=[x: / (x)#g(x)] ,  then 

~g(E) > k. Jus t  as in the above discussion, there is a measurable A c Q~, of positive measure, 

a measurable function r on A, and q > 0 such that,  for every ~ E A, 

I lim u(x~,~j)- lira u(x.x~)l >q. 
z~-~r xi~r 

There is then a B c A  of positive outer m e a s u r e / x > 0  and a p > 0  such that  the saltus 

of u is less than q/4 on each of the intervals 

for every ~ E B. Let  

(4(~ , ) -p ,  4(~)) and (4(~ , ) ,4(~)+p)  

k =  min (~tP, ~ )  �9 

Suppose gEL, and let E =  [x:/(x)#g(x)]. Let  C c  B be the subset for which a t  least 

one of E D ( r 1 6 2  or E ~ ( r 1 6 2  holds, and let D = B - C .  The outer 

measure of either C or D is a t  least �89 = �89 

a) Suppose me(C) >~ �89 Then 

gg( E) ~ m( E) >~ 2p . �89 >~ k. 

b) Suppose me(D ) >~ �89 



CHAI%ACTERIZAT~ON OF LINEARLY COIgTINUOUS FUNCTIONS 185 

For each ~ 6 D ,  there are x ~ 6 ( r 1 6 2  and y~6( r162  such tha t  

u(x~, ~)=g(x~, ~2~) and u(y~, ~)=g(y~, xi). There is then a subinterval (a, b) of (x~, y~) with 

r  b), u(x~)~=g(x~) on (a, b), except possibly a t  r  and ]g(b)-g(a)l>q/2.  Then 

V(g, ~ ,  (a, b))>q/2 and 

~g(~) ~> I~,l (E) >-q ~ - q ~  ~> k. 
2 2  4 

We have thus proved. 

L ~ M . ~  4. I ] / E ; 4  and/ (~L then there is a k > 0  such that i / g E L  and 

E = [x:/(x) ~=g(x)] 
then ~g( E) > Ic. 

Lemmas 3 and 4 prove the converse of the following theorem whose direct par t  was 

proved earlier in the paper. 

T~Eo~wl~.  I / / 6 ; 4  t h e n / e L  r only i / /or  every e > 0  there is an approximately 

continuous g such that i / E  = Ix:/(x)4=g(x)] then ~r(E) < e and ~g(E) <~. 

14. I t  seems appropriate to remark on the case of 2 dimensions. In  [10], we obtained 

a result like the above theorem except that  approximate continuity m a y  be replaced by  

continuity. Thus, for this case, if /6  ;4, then /6  L if and only if for every ~ > 0 there is a 

continuous g and an approximately continuous h such tha t  if E=[x: / (x)4g(x)]  and 

F = [x:/(x) 4h(x)] then 0~f(E) <~, ~f(F) <e, gg(E) <e  and o~h(F ) <e. One of these results 

is stronger in one direction and the other is stronger in the other direction. 

I t  may  be instructive to see how the  approximation by  means of continuous func- 

tions may  be proved, for n =2, using the methods of this paper. Let E >0.  We consider 

the sets Qk, k =  1, 2 ..... each the union of finitely many  pairwise disjoint closed squares, 

designated of rank ]c, such tha t  each square of rank k + 1 is in the interior of a square of 

rank /c, and the zero dimensional closed set V = N ~-~ Q~ satisfies ~(V)  > a~ (Q) - e .  More- 

over, / is uniformly continuous on E = V 0 ( [J ~=~ ~Q~) wi th /n  converging uniformly to ] 

on E. Using the technique o~ this paper, slightly modified so that  g does not differ by  too 

much within a frame from the values of ] on the boundary of the square of which it is 

the frame, we may  obtain a function g such tha t  

a) g(x) =/(x), z e  V, 

b) %(Q) <a~(Q) +e, 

c) g is uniformly continuous on E, 

d) g is continuous on Q -  V. 

We indicate how g m a y  be modified to a continuous ~unction h on Q such tha t  h(x) =/(x), 

x ~ V, and ~(Q) ~< ~g(Q). 
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Letting Q=Qo, on each set Q~_l- in t  Q~, i =1,  2 ... . .  define 

~v~ = m a x  [g(x):xE~Q~_ 1 U aQ~], r = rain [g(x):xE~Q~_ 1 U aQ~]. 

Then define h as [ ~~(x if g(x)>~,  

h(x)= ) if r  

if g(x)<r 

Then ~h(Q,-1 - i n t  Q,) ~< ~a(Qi-1 --int Qi), the function h is continuous and our result follows. 

15. The theorem of this paper, and in particular Lemma 3, reveal a surprising con- 

nection between linear continuity and approximate  continuity, the latter being an n 

dimensional notion. I t  may  be of some interest to note tha t  no such relation holds for 

other forms of continuity. 

For this purpose, we give an example of a function / defined on 3 space such tha t  

/E M, / is approximately continuous, and every g equivalent to / is not continuous, as a 

function of two variables, on any  plane parallel to a given coordinate plane. 

Let  F be a function of 2 variables, defined on the closed square [0, 1] x [0, 1], which 

is zero, except on a sequence {an} of disjoint closed disks converging to (�89 �89 The {an} 

are such that  the sum of their circumferences converges, and the density of the set [J an 

is zero at  (�89 �89 We define ~' so tha t  its graph on an is a right circular cone of alti tude 1. 

We define ] on the unit cube by  means of 

/(x, y, z) = .F(x, y). 

The function / is continuous a t  all (x, y, z) for which (x, y) ~:(�89 �89 and is approximately  

continuous a t  the points (�89 �89 z). Finally, if g is equivalent to /, then for almost  all 

z E [0, 1], / is not continuous at  (�89 �89 z) as a function of (x, y). 

16. We now show that  the class s is invariant under bilipschitzian mappings. By  a 

bilipschitzian mapping we mean a mapping / which is one-one between the open cube Q 

and a set P in n space, for which there is an L such that  for every x, yEQ, I/(x) -/(y)] < 

L i x - y  I, and for every ~, ~ EP, I/-1(~) - / -1(~)  [ < L I ~ - ~ I .  A set S c  Q is said to be d-open 

[14], if S is measurable and the density of S is 1 at  every point of S. We show tha t  

bilipschitzian mappings take d-open sets into d-open sets. First, there is a constant K > 0, 

depending only on n and L such tha t  for every cube R c Q ,  with center x , / (R)  contains 

a cube R'  and is contained in a cube R", with centers a t / (x ) ,  such that  

, 1 1 
m(R ) >-~ m(R) and m(R) > ~ m(R"), 

and the same holds for / -1,  for the same K. 
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Let  x 6 S  and let R be a cube with center fix). Let U be the cube of center x, con- 

taining /-I(R), with m(U)=Km(R) .  Let e>0 .  There is an 7 > 0  such that,  if m(R)<u ,  

the relative measure of S in U exceeds 1 - ~ / K  2. The U - S  may  be covered by  a sequence 

{Ik} of cubes such that  

~ m ( I k ) < ~ m ( U ) .  
k = l  

Then, 
k = l  k = l  

and m(/(S) n R) > (1 -~?)m(R). 

I t  follows that  /(S) is d-open. Since a function is approximately continuous if and 

only if the inverse images of open sets are d-open, it follows tha t  if g is approximately 

continuous, and / is bilipsehitzian then go/is  approximately continuous. 

Using the constant K above, it is a standard fact tha t  if G is an  open set, g is a meas- 

urable function, and ] is a bilipschitzian mapping, then 

] < K[ f/o/ 

In  particular, this holds if g is the area integrand for a lipschitzian function h. Then, for 

any lipschitzian h and bilipschitzian f, and open set G, we have 

~za(/(G)) < K~zhof(G). 

Now, let G be open, and let {Gin} be a sequence of open sets with 

Gm CGm+l, m ~ l ,  2 ... .  , 

and 5 G,n = G. 
m=l  

Let h m be lipschitzian on G~, m =  1, 2, ..,, with {hm} converging in measure to a function 

h and {O~hmof(Gm) } converging to 0~aor(G). Then 

o~h(/(G)) <lira iaf o:~(/(Gm)) <. K lim ahmos(G~) = Ko:aor(G). 

I t  now follows immediately from our theorem tha t  the following corollary holds. 

COI~OLLX~u J[/ g is linearly continuous and o/ /inite area, and / is bilirschitzian , 

then go/ i s  linearly continuous and o/ finite area. 
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As a consequence of this corollary, functions which are in s with respect to any 

rectangular coordinate system are also in s with respect to any  other rectangular coordi- 

nate  system. 

Let  /EE  with respect to a coordinate system (xl, ..., x~). The function g, equivalent 

to /, which is linearly continuous in this coordinate system, was obtained in [9] as the 

limit of the integral means {/m} o f / .  Since/Et~ with respect to every rectangular coor- 

dinate system, we may  now draw the following consequences. 

a) The integral means {/m} converge to g on a set S whose complement projects on 

every hyperplane as ( n - 1 )  measure zero. 

b) The function g, defined on S, is continuous along almost all lines in every direction. 

e) I f  3 /  is any  "smooth"  (i.e. C 1) ( n - l )  dimensional manifold, then g is defined 

( n -  1) almost everywhere on 3/.  

17. In  this last section, we discuss the completeness of s with respect to the metric 

d(/, g) = (S(I, g)+A(~r, o:~) 

which was introduced in w 1. We shall also note that  the space ~ of functions whose partial  

derivatives are functions is complete with respect to this metric. 

We first consider the one variable case. A function ] ~ 1: if it has an equivalent con- 

tinuous function, with compact support, which is of bounded variation. Suppose then 

that  / is of bounded variation and not equivalent to a continuous function. I t  may  be 

taken so that  there is, for example, a /c  > 0 such t h a t / ( x  + ) > / ( x - ) + / c ,  and a (S > 0 such 

tha t  the variation of [ is less than  k/8 in each of the intervals (x-(S, x) and (x, x +(S). Now, 

there is an ~ > 0  such tha t  5(], g)<~] implies there are ~:lE(x-5,  x) and r x+(s) for 

which ]/(r162 <k/8  and ]/(r162 </c/8. Suppose then tha t  g is continuous and 

tha t  5(/, g)<~.  There is then a pair of intervals I c  (x-(s,  x) and J ~  (x, x+5) ,  on which 

/4=g and ou which the sum of the variations of g exceeds ]r This shows tha t  s is 

complete. 

For the n variables case, suppose /E A and /~E.  Then, for some i = 1 . . . .  , n, for a 

set E of points ~ ,  of positive outer measure, there is a k > 0  and (S > 0 such that,  say, for 

each xi E E there is an xi(s such that  

/(x~(~) +,  ~ )  >/(x,(~3 - ,  ~,) + k, 

and the variation of/(x~, "2~) in x~ is less than  ]r in each of the intervals (x~(~f)--6, x~(~)) 

and (x~(~), x~(s There is an ~ > 0  such tha t  (S(/, if)<~ implies tha t  for every s not 

in a set of measure less tha t  �89 for every interval (x~, xi+~) there is a ~E(x~, x~+(s) 
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such that  [/(~)-g($~)] <k/8. So, let g be continuous and such that  (3(/, g)<~.  Then there 

is an F c  E with me(F)> lm~(E), such tha t  for every ~ E F there are intervals 

I c  (x~(2~)-(3, x~(~)) and J c  (x~(~i) , x~(~)+(3), 

on which ] # g  and on which the sum of the variations of g exceeds k/2. I t  follows tha t  

k 
A(~r, ~g) > ~: me(E) 

so tha t  g is complete. 

We turn to the completeness of :~, and again consider the one variable case. Let  /E C, 

with support in (a, b) be non absolutely continuous. There is a k > 0  and a compact set E 

of measure zero, such that  for any (3 >0,  there is a disjoint set of  intervals 

[al, bl] . . . .  , [am, bm], 

the sum of whose lengths is less than  (3, with 

I I ( b , )  - I > k. 
i = 1  

Now, let g be absolutely continuous. There is a (3 > 0 such tha t  for every S, of measure less 

m a than  (3, ag(S) < k/2. Then, if S = lJ~=l[ ~, b~], where re(S) <(3 and ~7'=1 ]/(b~)-/(a~)] > k, we 

have as(S)>k.  Since gr(A)=~g(A), for any  A on w h i c h / = g ,  it follows tha t  there is a sub- 

set B ~ S  on w h i c h / # g ,  with ~r(B)>cog(B)+k/2. Since C is complete, it follows tha t  :~ 

is complete. 

We leave the necessary adaptat ion for the n variables case to the reader. 

A result of J .  Michael [16] in a form given by  author [11] asserts that  for every 

/E M, for every ~ > 0, there is a g E C 1 such tha t / (x )  =g(x), except on a set of measure less 

than ~, and ] a~(Q)-gg(Q)] <~. This result implies that  for e v e r y / E  :~ there is a g E C  1 SUCh 

that  if E = [x:/(x)#g(x)], then ~ ( E ) < ~  and zoo(E)<r Indeed, this gives a characteriza- 

tion of :~ similar to the one given for C in this paper, but  with continuously differentiable 

functions in the position of the approximately continuous ones. 

Using this fact and the results of this paper, we may  make the following assertions, 

always using the above metric. 

a) In  one dimension, the space of continuous functions of bounded variations is 

complete. 

b) In  two dimensions, E is the completion of the se t  of continuous functions in A. 

c) In  n dimensions, s is the completion of the sot of approximately continuous func- 

tions in A. 

d) :~ is the completion of C 1. 
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