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Abstract

In this note, we prove that an operator between reproducing ker-
nel Hilbert spaces is a multiplication operator if and only if it leaves
invariant zero sets. To be more precise, it is shown that an opera-
tor T between reproducing kernel Hilbert spaces is a multiplication
operator if and only if (Tf)(z) = 0 holds for all f and z satisfying
f(z) = 0. As possible applications, we deduce a general reflexivity re-
sult for multiplier algebras, and furthermore prove fully vector-valued
generalizations of mulitplier lifting results of Beatrous and Burbea.
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1 INTRODUCTION

Following common terminology, a Hilbert space H consisting of functions
defined on some set X with values in a Hilbert space E is called reproducing
kernel Hilbert space if all point evaluations

δ(z) : H → E , f 7→ f(z) (z ∈ X)

are continuous. Equivalently, there exists a function K : X × X → B(E)
such that all functions of the form K(·, z)x : X → E belong to H and,
moreover, satisfy the equality

〈f,K(·, z)x〉 = 〈f(z), x〉 (f ∈ H , x ∈ E , z ∈ X).

The function K is easily seen to be unique with these properties and is
usually called the reproducing kernel of H.
An operator-valued function φ : X → B(E1, E2) is called a multiplier be-
tween two reproducing kernel Hilbert spaces H1 ⊂ EX

1
and H2 ⊂ EX

2
if the

pointwise product φ · f belongs to H2 for every f ∈ H1. The collection of
all such multipliers M(H1,H2) obviously is a linear space. For every mul-
tiplier φ ∈ M(H1,H2) we can define the associated multiplication operator
Mφ : H1 → H2 , f 7→ φ · f , which is easily seen to be continuous by the
closed graph theorem.
It is more than obvious that every multiplication operator Mφ has the prop-
erty that (Mφf)(z) = 0 holds whenever f(z) = 0. It is the main result (The-
orem 2.1) of this note that the converse of this statement is surprisingly true
- at least if the space H1 is non-degenerate in an appropriate sense. This re-
sult can be regarded as a purely algebraic characterization of multiplication
operators. As an application of this result, we prove (Corollary 2.2) that
the space MS(H1,H2), consisting of all multiplication operators Mφ given
by S-valued multipliers φ, is a reflexive subspace of B(H1,H2) whenever S
is a reflexive subspace of B(E1, E2). In particular, the space M(H1,H2) of
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all multiplication operators is always reflexive and therefore weakly closed
in B(H1,H2).
As a second consequence of our main result, we obtain an alternative proof
of the following interpolation result proved by Beatrous and Burbea (cf.
[3], Theorem 3.5): Whenever H is a holomorphic reproducing kernel Hilbert
space without common zeroes on a domain D ⊂ Cd, and E ⊂ D is a set of
uniqueness for O(D), then every multiplier ψ on the restricted space H|E

can be lifted uniquely to a multiplier φ on the whole space without increasing
the multiplier norm. The advantage of the approach presented in this paper
is that it works in the vector-valued setting as well.

2 ABSTRACT REPRESENTATION OF MULTI-

PLICATION OPERATORS

In the sequel, a reproducing kernel Hilbert space H ⊂ EX is called non-
degenerate if each point evaluation δ(z) : H → E is either onto or zero. One
can easily show that this is fulfilled precisely if K(z, z) = δ(z)δ(z)∗ is either
invertible or zero for all z ∈ X. It is clear that scalar spaces H (here, scalar
means that E = C) or, more generally, spaces whose reproducing kernel is
of the form K · 1E with a scalar kernel K, are always non-degenerate.

Theorem 2.1. Suppose that E1, E2 are Hilbert spaces, and that H1 ⊂ EX
1

and H2 ⊂ EX
2

are reproducing kernel Hilbert spaces, H1 non-degenerate.
Then, for T ∈ B(H1,H2), the following assertions are equivalent:

(i) (Tf)(z) = 0 holds for all f ∈ H1 and z ∈ X with f(z) = 0.

(ii) There exists φ ∈ M(H1,H2) such that T = Mφ.

Proof. Throughout the proof, the point evaluations on H1 and H2 are de-
noted by δ1(z) and δ2(z), respectively. The fact that H1 is non-degenerate
implies in particular that the mappings δ1(z)

∗ have closed range for all
z ∈ X. We infer that (i) is equivalent to T ∗ ran δ2(z)

∗ ⊂ ran δ1(z)
∗ for all

z ∈ X. This allows us to fix, for every y ∈ E2 and z ∈ X, an element
xz,y ∈ E1 such that T ∗δ2(z)

∗y = δ1(z)
∗xz,y.

Now let us define X0 = {z ∈ X ; δ1(z) is onto}. Equivalently, X\X0 is
the set of common zeroes of H1. For all z ∈ X0, we can choose operators
i(z) ∈ B(E1,H1) such that δ1(z)i(z) = 1E1

. We show that the function

φ : X → B(E1, E2) , φ(z) =

{

δ2(z)T i(z) ; z ∈ X0

0 ; z /∈ X0

has all desired properties. To this end, fix f ∈ H1. Then the equality

〈φ(z)f(z), y〉 = 〈i(z)f(z), T ∗δ2(z)
∗y〉 = 〈i(z)f(z), δ1(z)

∗xz,y〉

= 〈f(z), xz,y〉 = 〈f, δ1(z)
∗xz,y〉 = 〈f, T ∗δ2(z)

∗y〉

= 〈(Tf)(z), y〉
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holds for all y ∈ E2 and z ∈ X0 (and trivially for all remaining points z ∈ X).
Hence Tf = φ · f , which completes the proof.

As one of many possible applications, we present the following reflexivity
result for multiplier spaces which may be known in special cases. Recall
that a linear space S ⊂ B(H1,H2) of operators is called reflexive (following
the notions of [7]) if it coincides with its reflexive closure, that is,

S = {T ∈ B(H1,H2) ; Tx ∈ Sx for all x ∈ H1}.

Clearly, this definition generalizes the usual definition of reflexive algebras
(cf. [8]).

Corollary 2.2. Suppose that, in the situation of Theorem 2.1, S is a re-
flexive subspace of B(E1, E2). Then the space

MS(H1,H2) = {Mφ ;φ ∈ M(H1,H2) and φ(z) ∈ S for all z ∈ X}

is a reflexive subspace of B(H1,H2) and, in particular, weakly closed.

Proof. Let us consider T ∈ B(H1,H2) such that Tf ∈ MS(H1,H2)f holds
for all f ∈ H1. Fix f ∈ H1 and z ∈ X with f(z) = 0. Then there
exists a sequence (φn)n in M(H1,H2) such that limMφn

f = Tf holds.
The continuity of the point evaluations clearly implies that (Tf)(z) =
limn φn(z)f(z) = 0, which yields by Theorem 2.1 that T = Mψ for an appro-
priate ψ ∈ M(H1,H2). It remains to show that ψ takes values in S. With-
out loss of generality, we can assume that ψ(z) = 0 holds for all z ∈ X\X0,
where as before X0 = {z ∈ X ; δ1(z) is onto}. In particular, ψ(z) ∈ S for
these z. On the other hand, for z ∈ X0 and x ∈ E1, we can choose a function
f ∈ H1 such that f(z) = x. As above, there exists a sequence (φn)n of S-
valued multipliers such that Tf = limnMφn

f . From this, we easily obtain
ψ(z)x = (Mψf)(z) = (Tf)(z) = limn(Mφn

f)(z) = limn φn(z)x ∈ Sx. The
reflexivity of S now shows that ψ(z) ∈ S for all z ∈ X, which means that
ψ ∈ MS(H1,H2).

3 APPLICATION TO HOLOMORPHIC SPACES

In this section, we aim to show that the statement of Theorem 2.1 can
be strengthened remarkably if the underlying reproducing kernel Hilbert
spaces consist of holomorphic functions. So throughout this section, let D
denote an open subset of C

d and recall that, for every reproducing kernel
Hilbert space H ⊂ O(D, E), the function δ : D → B(H, E) , δ(z)f = f(z) is
weakly holomorphic, and hence holomorphic. The space H is called analyt-
ically non-degenerate if there is an analytic function i : D → B(E ,H) such
that δ(z)i(z) = 1E for all z ∈ D. The following example shows that most
reproducing kernel Hilbert spaces arising in applications are analytically
non-degenerate.
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Example 3.1. Suppose that H ⊂ O(D, E) is a reproducing kernel Hilbert
space satisfying at least one of the following conditions:

(1) H contains the constant functions,

(2) there exists z0 ∈ D such that K(z, z0) is invertible for all z ∈ D,

(3) δ(z) is onto for all z and D is a domain of holomorphy.

Then H is analytically non-degenerate. In fact, in the first case, one checks
that the analytic function i : D → B(E ,H) , i(z)x = x (here, x denotes
the constant function with value x) is a well defined (by the closed graph
theorem) pointwise right inverse for δ. In the second case, one can choose
i(z) = δ∗z0K(z, z0)

−1, and in the third case, the claim follows from a result
of Allan [1] and Leiterer [6] (cf. Section 4.6 in [5])

The improved version of Theorem 2.1 now reads as follows.

Theorem 3.2. Suppose that E1, E2 are Hilbert spaces, and that H1 ⊂ O(D, E1)
and H2 ⊂ O(D, E2) are reproducing kernel Hilbert spaces such that H1 is an-
alytically non-degenerate. Furthermore, let E ⊂ D be a set of uniqueness
for O(D). Then, for every T ∈ B(H1,H2), the following assertions are
equivalent:

(i) (Tf)(z) = 0 holds for all f ∈ H1 and z ∈ E with f(z) = 0.

(ii) There exists φ ∈ M(H1,H2) such that T = Mφ.

Here as usual, E is called a set of uniqueness for O(D) if the restriction
mapping f 7→ f|E is one-to-one on O(D).

Proof. We choose a holomorphic pointwise right inverse i : D → B(E1,H1)
for δ1. As in the proof of Theorem 2.1, we define φ : D → B(E1, E2) , φ(z) =
δ2(z)T i(z), which is obviously a holomorphic function. Following the original
proof, for f ∈ H1, we obtain that φ(z)f(z) = (Tf)(z) for all z ∈ E. Since E
is a set of uniqueness for O(D, E2) as well, we deduce that φ · f = Tf holds
on the whole of D. This clearly completes our proof.

As an application, we obtain the following lifting theorem for multipliers,
which is a vector-valued generalization of results of Szafraniec [9] and of
Beatrous and Bourbea [3] (Theorem 3.5). Before we state the result, we
briefly recapitulate some well-known facts about restrictions of reproducing
kernel Hilbert spaces (see for example [2] for an overview of this topic): Let
H ⊂ EX be a reproducing kernel Hilbert space with kernel K, and let Y be
a non-empty subset of X. Then the linear space H|Y = {f|Y ; f ∈ H}, en-
dowed with the quotient norm ‖u‖ = inf{‖f‖ ; f|Y = u}, is the reproducing
kernel Hilbert space with reproducing kernel K|Y×Y . The restriction map-
ping ρ : H → H|Y satisfies (ρ∗u)(z) = u(z) for all z ∈ Y , and consequently
is a coisometry with ker ρ = {f ∈ H ; f|Y = 0}.
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Corollary 3.3. Suppose that, in the situation of Theorem 3.2, ψ is a multi-
plier in M(H1|E,H2|E). Then there exists a multiplier φ ∈ M(H1,H2) such
that φ|E = ψ and ‖Mφ‖ = ‖Mψ‖. In other words, the restriction mapping

M(H1,H2) → M(H1|E ,H2|E) , φ 7→ φ|E

is an isometric isomorphism.

Proof. We start by observing that the restriction operators ρi : Hi → Hi|E

(i = 1, 2) are unitary, since E is a set of uniqueness for O(D). Now let us
define an operator T = ρ∗

2
Mψρ1 ∈ B(H1,H2), and consider f ∈ H1 and

z ∈ E with f(z) = 0. Then

(Tf)(z) = (ρ∗2Mψρ1)(z) = ψ(z)(ρ1f)(z) = ψ(z)f(z) = 0,

which shows that T = Mφ for some φ ∈ M(H1,H2) by Theorem 3.2. Then
clearly ‖Mφ‖ = ‖T‖ = ‖Mψ‖. To see that φ actually extends ψ, fix z ∈ E
and x ∈ E1. Then, using the fact that H1 is analytically non-degenerate, we
choose f ∈ H1 with f(z) = x (for example f = i(z)x), and observe that

φ(z)x = (Mφf)(z) = (ρ∗2Mψρ1f)(z) = ψ(z)(ρ1f)(z) = ψ(z)f(z) = ψ(z)x.

To complete the proof, we have to show that the restriction mapping φ 7→
φ|E is a well-defined contraction between M(H1,H2) and M(H1|E,H2|E).
To this end recall that a function φ : X → B(E1, E2) is a multiplier between
arbitrary reproducing kernel Hilbert spaces H1 ⊂ EX

1
and H2 ⊂ EX

2
with

‖Mφ‖ ≤ 1 precisely if the function

X ×X → B(E2) , (z,w) 7→ K2(z,w) − φ(z)K1(z,w)φ(w)∗

is positive definite (where of course, K1 and K2 are the reproducing kernels
of H1,H2). A proof of this fact can be found in [4]. Since restrictions of
positive definite functions remain positive definite, the claim is proved.
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