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A CHARACTERIZATION OF MINIMAL HOMOGENEOUS

BANACH SPACES

HANS G. FEICHTINGER

Abstract. Let G be a locally compact group. It is shown that for a homogeneous

Banach space B on G satisfying a slight additional condition there exists a minimal

space fimm in the family of all homogeneous Banach spaces which contain all

elements of B with compact support. Two characterizations of Bm¡1¡ aie given, the

first one in terms of "atomic" representations. The equivalence of these two

characterizations is derived by means of certain (bounded) partitions of unity

which are of interest for themselves.

Notations. In the sequel G denotes a locally compact group. \M\ denotes the

(Haar) measure of a measurable subset M G G, or the cardinality of a finite set.

®(G) denotes the space of continuous, complex-valued functions on G with

compact support (supp). For y G G the (teft) translation operator ly is given by

Lyf(x) = f(y ~ xx). A translation invariant Banach space B is called a homogeneous

Banach space (in the sense of Katznelson [9]) if it is continuously embedded into

the topological vector space /^(G) of all locally integrable functions on G,

satisfies \\Lyf\\B = 11/11, for all y G G, and lim^iy-- f\\B - 0 for all / G B
(hence, as usual, two measurable functions coinciding l.a.e. are identified). If,

furthermore, B is a dense subspace of LX(G) it is called a Segal algebra (in the

sense of Reiter [15], [16]). Any homogeneous Banach space is a left L'((7)-Banach-

module with respect to convolution, i.e./ G B, h G LX(G) implies h */ G B, and

\\h */\\b < ll*Uill/IJi» m particular any Segal algebra is a Banach ideal of LX(G).

In the sequel we shall write Bm for the space {/|/ e B, supp/compact}.

Lemma 1. Let V = V~x be an open, relatively compact subset of G. Then there

exists a subset Y = (.y,),e/ Ç G such that

g = U ytv2, (i)
,6/

and

sup \{i\yKx n y,K2 * 0}| < \KXK2XV\ \V\~X < oo (2)
yeG

for all pairs Kx, K2 of compact sets in G. In particular, (yjW)ieI defines a locally

finite covering of G for any compact subset W D V2.
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56 H. G. FEICHTINGER

Proof. By Zorn's lemma there exists for each V a set Y = {y¡}ie/ that is

maximal among those sets Z such that

zxVnz2V = 0   for zx, z2 G Z, z, =?* z2. (3)

Then G = U,e/y¡V2, and (3) imphes for any pair Kx, K2 of compact sets and

y G G

\{i\yKx n ytK2 * 0}| < \{i\yKxK2xV D v,F}| < I^Ä^I |K|-'.

Remark 1. This result coincides with Lemma 3.2 of [2]. It is related to the

covering lemma due to Emerson and Greanleaf ([4], cf. also [13], or [1, p. 70]).

Theorem 2 (partition of unity). Let B be a homogeneous Banach space on G

that contains positive functions u ¥= 0 with arbitrary small support, and let W be an

open subset of G. Then there exists a bounded partition of unity (<p(),e/ G B, i.e.,

2  <p,(x) = 1    and    supltotl« < C < oo, (4)
¡e/ ¿6/

and

supp <p, Ç v, W  for all i G I. (5)

Furthermore, the family (v,),e/ satisfies (2) for some V where Va G W.

Proof. Choose V and { v,} such that V = V~x, Va G W and such that { v,}

satisfies Lemma 1. Then whenever tp G ®+(G) has i|<= Ion K2, supp x¡/ G V3 and

0 < V» < 1, the function ^ defined by ^ = 2ie/Lj,»// satisfies

1 < *(x) < Q   for all x G G, (6)

where CK is independent of v//. If we set i/<, = (Lyy¡/)'$t~x we have

2 Ux) = L   SUPP *! £ X-73-       0 < *<*) < 1 for x G G. (7)
¡ei

Choose now u G B such  that u > 0,   \\u\\x = 1,  supp u G V. Then we have

(2^,) * u = 2(V», * «) = 1. Set <pf = »//,. * u. Then

2 <p,.(x) ■ 1,       supp <p,. ç v,. Va G v,. W,   and (8)

sup Hull, < sup ||*||,||«||B < |F3| ||«||, < oo. (9)
¡el iei

General hypothesis. From now on we suppose the following situation to be given:

B is a homogeneous Banach space on G, which is a Banach module (with respect

to pointwise multiplication) over a homogeneous function algebra A, i.e., we

suppose that A G Cb(G) is a homogeneous Banach space as well as a regular,

selfadjoint Banach algebra (with pointwise multiplication), such that ||A/||B <

||AHJ/||jforallAeil,/€J.
Remark 2. For many examples of spaces B there exists a natural Banach algebra

Ax G L°°(G) satisfying only Lx * Ax G Ax and \\lyh\\Ai = \\h\\A, for all h G A1,

y G G (e.g. A1 = L°°(G)). Then, however

A] := {h\h G A1, \\Lyh-h\\A>^0 for y ^e)
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MINIMAL HOMOGENEOUS BANACH SPACES 57

is a homogeneous function algebra, i.e. the general hypothesis is satisfied for

A = A\.
Now we can give a first characterization of the minimal homogeneous Banach

space containing all elements of B with compact support.

Theorem 3. Let B satisfy the general hypothesis. Then there exists a minimal space

BnÚD in the family of all homogeneous Banach spaces C satisfying fia G C. /?„„„ can

be characterized as follows: Let an open, relatively compact set Q G G be given. We

set

*l.-{/|/-2 IyJn,ynGG,fnGB,
y n

supp/„ C Qforn > 1, 2 ll/JI* < oo),  (10)
n J

and

ll/llmin = inf{2ll/JIB,/=2   V»}' (")

the infimum in (11) being taken over the representations of fas in (10). B n i\(G) is a

dense subspace of B^^, and if B contains positive elements with arbitrary small

support, then Bmin is a Segal algebra.

Proof. It is a matter of routine to verify that || !!„„„ defines a translation

invariant, complete norm on B^^. Furthermore, it follows from the definition that

the elements of the form g = 2* _,£>,__/,, constitute a dense subspace of Bmin. It will

therefore be sufficient to show that \\Lzg — gHm^—>0 for z —*e for such g's. We

have
I   k

\\L2g - «Uni,, =      2    hSh^zyJn - fn)
II»-«

<   î\\Ly^Jn-fn\\B<e,
n — 1

if we choose U G G such that \\Ly-ivJn - fn\\B <e/k for all z G U and

(y~ xUyn)snr>ofn G Q, 1 < n < k. (It is now clear that B^ is a homogeneous

Banach space continuously embedded in B. Also, g can be approximated by

elements of the form u * g G (®+(G) »I¿)n¿C ®(G) n B.)

Let now / G Bm be given. Then (by Theorem 2) there exists a finite set F G I

such that 2,ef <p¡(x) = 1 for all x G supp/, and supp tp, G y¡Q. That implies

/= S 9J- S ^(Vte/))-
i e F ¡EF

Since supp(Iyrt(<pJ)) Gy~x supp «p, G Q for all i G F, f belongs to 5,^ as a

consequence of the general hypothesis.

Let now C be any homogeneous Banach space such that Ba G C. Then, by the

closed graph theorem, there exists C, > 0 such that ||/||c < C,||/||B for all/ G B

satisfying supp/ G Q~. That implies that, for all/ G 2?^,

Il/llc < 2 Ulyjnïïc = 2 ll/Jlc < C,2 ll/JI
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58 H. G. FEICHTINGER

for any representation of / Hence, B^ G C, and ||/||c < CJI/H,^ for all / G

Bmin. The proof is now complete.

It should be mentioned that the above characterization also implies that different

relatively compact sets Q with nonvoid interior define the same space with an

equivalent norm. That can also be shown directly, using Theorem 2 (for similar

assertions cf. [1], [2], [7] or [12]).

Corollary 4. Let A be homogeneous function algebra. Then v4min is a Segal

algebra on G. In particular, Aaún is a Banach ideal in Ll(G) (with convolution) as

well as in A (pointwise multiplication). Furthermore, AnÚB is the minimal element in

the family of all homogeneous Banach spaces which are at the same time Banach-A-

modules with respect to pointwise multiplication.

Proof. Since A is regular and self adjoint, there exists elements u G A, u > 0,

with arbitrary small (compact) support (contained in V = V1). Hence, Amin is a

Segal algebra by Theorem 3. Since, for obvious reasons, A ̂  is also a (pointwise)

Banach-^4 -module, it is sufficient to show that any homogeneous space C with that

property satisfies C D Aa. Let/ e A$, with supp/ = K G Gbegiven, and let u be

as above. Choose now any k G ñ+(G) such that k(x) = 1 for all x G KV. Then

k » u(z) = 1 for all z G K, and k * u G ®(G) * A G A. We obtain/ = (k * u)f G

AB G B, and our assertion is verified.

Next we make use of the partition of unity in order to give another description of

^min-

Theorem 5. Let B satisfy the general hypothesis, and let g G As, g ^ 0 be given

such that g(x) = const on some open set U G G. Then

Bmin = Bx = {/ G BXoc, \\f\\Bl-fj{lyg)f\\B dy < oo J, (12)

and the norms || \\B¡ and || H^ are equivalent on i?^.

Proof. It follows from (10) that we have fi,^ Ç Bx, provided that there exists

C, > 0 such that

sup IIVII*. < Cx\\f\\B   for all/ Ê B, with supp/ G Q. (13)
z£G

But (13) follows from this:

f \\LygLJ\\Bdy< |z(supp/)(suppg)| ||*|U|/||,.
JG

There remains the difficult part of the proof, i.e. the inclusion Bx G £„,„,. The

following lemma will be used.

Lemma 6. Let (rfI.)/e/ G A be a partition of unity, as in Theorem 2, bounded in A.

Then there exists C2 > 0 such that for any subset J G I the function q>j = 2,ey <p¡

satisfies

IIMII-, < C2\\f\\Bi   for allf G Bx. (14)
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MINIMAL HOMOGENEOUS BANACH SPACES 59

Proof. Making use of (2) we have, for all/ G Bx

ll.fr/ll», = Í \\Lyg(fiPj)\\B dy < f 2 IH>g(.fo)ll, dy
JG JG

(the sum being taken over all i such that v(supp g) n supp <p, 9* 0)

< supllm,.^ • |(suppg)K5| \V\~lf \\{Lyg)f\\B dy = ¿jl/fo

Proof of Theorem 5 (continued). Suppose now there exists/ e £,^£„,„1. Since

2?, is a translation invariant space, we may suppose that U is a neighborhood of the

identity and g(x) = 1 on U. Let V = K " ' be an open set such that V5 G U, and

let \p G A be such that

uV(jc) = 1    for all x G Vs, and supp 4, G V6. (15)

Let further (<p,-)i6/ be the bounded partition of unity in A given by Theorem 2 (with

IF = F4). Then, by Lemma 6

/ ll(^)MII» dy < IMI,, C2J IKV)/», dy < 00 (16)
'G •'G

for all subsets 7 G I. On the other hand/ £ /?„„„ implies that for any k GN there

exists I(k) = {>„ . . ., ym] G I such that

s(k)

2 lUWU > k, (17)
i-i

/= 2,Z),(Lj,-i/<p,) being a representation of g as in (10) (recall that supp(ftp¡) G

y¡Va; cf. (8)). We may suppose H/tpJIa > II/Pj+iIIb for all s. Now we claim that for

some C3 > 0 it is possible to choose a subset J(k) = {ys¡, . . ., y    } such that

y*n V1 n vJm F4 * 0   for /i * m, and j„ < C3w. (18)

That subsequence can be obtained by induction. Givensx,. . . ,sr one sets

5| \\fipM\\B = maxl\\f<pn\\B,yn $ !J y^vA  . (19)

Since for i fixed, there are at most | Fl2| | F|_1 (= C3) distinct elements in (y3)¡*k\

(cf. (2)) such that ys Gy3Vn, we obtain sr+x < C3r + 1 < C3(r + 1). Fix now

s¡ G J(k). Then, by (18), for y G ysV,

supp(^) n ySj Va G ys¡ V n ySj Va = 0   wheny 9» Í. (20)

On the other hand (15) and (8) imply

Lyxp(x) = 1    for x G y¡ Va d supp <p,.. (21)

It follows from (20) and (21) that one has

IIVOWH* = HM(-M)H* - II-MHj   for' e*K» '" e A*)-     (22)

That and (16) yield

2   \\M\b<\v\-*  2    / \\Ly*Uvw)\\Bdy
,s/(fe) ■V,*'

<(in"1llgll^C2)||/||„. (23)

/'£/(*) lG/(fc)   V|K
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60 H. G. FEICHTINGER

However, (23) gives a contradiction to (17). That completes the proof.

Remark 3. It is not difficult to show that one can drop the condition g = const

on U if A possesses "local inverses", i.e. if A is a standard function algebra as

considered in [15, Chapter II] (e.g. A = C°(G), or A = A(G) = {/|/ G L\G)},

the Fourier algebra). In particular, any two nonzero elements g„ g2 G As define

equivalent norms on B,^. Going back to the characterization of Bmin given in

Corollary 4 one can even show that/ G AmiD iff /G||/(iy/)ll^ dy < oo in this case.

Remark 4. It follows from the proof of Theorem 5 that 2,e/||/<)PI||s defines

another equivalent norm on 5,^ for any bounded partition of unity (<p,),e/ G Ax

as considered in Theorem 2.

Applications. For A = C°(G) (space of continuous functions on G vanishing at

infinity) Theorem 5 gives the main result of [6] (cf. [1, Proposition VIII], and [12]).

We have called (C^G)),,^ "Wiener's algebra" because it coincides with Wiener's

classical algebra for G = R". For G Abelian, Theorem 5 coincides with the main

result of [14] that has been proved there using structure theory. As already

observed in [14] that allows the characterization of certain algebras of functions

considered in [11] by a minimality property. For A = A(G) (Fourier algebra) the

same result has been proved already in [7, II] (Theorem 1.1), also using structure

theory. It can be shown that the space (A(G))min has a number of interesting

properties which suggest it might become a useful tool in Harmonic Analysis. It

will be treated in detail in a subsequent paper.

The choice B = Lp(G), 1 < p < oo (A = C°(G)) gives a family of Segal alge-

bras, defined for arbitrary locally compact groups. Using essentially the arguments

applied in the proof of Theorem 5 one shows that (Z/)min coincides with ll(Lp) (G

Abelian, cf. [1]), with W (see [10]), or (Lp, ll) (G = R", cf. [7]), or with Zj,, as

defined in [2]. In particular, all these spaces coincide for an arbitrary locally

compact group (as far as they are well defined). It is left to the reader to check the

details.

It is clear that more general spaces are obtained if one replaces the scale of

//-spaces by a more general family of solid Banach function spaces, e.g. Lorentz

spaces or Orlicz spaces. The main advantage of the approach given above relies on

the fact that our characterization is not limited to the case of solid spaces. It is also

possible to consider Bmin for homogeneous Banach spaces B whose elements satisfy

certain smoothness conditions. Thus, for example, our results apply to the classical

Lipschitz spaces lip a, 0 < a < 1, since these spaces are homogeneous function

algebras on R" (cf. [19, 2.8]). These spaces, in turn, may be considered as the most

simple examples (corresponding to p = q = oo) of Besov spaces. The most general

family of examples in this direction are the so-called spaces of Besov-Hardy-Sobo-

lev-Triebel type BßQ and F* on R", with 1 < p, q < oo, s > 0. These two

three-parameter families of spaces are treated in detail by Triebel in [17] and [18].

According to Theorem 2.6.1 of [18] these spaces satisfy the general hypothesis for

A1 = C, r > r(p, q, s): Cr = {f\Daf G Cb(Rm) for \a\ < r), with the norm ||/||c,

= 2H<J|Z>a/||00 (cf. Remark 2), or for A = closure of C^°(R") in C" (for a related

statement see [3, Theorem 4.5]).
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MINIMAL HOMOGENEOUS BANACH SPACES 61

We conclude by mentioning that (A(G))min is also well defined for arbitrary

locally compact groups, if one takes A(G) to Eymard's Fourier algebra in this more

general context. This, in turn, may be considered as the special p = 2 of the

v4*(G)-algebras of C. Herz (cf. [5]).

Acknowledgement. The author is indebted to J. P. Bertrandias for discussions

on related topics during a visit in Grenoble. At this occasion he also pointed out

the utility of bounded partitions of unity to the author.

Added in proof. A summary of results concerning (A(G))min =: S0(G) and its

dual (treated in [7]) are given in the paper Un espace de Banach de distributions

tempérées sur les groupes localement compacts abéliens, C. R. Acad. Sei. Paris 290

(1980), 791-794. Generalizations of the spaces considered above and in [1], [2],

[6]-[8], [10] and [12] are to be treated in forthcoming papers.

References

1. J. P. Bertrandias, C. Datry and C Dupuis, Unions et intersections Lp invariantes par translation ou

convolution, Ann. Inst. Fourier (Grenoble) 28 (1978), 58-84.

2. R. C. Busby and H. A. Smith, Product-convolution operators and mixed-norm spaces, Trans. Amer.

Math. Soc. (to appear).

3. W. C. Connett and A. L. Schwartz, The theory of ultraspherical multipliers, Mem. Amer. Math.

Soc. No. 183 (1977).

4. W. R. Emerson and F. P. Greanleaf, Covering properties and Foelner conditions for locally compact

groups, Math. Z. 102 (1967), 370-384.

5. P. Eymard, Algebres Ap et convoluteurs de Lp, Séminaire Bourbaki No. 367, Novembre 1969.

6. H. G. Feichtinger, A characterization of Wiener's algebra on locally compact groups, Arch. Math.

(Basel) 29 (1977), 136-140.

7._, The minimal strongly character invariant Segal algebra. I, II (preprints, Wien 1978/79).

8. F. Holland, Harmonic analysis on amalgams of Lp and lq, J. London Math. Soc. (2) 10 (1975),

295-305.

9. Y. Katznelson, An introduction to harmonic analysis, Wiley, New York, 1968.

10. H. E. Krogstad, Multipliers of Segal algebras. Math. Scand. 38 (1976), 285-303.
11. H. Leptin, On onesided harmonic analysis in non commutative locally compact groups, J. Reine

Angew. Math. 306 (1979), 122-153.

12. T. S. Liu, A. van Rooij and J. K. Wang, On some group algebra modules related to Wiener's algebra

M¡, Pacific J. Math. 55 (1974), 507-520.

13. P. Milnes and J. V. Bondar, A simple proof of a covering property of locally compact groups, Proc.

Amer. Math. Soc. 73 (1979), 117-118.

14. D. Poguntke, Gewisse Segaische Algebren auf lokalkompakten Gruppen, Arch. Math. Basel 33

(1980), 454-460.
15. H. Reiter, Classical harmonic analysis and locally compact groups, Oxford Univ. Press, London,

1968.

16._, Ll-algebras and Segal algebras, Lecture Notes in Math., Vol. 231, Springer-Verlag, Berlin

and New York, 1971.

17. H. Triebel, Interpolation theory, function spaces, differential operators, North-Holland, Amsterdam,

1978.

18._, Spaces of Besov-Hardy-Sobolev type, Teubner, Leipzig, 1978.

19. H. C. Wang, Homogeneous Banach algebras, Lecture Notes in Pure and Appl. Math., vol. 29,

Marcel Dekker, New York, 1977.

Institut für Mathematik, Universität Wien, 1090 Wien, Austria

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


