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A characterization of orthogonal permutative matrices of

order 4

Amrita Mandal∗, and Bibhas Adhikari†

Abstract. Orthogonal matrices which are linear combinations of permutation matrices have
attracted enormous attention in quantum information and computation. In this paper, we
provide a complete parametric characterization of all complex, real and rational orthogonal
permutative matrices of order 4. We show that any such matrix can always be expressed as a
linear combination of up to four permutation matrices. Finally we determine several matrix
spaces generated by linearly independent permutation matrices such that any orthogonal ma-
trix in these spaces is always permutative or direct sum of orthogonal permutative matrices
up to permutation of its rows and columns.
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1 Introduction

Characterization of orthogonal matrices which can be expressed as linear combinations of
permutation matrices is an unsolved problem in the literature. This problem was first consid-
ered by Kapoor in [5] and he determined a necessary condition for a (real) linear combination
of permutation matrices to be an orthogonal matrix. Indeed, he proved that for a set S of
permutations of order n, if a linear combination

∑

σ∈S ασPσ, ασ ∈ R is an orthogonal matrix
then

∑

σ∈S ασ ∈ {1,−1}. Here Pσ denotes the permutation matrix associated with σ, that is,
the ij entry of Pσ is 1 if σ(i) = j, otherwise it is 0. Later, Gibson proved that an orthogo-
nal matrix over any field is a linear combination of permutation matrices if and only if each
row and column sum of the matrix is ±1, called generalized doubly stochastic (gds) matrix
corresponding to ±1 [3]. However, explicit parametric representation of all gds matrices has
remained to be determined.

Parametric representation of orthogonal matrices which are also linear combinations of
permutation matrices has recently attracted a lot of attention because they can have a proper
quantum circuit representation [6]. Furthermore, orthogonal or unitary parametric matrices
that are used as coin operators for discrete-time quantum walks play a crucial role in under-
standing the underlying quantum dynamics of the walks [15, 14]. Recently, all orthogonal
matrices of order 3 over the fields of complex, real, and rational numbers that can be writ-
ten as linear combinations of permutation matrices are characterized in [10]. One-parameter
representations of such matrices are also provided. An interesting result about this characteri-
zation is that: an orthogonal matrix of order 3 is a linear combination of permutation matrices
if and only if it is a permutative matrix, that is, any row of such matrix is a permutation of
any other row. We emphasize that the Grover diffusion matrix G = 2

n
1n1

T
n − In, a standard

coin operator for coined quantum walks is an orthogonal permutative matrix (OPM), where
1n is the all-one column vector of order n and In denotes the identity matrix of order n.
Thus the characterization of orthogonal permutative matrices of higher order has become of
paramount interest since they can be used as coin operators for high dimensional quantum
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walks and hence a better understanding of quantum dynamics for generalized Grover diffusion
matrices can be studied. In the forthcoming paper [8], we investigate localization property
of discrete-time quantum walks on two-dimensional lattices with coin operators as OPMs of
order 4 which are studied here.

In this paper, we pursue the problem of algebraic characterization of the set of all OPMs of
order 4 and then investigate whether any orthogonal matrix of order 4 which can be expressed
as linear combination of permutation matrices belongs to this set. First, we derive symbolic
representation of all OPMs of order 4 over the field of complex numbers and we show that
such a matrix can always be written as linear combination of up to four permutation matrices.
However, contrary to the OPMs of order 3, we establish that the set of OPMs of order 4 does
not form a group under matrix multiplication. Consequently, we determine chains of certain
groups of OPMs of order 4. Then we develop a one-parameter representation of all real and
rational OPMs of order 4.

Further, we produce an example of an orthogonal matrix of order 4 which is a linear combi-
nation of permutation matrices but not permutative, and then we attempt to classify all such
matrices by performing a search on the linear spaces of matrices generated by sets of linearly
independent permutation matrices. We prove that any linear combination of permutation
matrices of order 4 can be written as a linear combination of at most six permutative matri-
ces, each of which is a linear combination of four pairwise Hadamard orthogonal permutation
matrices, where two matrices are called Hadamard orthogonal if Hadamard product of them
is the zero matrix. We also prove that there is no orthogonal matrix that can be expressed
as a (non-trivial) linear combination of two distinct permutation matrices of order 4. Next,
we prove that any orthogonal matrix that can be expressed as a linear combination of three
distinct permutation matrices, is always a direct sum of OPMs of orders 3 and 1 up to the
permutations of its rows and its columns. Then, fixing a maximal set of linearly independent
permutation matrices of order 4, we determine direct sum of matrix spaces, which are gener-
ated by certain linearly independent permutation matrices, such that any orthogonal matrix
A in these spaces is always permutative or direct sum of OPMs up to the permutations of
their rows and columns.

The paper is organised as follows. In Section 2, we provide a complete classification of
complex, real and rational OPMs of order 4 and show that any such matrix is always a linear
combination of permutation matrices. Then we derive a one-parameter representation for the
real and rational OPMs. In Section 3, we derive matrix spaces generated by permutation
matrices such that orthogonal matrices in these spaces are always permutative or direct sum
of OPMs up to permutation of rows and columns.

2 Orthogonal permutative matrices of order 4

In this section we characterize the set of all OPMs of order 4 over the field of complex, real and
rational numbers. Recall that a matrix is called permutative if any of its row is a permutation
of any other row [9]. Thus, such a matrix of order n has n parameters in its symbolic form.
Without loss of generality, a permutative matrix of order 4 can be written in the symbolic
form

A(x;P,Q,R) =









x
xP
xQ
xR









(1)

where x =
[

x y z w
]

is a symbolic row vector with x, y, z, w ∈ C and P,Q,R ∈ P4, the
group of permutation matrices of order 4 [7].

Let OP4 denote the set of all OPMs over the field of complex numbers of order 4. Then

2



obviously P4 ⊂ OP4. We denote

1⊕ P3 =

{[

1 0T

0 P

]

∈ P4 : P ∈ P3

}

,

where 0 =
[

0 0 0
]T

and P3 denotes the group of all permutation matrices of order 3. Then
the following theorem characterizes all matrices in OP4.

Theorem 2.1. A matrix A ≡ A(x;P,Q,R) given by equation (1) is an OPM if and only if
A ∈ X ∪ Y ∪ Z where

X =
{

PM±
x,z, PN±

z,x : x2 + z2 ∓ z = 0, x, z ∈ C
}

Y =
{

PP(23)M
±
x,zP(23), PP(23)N

±
z,xP(23) : x

2 + z2 ∓ z = 0, x, z ∈ C
}

Z =
{

PP(24)M
±
x,zP(24), PP(24)N

±
z,xP(24) : x

2 + z2 ∓ z = 0, x, z ∈ C
}

, with

M±
x,z =

[

Ax B±
z

B±
z −Ax

]

, N±
x,z =

[

B±
x Az

Az FB±
x

]

, At =

[

t −t
−t t

]

, B±
t =

[

t ±1− t
±1− t t

]

F =

[

0 1
1 0

]

, t ∈ {x, z}, and P ∈ 1⊕ P3.

Proof: The ‘if’ part is obvious and easy to check. To prove the ‘only if’ part consider the
following cases. First assume that the symbolic OPM A has no repetition of entries in any
of the columns. Besides, since rows and columns are orthogonal, none of P,Q,R are equal to
each other. Then A can presume one of the following forms:

X =









x y z w
y x w z
z w y x
w z x y









, Y =









x y z w
y z w x
z w x y
w x y z









, Z =









x y z w
y w x z
z x w y
w z y x









(2)

for some x, y, z, w ∈ C.
Then X

T
X = I4 provides the polynomial equations x2 + y2 + z2 + w2 = 1, xy + zw = 0

and xz + yw + yz + zx = 0, which further imply (x + y + z + w)2 = 1. Thus the quadruple
(x, y, z, w) must be zeros of the system of polynomial equations











x+ y + z + w = ±1

xy + zw = 0

x2 + y2 + z2 + w2 = 1

⇒











x+ y = 0

x2 + z2 ∓ z = 0

z + w ∓ 1 = 0

or











z + w = 0

x2 + z2 ∓ x = 0

x+ y ∓ 1 = 0.

(3)

Therefore, each of the four system of equations gives rise to the following set of matrices
obeying the pattern X:

X1 =

{[

Ax B+
z

B+
z −Ax

]

: x2 + z2 − z = 0

}

, X2 =

{[

Ax B−
z

B−
z −Ax

]

: x2 + z2 + z = 0

}

,

X3 =

{[

B+
x Az

Az FB+
x

]

: x2 + z2 − x = 0

}

, X4 =

{[

B−
x Az

Az FB−
x

]

: x2 + z2 + x = 0

}

.(4)

Hence,

X1 = {M+
x,z : x2 + z2 − z = 0}, X2 = {M−

x,z : x2 + z2 + z = 0},
X3 = {N+

x,z : x2 + z2 − x = 0}, X4 = {N−
x,z : x2 + z2 + x = 0},

where M±
x,z, N

±
x,z, At, Bt, t ∈ {x, z} are defined in the statement of the theorem.
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Similarly, the set of polynomial equations given by Y
T
Y = I4 are











x+ y + z + w = ±1

xz + yw = 0

x2 + y2 + z2 + w2 = 1

⇒











x+ z = 0

x2 + y2 ∓ y = 0

y + w ∓ 1 = 0

or











y + w = 0

x2 + y2 ∓ x = 0

x+ z ∓ 1 = 0.

(5)

Thus each of the four system of equations gives rise to the following sets of matrices obeying
the pattern Y:

Y1 =

{

P(23)

[

Ax B+
y

B+
y −Ax

]

P(23) : x
2 + y2 − y = 0

}

,

Y2 =

{

P(23)

[

Ax B−
y

B−
y −Ax

]

P(23) : x
2 + y2 + y = 0

}

,

Y3 =

{

P(23)

[

B+
x Ay

Ay FB+
x

]

P(23) : x
2 + y2 − x = 0

}

,

Y4 =

{

P(23)

[

B−
x Ay

Ay FB−
x

]

P(23) : x
2 + y2 + x = 0

}

. (6)

Note that, A = P(23)M
+
x,yP(23) ifA ∈ Y1; A = P(23)M

−
x,yP(23) ifA ∈ Y2; A = P(23)N

+
x,yP(23)

if A ∈ Y3; and A = P(23)N
−
x,yP(23) if A ∈ Y4 where (x, y) satisfies the respective constraint as

given in equation (6).
Finally, the orthogonality condition Z

T
Z = I4 provides the system of polynomial equations











x+ y + z + w = ±1

xw + yz = 0

x2 + y2 + z2 + w2 = 1

⇒











x+ w = 0

x2 + y2 ∓ y = 0

y + z ∓ 1 = 0

or











y + z = 0

x2 + y2 ∓ x = 0

x+ w ∓ 1 = 0.

(7)

Thus each of the four system of equations gives rise to the following set of matrices obeying
the pattern Z:

Z1 =

{

P(24)

[

Ax B+
y

B+
y −Ax

]

P(24) : x
2 + y2 − y = 0

}

, Z2 =

{

P(24)

[

Ax B−
y

B−
y −Ax

]

P(24) : x
2 + y2 + y = 0

}

,

Z3 =

{

P(24)

[

B+
x Ay

Ay FB+
x

]

P(24) : x
2 + y2 − x = 0

}

, Z4 =

{

P(24)

[

B−
x Ay

Ay FB−
x

]

P(24) : x
2 + y2 + x = 0

}

.(8)

Besides, A = P(24)M
+
x,yP(24) if A ∈ Z1; A = P(24)M

−
x,yP(24) if A ∈ Z2; A = P(24)N

+
x,yP(24) if

A ∈ Z3; and A = P(24)N
−
x,yP(24) if A ∈ Z4.

Next, consider the symbolic OPMs in which one entry is repeated in at least one column
i.e. the case when P,Q,R are not chosen from any of the collections

{P(12)(34), P(1324), P(1423)}, {P(13)(24), P(1234), P(1432)}, {P(14)(23), P(1243), P(1342)}.

Then it follows that any such matrix A belongs to either of the sets X = ∪4
k=1Xk,Y =

∪4
k=1Yk,Z = ∪4

k=1Zk for certain values of x, y, z, w. In particular, a straightforward calcu-
lation shows that any symbolic OPM whose entries do not follow the pattern of entries of
X,Y,Z are ±Pτ or ±(12J4 − Pτ ) for some permutation τ and J4 = 141

T
4 . Then the desired

result follows from the fact that permutation of the rows preserves the orthogonality and
permutative property of a matrix. �

The following corollary provides the determinant of all OPMs of order 4.

Corollary 2.2. Let A ∈ OP4. Then det(A) = 1 if A ∈ Xj∪Yj∪Zj , j = 1, 2, and det(A) = −1
if A ∈ Xj ∪ Yj ∪ Zj , j = 3, 4, where Xj ,Yj ,Zj , j = 1, 2, 3, 4 are given by equations (4), (6),
(8) respectively.
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Proof: From (4) we obtain,

det(A) =



















4(x2 + z2 − z) + 1 ifA ∈ X1

4(x2 + z2 + z) + 1 ifA ∈ X2

−4(x2 + z2 − x)− 1 ifA ∈ X3

−4(x2 + z2 + x)− 1 ifA ∈ X4.

Then employing the conditions on the variables x, y, z which define the sets of matrices Xj , j =
1, 2, 3, 4 the desired result follows. Similarly, the desired results for Yj ,Zj j = 1, 2, 3, 4 follow
from equations (6) and (8). �

Now in the following remark we provide a characterization of OPMs of order 4 in terms
of linear combinations of permutation matrices. The result follows from equation (2) and
Theorem 2.1.

Remark 2.3. Any OPM A of order 4 can be written as linear combination of permutation
matrices as follows:

P
T
A =











xP(34) + yP(12) + zP(13)(24) + wP(14)(23), (x, y, z, w) satisfies equation (3)when A ∈ X
xP(24) + yP(12)(34) + zP(13) + wP(14)(23), (x, y, z, w) satisfies equation (5)when A ∈ Y
xP(23) + yP(12)(34) + zP(13)(24) + wP(14), (x, y, z, w) satisfies equation (7)when A ∈ Z

(9)
and P ∈ 1⊕ P3.

Let us emphasize that one of the motivations for the characterization of OPMs is to
generalize Grover matrix which is used to define Grover quantum walks [4, 12, 13]. The
Grover matrix of order 4 is given by

G =









− 1
2

1
2

1
2

1
2

1
2 − 1

2
1
2

1
2

1
2

1
2 − 1

2
1
2

1
2

1
2

1
2 − 1

2









. (10)

Then it can be seen that

G =











P(34)

(

xP(34) + yP(12) + zP(13)(24) + wP(14)(23)

)

∈ X
P(24)

(

xP(24) + yP(12)(34) + zP(13) + wP(14)(23)

)

∈ Y
P(23)

(

xP(23) + yP(12)(34) + zP(13)(24) + wP(14)

)

∈ Z

where x = − 1
2 , y = 1

2 = z = w. In particular, it follows that

G ∈ P(34)X1 ∩ P(24)Y1 ∩ P(23)Z1 (11)

where

X1 =























x −x z 1− z
−x x 1− z z
z 1− z −x x

1− z z x −x









: x2 + z2 − z = 0















,

Y1 =























x y −x 1− y
y −x 1− y x
−x 1− y x y
1− y x y −x









: x2 + y2 − y = 0















,

Z1 =























x y 1− y −x
y −x x 1− y

1− y x −x y
−x 1− y y x









: x2 + y2 − y = 0















.
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Thus the real matrices in P(34)X1, P(24)Y1, P(23)Z1 can be considered as the continuous
deformations of the Grover matrix, and hence Grover walks can be generalized by considering
the coin operators as matrices from these sets. The localization property of such quantum
walks on two-dimensional lattices is analyzed in [8].

Now we provide a list of chains of groups of OPMs of order 4 in the following theorem.

Theorem 2.4. The following are chains of groups of complex orthogonal matrices.

1.
{I} ≤ P(34)X3 ≤ P(34)X3 ∪ P(34)Xj ≤ P(34)X3 ∪ P(34)Xj ∪ X3 ∪ Xj ≤ O4,
{I} ≤ P(34)X3 ≤ P(34)X3 ∪ Xj ≤ P(34)X3 ∪ P(34)Xj ∪ X3 ∪ Xj ≤ O4

2.
{I} ≤ P(24)Y3 ≤ P(24)Y3 ∪ P(24)Yj ≤ P(24)Y3 ∪ P(24)Yj ∪ Y3 ∪ Yj ≤ O4,
{I} ≤ P(24)Y3 ≤ P(24)Y3 ∪ Yj ≤ P(24)Y3 ∪ P(24)Yj ∪ Y3 ∪ Yj ≤ O4

3.
{I} ≤ P(23)Z3 ≤ P(23)Z3 ∪ P(23)Zj ≤ P(23)Z3 ∪ P(23)Zj ∪ Z3 ∪ Zj ≤ O4,
{I} ≤ P(23)Z3 ≤ P(23)Z3 ∪ Zj ≤ P(23)Z3 ∪ P(23)Zj ∪ Z3 ∪ Zj ≤ O4

where j = 1, 2, 3, 4 and O4 denotes the group of complex orthogonal matrices of order 4.

Proof: First we prove that P(34)X3 ∪ P(34)Xj ∪ X3 ∪ Xj are complex orthogonal matrix
groups for j = 1, 2, 3, 4. Clearly I ∈ P(34)X3 ∪ P(34)Xj ∪ X3 ∪ Xj . If A ∈ P(34)X3 then AT ∈
P(34)X3 follows by exchanging the role of z and −z. Similarly, AT ∈ P(34)Xj if A ∈ P(34)Xj

for j = 1, . . . , 4. Since Xj and X3 contain complex symmetric matrices, obviously AT ∈ Xj if
A ∈ Xj , and AT ∈ X3 if A ∈ X3. Hence, P(34)X3 ∪ P(34)Xj ∪ X3 ∪ Xj , j = 1, . . . , 4 is closed
under inverses.

Let A = x1I + y1P(12)(34) + z1P(1324) + w1P(1423), B = x2I + y2P(12)(34) + z2P(1324) +
w2P(1423) ∈ P(34)X3 ∪ P(34)Xj , j = 1, . . . , 4, where (xi, yi, zi, wi), i = 1, 2 satisfy the equation
given by (3) accordingly. Then AB = x3I + y3P(12)(34) + z3P(1324) + w3P(1423), where

x3 = x1x2 + y1y2 + z1w2 + w1z2, y3 = x1y2 + y1x2 + z1z2 + w1w2,

z3 = x1z2 + y1w2 + z1x2 + w1y2, w3 = x1w2 + y1z2 + z1y2 + w1x2.

Now note that xj+yj+zj+wj = 1, if A orB ∈ P(34)X1∪P(34)X3, and xj+yj+zj+wj = −1
if A orB ∈ P(34)X2 ∪ P(34)X4, j = 1, 2.

Thus x3+y3+z3+w3 = (x1+y1+z1+w1)(x2+y2+z2+w2) yields x3+y3+z3+w3 = 1
if A,B ∈ P(34)X1 ∪P(34)X3 or P(34)X2 ∪P(34)X4, and x3 + y3 + z3 +w3 = −1 otherwise. Now

x2
3 + y23 + z23 + w2

3 =









x1

y1
z1
w1









T 







a b c c
b a c c
c c a b
c c b a

















x1

y1
z1
w1









,

where a = x2
2 + y22 + z22 + w2

2 = 1, b = 2x2y2 + 2z2w2 = 0 and c = (x2 + y2)(z2 + w2) = 0
hold, since B is orthogonal i.e. (x2, y2, z2, w2) satisfies x

2
2 + y22 + z22 + w2

2 = 1, x2y2 + z2w2 =
0, x2z2 + y2w2 + y2z2 +w2x2 = 0. Consequently, x2

3 + y23 + z23 +w2
3 = x2

1 + y21 + z21 +w2
1 = 1.

Also,

x3 + y3 = (x1 + y1)(x2 + y2) + (z1 + w1)(z2 + w2)

z3 + w3 = (x1 + y1)(z2 + w2) + (z1 + w1)(x2 + y2).
(12)

At first, if A,B ∈ P(34)X1, then xi+ yi = 0, zi+wi = 1 for i = 1, 2. So that from (12) we have
x3 + y3 = 1, z3 +w3 = 0, where x2

3 + y23 + z23 +w2
3 = 1, and thus by (4) we get AB ∈ P(34)X3.

If A ∈ P(34)X1 and B ∈ P(34)X3, then clearly x1 + y1 = z2 + w2 = 0, x2 + y2 = z1 + w1 = 1.
Hence we get x3 + y3 = 0, z3 + w3 = 1. Thus by (4) we have AB ∈ P(34)X3. Similarly, it can
be done for other cases and we obtain AB ∈ P(34)X3 if A,B ∈ P(34)Xj and AB ∈ P(34)Xj if
either A or B ∈ P(34)Xj , j = 1, . . . , 4. Thus finally AB ∈ P(34)X3 ∪ P(34)Xj for j = 1, . . . , 4.
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Next, let A = x1P(34) + y1P(12) + z1P(13)(24) + w1P(14)(23), B = x2P(34) + y2P(12) +
z2P(13)(24) + w2P(14)(23) ∈ X3 ∪ Xj where (xi, yi, zi, wi), i = 1, 2 satisfies the equations in
(3) and j = 1, . . . , 4. Then AB = x3I + y3P(12)(34) + z3P(1324) + w3P(1423), where

x3 = x1x2 + y1y2 + z1z2 + w1w2, y3 = x1y2 + y1x2 + z1w2 + w1z2,

z3 = x1z2 + y1w2 + z1y2 + w1x2, w3 = x1w2 + y1z2 + z1x2 + w1y2.

Note that xj + yj + zj + wj = 1 if A or B ∈ X1 ∪ X3, and xj + yj + zj + wj = −1 if A
or B ∈ X2 ∪ X4, j = 1, 2. Hence x3 + y3 + z3 + w3 = 1 if A,B ∈ X1 ∪ X3 or X2 ∪ X4, and
x3+y3+z3+w3 = −1 otherwise, since x3+y3+z3+w3 = (x1+y1+z1+w1)(x2+y2+z2+w2).
Then as above, x2

3 + y23 + z23 + w2
3 = 1. Further, x3 + y3 and z3 + w3 have same expressions

as that given in (12).
If A,B ∈ X2, then x1 + y1 = x2 + y2 = 0, w1 + z1 = w2 + z2 = −1. So that x3 + y3 = 1

and z3+w3 = 0. Finally, x2
3 + y23 + z23 +w2

3 = 1 implies x2
3 + z23 −x3 = 0. Thus AB ∈ P(34)X3.

Now if A ∈ X2 and B ∈ X3, then x1 + y1 = z2 + w2 = 0, w1 + z1 = x2 + y2 = 1, which
yield x3 + y3 = 0, z3 + w3 = −1. Now x2

3 + y23 + z23 + w2
3 = 1 implies x2

3 + z23 + z3 = 0.
Thus by (4) we have AB ∈ P(34)X2. The other cases can be done similarly and we obtain
AB ∈ P(34)X3 if A,B ∈ Xj and AB ∈ P(34)Xj if either A or B ∈ Xj , j = 1, . . . , 4. Thus
finally AB ∈ P(34)X3 ∪ P(34)Xj for j = 1, . . . , 4.

Now suppose A = x1I + y1P(12)(34) + z1P(1324) + w1P(1423) ∈ P(34)Xj and B = x2P(34) +
y2P(12) + z2P(13)(24) + w2P(14)(23) ∈ Xk, j, k ∈ {1, . . . , 4} and (xi, yi, zi, wi), i = 1, 2 are given
by equation (3) accordingly. Then AB = x3P(34) + y3P(12) + z3P(13)(24) + w3P(14)(23), where

x3 = x1x2 + y1y2 + z1z2 + w1w2, y3 = x1y2 + y1x2 + z1w2 + w1z2,

z3 = x1z2 + y1w2 + z1y2 + w1x2, w3 = x1w2 + y1z2 + z1x2 + w1y2.

Thus by similar arguments as the above two cases, we obtain: x3 + y3 + z3 + w3 = 1 if
A ∈ P(34)X1 ∪ P(34)X3, B ∈ X1 ∪ X3 or A ∈ P(34)X2 ∪ P(34)X4, B ∈ X2 ∪ X4, and x3 +
y3 + z3 + w3 = −1 otherwise. Then it can be checked that x2

3 + y23 + z23 + w2
3 = 1 and

expressions of x3 + y3 and z3 + w3 are given by (12). Further, if A ∈ P(34)X1 and B ∈ X2,
then x1 + y1 = x2 + y2 = 0, w1 + z1 = −(w2 + z2) = 1. So that x3 + y3 = −1 and z3 +w3 = 0.
Finally, x2

3 + y23 + z23 + w2
3 = 1 yields x2

3 + z23 + x3 = 0. Hence by (4) we write AB ∈ X4.
Similarly, the other cases follow and we get AB ∈ X3 if A ∈ P(34)Xj and B ∈ Xj ;AB ∈
X4 if A ∈ P(34)Xj and B ∈ Xk, j 6= k, {j, k} ∈ {{1, 2}, {2, 1}, {3, 4}, {4, 3}};AB ∈ X1 if A ∈
P(34)Xj and B ∈ Xk, j 6= k, {j, k} ∈ {{1, 3}, {3, 1}, {2, 4}, {4, 2}}; and AB ∈ X2 if A ∈
P(34)Xj and B ∈ Xk, j 6= k, {j, k} ∈ {{1, 4}, {4, 1}, {2, 3}, {3, 2}}.

Thus considering all the above cases we conclude that P(34)X3, P(34)X3∪P(34)Xj , P(34)X3∪
Xj and P(34)X3 ∪ P(34)Xj ∪ X3 ∪ Xj , j = 1, . . . , 4 are groups with respect to matrix multipli-
cation.

Now let G represent any matrix group from the chain of groups corresponding to Xk. Now
by Theorem 2.1 we observe that if D ∈ Xk then there exist B ∈ Yk and C ∈ Zk such that
B = P(23)DP(23) and C = P(24)DP(24), k = 1, . . . , 4. Thus the chains corresponding to Y3

and Z3 follows from the observation that f : G → G′, is a group isomorphism defined by
f(M) = P(23)MP(23) and f(M) = P(24)MP(24) when G′ is the image of the map f. Note that
PT
(23) = P(23), P

T
(24) = P(24). �

Then we have the following observations from Theorem 2.4.

Remark 2.5. 1. The groups of OPMs, P(34)X3, P(24)Y3 and P(23)Z3 are commutative and
a matrix A in any of these groups can be written as A = xI + yP + zP 2 + wP 3, where
P = P(1324) if A ∈ P(34)X3, P = P(1234) if A ∈ P(24)Y3, and P = P(1342) if A ∈ P(23)Z3.

2. OP4 is not closed under matrix multiplication and hence OP4 does not form a group:
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Consider

A =









2
5 − 2

5
4
5

1
5

− 2
5

2
5

1
5

4
5

4
5

1
5 − 2

5
2
5

1
5

4
5

2
5 − 2

5









∈ X1 and B =











√
2
3

2
3 −

√
2
3

1
3

2
3 −

√
2
3

1
3

√
2
3

−
√
2
3

1
3

√
2
3

2
3

1
3

√
2
3

2
3 −

√
2
3











∈ Y1,

then clearly AB =











− 2
√
2

15 − 1
5

8
15 +

√
2
5

2
√
2

15
2
3 −

√
2
5

−
√
2
5 + 8

15 − 1
5 + 2

√
2

15

√
2
5 + 2

3 − 2
√
2

15
2
√
2

5 + 4
15

2
5 +

√
2

15 − 2
√
2

5 + 1
3 −

√
2

15

−
√
2

15 + 2
5

4
15 − 2

√
2

5

√
2

15
1
3 + 2

√
2

5











6∈ OP4.

Then the following corollary describes all real OPMs.

Corollary 2.6. (Characterization of real OPMs) Under the assumptions and notations of
Theorem 2.1, a matrix A ∈ X ∪ Y ∪ Z where

X =
{

PM s
x,z, PNs

z,x : s = ±
}

Y =
{

PP(23)M
s
x,zP(23), PP(23)N

s
z,xP(23) : s = ±

}

Z =
{

PP(24)M
s
x,zP(24), PP(24)N

s
z,xP(24) : s = ±

}

is a real OPM if and only if x = ±
√

z(1− z), 0 ≤ z ≤ 1 for s = +, and x = ±
√

−z(1 + z),−1 ≤
z ≤ 0 for s = −.

Observe that the parametric curves which define the real OPMs as given by Corollary 2.6
are x2 + z2 + rz = 0, r ∈ {1,−1}. Then,

(x, z) =

(

1

2
sin θ,− r

2
(1− r cos θ)

)

, −π ≤ θ ≤ π

provides one-parameter trigonometric parametrizations for the parametric curves. In partic-
ular, from equation (11), trigonometric parametrizations of the continuous deformations of
the Grover matrix of order 4 can be obtained from the trigonometric parametrizations of sets
of OPMs X1,Y1,Z1 given by

(X1)θ =























1
2 sin θ − 1

2 sin θ
1
2 (1 + cos θ) 1

2 (1− cos θ)
− 1

2 sin θ
1
2 sin θ

1
2 (1− cos θ) 1

2 (1 + cos θ)
1
2 (1 + cos θ) 1

2 (1− cos θ) − 1
2 sin θ

1
2 sin θ

1
2 (1− cos θ) 1

2 (1 + cos θ) 1
2 sin θ − 1

2 sin θ









: θ ∈ [−π, π]















, (13)

(Y1)θ =























1
2 sin θ

1
2 (1 + cos θ) − 1

2 sin θ
1
2 (1− cos θ)

1
2 (1 + cos θ) − 1

2 sin θ
1
2 (1− cos θ) 1

2 sin θ
− 1

2 sin θ
1
2 (1− cos θ) 1

2 sin θ
1
2 (1 + cos θ)

1
2 (1 − cos θ) 1

2 sin θ
1
2 (1 + cos θ) − 1

2 sin θ









: θ ∈ [−π, π]















, (14)

(Z1)θ =























1
2 sin θ

1
2 (1 + cos θ) 1

2 (1− cos θ) − 1
2 sin θ

1
2 (1 + cos θ) − 1

2 sin θ
1
2 sin θ

1
2 (1− cos θ)

1
2 (1− cos θ) 1

2 sin θ − 1
2 sin θ

1
2 (1 + cos θ)

− 1
2 sin θ

1
2 (1− cos θ) 1

2 (1 + cos θ) 1
2 sin θ









: θ ∈ [−π, π]















(15)

respectively.
Next, in what follows, we characterize all rational OPMs. Treating x2 + z2 − z = 0 as a

polynomial in indeterminate z, we obtain

z =
1±

√
1− 4x2

2
.
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Then z ∈ Q if and only if 1−4x2 is zero or perfect square of a nonzero rational number of the

form p/q for p, q ∈ Z, q 6= 0. It is zero if x ∈ {− 1
2 ,

1
2}. If 1 − 4x2 = p2

q2
for p/q 6= 0 then after

rewriting it takes the form X2 − 4Y 2 = 1, where X = q/p and Y = xq/p. Now (X +2Y ) and
(X−2Y ) are units in Q for x ∈ Q such that (X+2Y )(X−2Y ) = 1. Thus letting X+2Y = r
and X − 2Y = 1

r
for some nonzero r ∈ Q, we obtain

X =
1

2

(

r +
1

r

)

and Y =
1

4

(

r − 1

r

)

,

which ultimately gives us the values of x and z in terms of the parameter r. Similar procedure
can be followed for x2 + z2 + z = 0. Thus we have the following corollary.

Corollary 2.7. (Characterization of rational OPMs) Under the assumptions and notations

of Corollary 2.6, a matrix A ∈ X ∪Y ∪Z is a rational OPM if and only if x =
r2 − 1

2(r2 + 1)
, z =

1

2
± r

r2 + 1
for s = + and x =

r2 − 1

2(r2 + 1)
, z = −1

2
± r

r2 + 1
, for s = −, where r ∈ Q.

Finally, we mention that the chains of matrix groups described in Theorem 2.4 remains
valid when the subgroups are restricted only for the real or rational matrices as given in
Corollary 2.6 and Corollary 2.7.

3 Search for orthogonal matrices that are linear combi-

nations of permutation matrices but not permutative

In [10], it is shown that an orthogonal matrix of order 3 is a linear combination of permutation
matrices if and only if it is a permutative matrix. However, this is no longer true for matrices
of order 4 as follows from the following example. Consider the block diagonal matrix

A =

[

1 0
0T 2

3J3 − I3

]

= −1

3
I +

2

3
P(234) +

2

3
P(243),

where J3 = 131
T
3 . Then A is an orthogonal matrix which is a linear combination of permuta-

tion matrices but not a permutative matrix. Indeed, it may be noted that this matrix A is a
direct sum of two permutative matrices. Then the following question arises: Does there exist
an orthogonal matrix of order 4 which is a linear combination of permutation matrices but
neither a permutative matrix nor a direct sum of permutative matrices with permutations of
its rows and columns? In this section, we investigate this problem.

First we derive certain sufficient conditions for which an orthogonal matrix which is a
linear combination of permutation matrices is always permutative, that is, such a matrix can
always be written in the form given by equation (9). Also, recall that a necessary condition
for a linear combination of permutation matrices to be real orthogonal is that sum of the
entries along a row or column should be ±1 [5]. We provide an alternative easy proof of this
result for orthogonal matrices of order 4 in the following proposition.

Proposition 3.1. A necessary condition for a linear combination of permutation matrices A
of order 4 to be orthogonal is that the sum of the entries of A along each row and column is
±1.

Proof: Suppose A =
∑

σ∈S4
xσPσ, where S4 denotes the symmetric group of order 4.

Then the ith row sum of A is

A(i,:) =

4
∑

j=1

∑

σ

xσPσ(i, j) =
∑

σ

xσ

n
∑

j=1

Pσ(i, j) =
∑

σ

xσ.
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Similarly, the ith column sum A(:,i) of A is
∑

σ xσ. Then consider the Hardamard matrix of
order 4 as follows:

H =
1

2









1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1









. (16)

Setting B = HAH, Be1 = (HAH)e1 = (HA)(He1) = 1
2H(A1) = 1

2

∑

σ xσ(H1) =

(
∑

σ xσ)e1, where e1 =
[

1 0 0 0
]T

and 1 =
[

1 1 1 1
]T

. Similarly, BT e1 = (
∑

σ xσ)e1.
Then

B = HAH =

[
∑

σ xσ 0
0T Ā

]

,

where 0 =
[

0 0 0
]

and Ā is a 3× 3 orthogonal matrix. Consequently,
∑

σ xσ ∈ {±1} since
B is orthogonal. This completes the proof. �

We call a set of real (nonzero) matrices of order k, S = {A1, A2, . . . , An} is pairwise H-
orthogonal if Hadamard product of any pair of matrices Ai, Aj , i 6= j, denoted by Ai ◦ Aj is

the zero matrix, 1 ≤ i, j ≤ n. We denote 〈S〉 =
{

∑n

j=1 αjAj : αj ∈ R

}

as the vector space

generated by elements of S. Observe that if S is a pairwise H-orthogonal set of permutation
matrices then A ∈ 〈S〉 is always permutative.

Then we have the following proposition.

Proposition 3.2. Any linear combination of permutation matrices of order 4 can be writ-
ten as a sum of at most 6 permutative matrices each of which is a linear combination of 4
permutation matrices that are pairwise H-orthogonal.

Proof: The proof follows from the partition of the symmetric group S4 = ∪6
k=1S̃k where

S̃1 = {id, (12)(34), (13)(24), (14)(23)}, S̃2 = {(23), (124), (1342), (143)},
S̃3 = {(24), (123), (134), (1432)}, S̃4 = {(34), (12), (1324), (1423)},
S̃5 = {(14), (1243), (132), (234)}, S̃6 = {(13), (1234), (142), (243)}.

such that MS̃k
= {Pσ : σ ∈ S̃k} is a pairwise H-orthogonal set and any A ∈ 〈MS̃k

〉 is a
permutative matrix. �

Then we have the following theorem.

Theorem 3.3. Let A ∈ 〈S〉 where S is a pairwise H-orthogonal set of permutation matrices
of order 4. Then A+ cP is an OPM for any c ∈ R and P ∈ P4.

Proof: Obviously B = A ∈ 〈S〉 is permutative if c = 0. Let c 6= 0. Let A be a symbolic
permutative matrix with first row x = (x, y, z, w). Consider the entries Aij for which Pij = 1.
Then Bij = Aij + c if and only if Pij = 1; and Bij = Aij otherwise. For any pair of indices
(i, j) and (k, l) with Pij = 1 = Pkl, the unit norm condition of rows of B implies Aij = Akl

since c 6= 0. Thus the permutative structure of A implies that B is permutative. �

Below we show that no orthogonal matrix of order 4 can be a linear combination of two
distinct permutation matrices. By non-trivial linear combination we mean all the coefficients
of the linear combination are non-zero.

Theorem 3.4. There is no orthogonal matrix which is a non-trivial linear combination of
two distinct permutation matrices.

Proof: Let A = αP + βQ be an orthogonal matrix and P 6= Q. If P ◦ Q = 0 then A
is an OPM. From the classification of all OPMs of order 4 described in Remark 2.3, any
OPM is a linear combination of four H-orthogonal permutation matrices. Indeed, it follows
from equations (3), (5), (7) that if one or more coefficients in the linear combination of H-
orthogonal permutation matrices are zero, then the corresponding OPM becomes ±1 times a
permutation matrix. Hence the desired result follows.
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Next, assume that P ◦Q 6= 0 and A = αP + βQ is an orthogonal matrix, P,Q ∈ P4. This
means there can exist at most two pairs of indices (i, j) such that Pij = Qij = 1 since P 6= Q.
Then Aij = α+β for those (i, j), and two permutation matrices X,Y can be found for which
XAY = (α + β)I1 ⊕ A1 or (α + β)I2 ⊕ A2 where A1 and A2 are OPMs of orders 3 and 2
respectively. Indeed, each row of A1 is a permutation of {0, α, β}; whereas each row of A2 is
a permutation of {α, β}. Then from the classification of OPMs of order 3 (see Theorem 3.1,
[10]) it can be seen that either (α, β) = (±1, 0) or (α, β) = (0,±1). The same holds for A2,
and hence the desired result follows. �

The following theorem provides characterization of orthogonal matrices that are linear
combinations of three permutation matrices.

Theorem 3.5. If an orthogonal matrix A is a (real) linear combination of three distinct
permutation matrices then either ±A is a permutation matrix or XAY is a direct sum of
OPMs of order 3 and 1, for some permutation matrices X,Y.

Proof: Let A = αP + βQ + γR be an orthognal matrix, where P,Q,R are distinct
permutation matrices of order 4. Then two cases arise. Either the set S = {P,Q,R} is
pairwise H-orthogonal or there exist at least one pair of matrices in S whose Hadamard
product is a non-zero matrix. Note that sum of entries of each row and column of A is
α+ β + γ.

First suppose that S is a pairwise H-orthogonal set. Then following a similar argument
as in the proof of Theorem 3.4 it can be concluded that A = ±M for some M ∈ P4. Next
assume that S is not pairwise H-orthogonal. If there is only one pair of elements of S that
are not H-orthogonal. Without loss of generality, let P ◦ Q 6= 0. Then Aij = α + β if and
only if Pij = Qij = 1 for at most two indices (i, j). Hence the unit norm condition of rows
and columns of A yields the polynomial system:

α2 + β2 + γ2 = 1, (α+ β)2 + γ2 = 1.

Then it is computational to check that either α = 0 or β = 0. Then from Theorem 3.4 it follows
that A = ±M for some M ∈ P4. Now assume that there are two distinct pairs of matrices in
S each of which are not H-orthogonal. Without loss of generality, let P ◦Q 6= 0, P ◦ R 6= 0.
Then Aij = α + β and Akl = α + γ if and only if Pij = Qij = 1, Pkl = Rkl = 1 for some
indices (i, j) and (k, l). Thus (α, β, γ) satisfy the following polynomial system due to the unit
norm condition of rows of A:

(α+ β)2 + γ2 = 1, (α+ γ)2 + β2 = 1.

Solving these equations we have either α = 0 or β = γ. If α = 0, A is linear combination of
Q and R and hence the desired result follows from Theorem 3.4, while for β = γ rows of A
are permutations of x1 = (α + β, β, 0, 0) or x2 = (α, β, β, 0). If rows of A are permutations
of x1 only then β(α + β) = 0. Otherwise if permutations of both x1 and x2 present as rows
of A we obtain αβ = 0. Thus the result follows from Theorem 3.4. Finally, let all pairs of
matrices from S are not H-orthogonal. Then if P ◦Q ◦R 6= 0 then there is exactly one index
(i, j) such that Aij = α + β + γ and Pij = Qij = Rij = 1 since P 6= Q 6= R, which further
implies that α + β + γ ∈ {±1}. Obviously, two permutation matrices X,Y can be found
such that XAY = (α + β + γ) ⊕ A1 where A1 is an orthogonal matrix of order 3 which is
linear combination of 3 permutation matrices. Then using the characterization of orthogonal
matrices that are linear combinations of permutations (see Theorem 3.2, [10]) we conclude
that A1 is a OPM and the desired result follows. Otherwise, if P ◦Q 6= 0, Q◦R 6= 0, R◦P 6= 0
with P ◦Q◦R = 0 then each rows of A can be permutations of (α+β, γ, 0, 0), (α+γ, β, 0, 0) and
(α, β + γ, 0, 0). However, all of these row vectors can not appear as rows of A simultaneously
since column sum of A is α+ β + γ for each column. These complete the proof. �

Now we focus on finding orthogonal matrices that are real linear combinations of permu-
tations but neither permutative nor a direct sum of permutative matrices up to permutations
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of rows or columns. Thus we investigate existence of such matrices belonging to subspaces
and direct sum of subspaces of matrices of order 4 that are generated by sets of linearly
independent permutation matrices. Recall that the real linear combinations of permutation
matrices of order n form a vector space of dimension (n − 1)2 + 1 [2]. We denote this space
as L for n = 4. We choose a basis B of L that contains 10 permutation matrices given by

B = {P(12), P(23), P(24), P(34), P(123), P(124), P(234), P(12)(34), P(13)(24), P(14)(23)}.

Let A ∈ L. Then A ∈ ⊕5
k=1Lk, Lk = 〈Bk〉 is the subspace generated by Bk, k = 1, . . . , 5 as

follows:

B1 = {P(12), P(34), P(13)(24), P(14)(23)},B2 = {P(24), P(12)(34)},
B3 = {P(124), P(234)},B4 = {P(123)},B5 = {P(23)}.

Note that Bk is a pairwise H-orthogonal set for each k. In particular, if A ∈ Lk, k = 1, . . . , 5,
is orthogonal then A can be characterized by Theorem 2.1 and hence A ∈ OP4.

Now we briefly review the concept of combinatorially orthogonal matrices introduced by
Brualdi et al. [1] which will be used in sequel. A matrix having entries from {0, 1} is called a
(0, 1) matrix. The nonzero pattern of a matrix A is defined as a (0, 1) matrix MA such that
ijth entry of MA = 1 if and only if aij 6= 0. A nonzero pattern M is orthogonal if there exists
a (real) orthogonal matrix with the same pattern. Let A be a (0, 1) matrix of order n. Then A
is combinatorially orthogonal or quadrangular if inner product of distinct rows or columns is
not equal to 1. Let S be a subset of rows of A such that for each element of S there is another
element of S with nonzero inner product. Then A is said to be row strongly quadrangular if
the matrix, whose rows are all the elements of S, has at least |S| number of columns with at
least two 1s. Similarly, the matrix A is said to be column strongly quadrangular if the set S
contains columns of A and if the matrix whose columns are all the elements of S, has at least
|S| number of rows with at least two 1’s. If a (0, 1) matrix is both row and column strongly
quadrangular then it is called strongly quadrangular.

Note that if a (0, 1) matrix supports unitary then it is strongly quadrangular but the
converse need not be true. Now we recall the following proposition from [11].

Proposition 3.6. A (0, 1) matrix of degree n ≤ 4 supports a unitary if and only if it is
strongly quadrangular.

Then we have the following theorem.

Theorem 3.7. Let A ∈ Li ⊕ Lj , i, j ∈ {1, . . . , 5} be an orthogonal matrix. Then A ∈ OP4.

Proof: It is clear from Theorem 3.3 and Theorem 2.1 that A ∈ OP4 whenever A ∈ Li⊕Lj

for i 6= j, i ∈ {1, . . . , 5}, j ∈ {4, 5}.
First let A = a1P(12) + a2P(34) + a3P(13)(24) + a4P(14)(23) + b1P(24) + b2P(12)(34) ∈ L1 ⊕

L2. Then the unit norm conditions of 2nd and 4th rows, 1st and 2nd rows, and 3rd and
4th rows of A yield b2 = 0 or a1 = a2, b1 = 0 or a2 = a3, and b1 = 0 or a1 = a3,
respectively. If b1 = b2 = 0, then A ∈ L1. If b1 6= 0, b2 = 0 and a1 = a2 = a3 then
A = A

(

x;P(1432), P(13)(24), P(1234)

)

, where x = (a1 + b1, a1, a1, a4). If b1 = 0, b2 6= 0, a2 = a1,

then A = A
(

x;P(12)(34), P(13)(24), P(14)(23)

)

, where x = (a1, a1+b2, a3, a4). At last, for b1, b2 6=
0, a1 = a2 = a3, A = A

(

x;P(1432), P(13)(24), P(1234)

)

, where x = (a1+ b1, a1+ b2, a1, a4). Thus
by Theorem 2.1 in all the above cases A ∈ OP4.

If A ∈ L1 ⊕ L3 then A is linear combination of at most 6 permutations and using similar
arguments as above it is easy to verify that A ∈ OP4.

Next, suppose A = b1P(24) + b2P(12)(34) + c1P(124) + c2P(234) ∈ L2 ⊕ L3. Then the (0, 1)
pattern MA of A is given by

MA =









1 1 0 0
1 0 1 1
0 0 1 1
1 1 1 0









,
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which is not quadrangular. Hence A is not an orthogonal matrix with the (0, 1) pattern MA.
Let Mi denote the ith column of MA. However, for A to be orthogonal which means MA to
be quadrangular, the coefficients must satisfy the following conditions: b2 = 0 or b1 + c1 = 0,
and b2 = 0 or b1 + c2 = 0 by setting MT

1 M4 = 0 and MT
2 M3 = 0 respectively.

If b2 = 0, then by Proposition 3.6 the nonzero pattern of A can support an orthogonal
matrix. Further unit norm condition of rows of A implies either b1 = 0 or c1 = c2. If b2 = 0
and b1 = 0, A ∈ L3. Otherwise for c1 = c2 together with b2 = 0, A is a permutative matrix
with two nonzero entries in each row. Hence from Theorem 3.4, A = ±R,R ∈ P4. If b2 6= 0
i.e. b1 + c1 = 0 and b1 + c2 = 0, a further analysis yields c1 = c2 = 0. Hence A = b2P(12)(34),
where b2 = ±1. These complete the proof. �

Theorem 3.8. Let A ∈ L1 ⊕ Li ⊕ Lj be orthogonal where i, j ∈ {2, 3, 4, 5} and (i, j) /∈
{(2, 5), (3, 4)}. Then A ∈ OP4.

Proof: Since L1 is generated by four H-orthogonal permutation matrices and each of Li
and Lj is generated by one or two permutation H-orthogonal matrices, the nonzero pattern
of A is the all-one matrix in general. Let A = a1P(12) + a2P(34) + a3P(13)(24) + a4P(14)(23) +
b1P(24) + b2P(12)(34) + c1P(124) + c2P(234) ∈ L1 ⊕ L2 ⊕ L3. Then the unit norm conditions of
1st row and 1st column, 3rd row and 3rd column, 3rd row and 4th column, and 1st row and
2nd column of A yield c1 = 0 or a4 = a1 + b2, c2 = 0 or a4 = a2 + b2, b1 + c1 = 0 or a3 = a1,
and b1 + c2 = 0 or a3 = a2, respectively. Then it can be verified that:

1. If c1 = c2 = 0, then A ∈ L1 ⊕ L2.

2. Consider c1 = 0, c2 6= 0, a4 = a2 + b2, b1 + c1 = 0, a3 = a2. Further, b2 = 0 or a1 = a2
and c2 = 0 or a2 = a4, and hence when b2 = 0, A ∈ L1⊕L3. Otherwise we have a1 = a2.
Hence a1 = a2 = a4, which again implies b2 = 0. Thus A ∈ L1 ⊕ L3.

3. If c1 = 0, c2 6= 0, a4 = a2 + b2, b1 + c2 = 0, a3 = a1, then we obtain b2 = 0 or a1 = a2.
Further it can be verified that in both the cases A can not be an orthogonal matrix
under all the given conditions.

4. When c1 = 0, c2 6= 0, a4 = a2 + b2, a3 = a2 = a1, then the orthonormality of A further
implies a4 = a1+b1 and hence b1 = b2. So that A becomes A

(

x;P(1324), P(1423), P(12)(34)

)

with x = (a4+c2, a4, a1, a4). A similar analysis can be done for all the cases where c2 = 0
and c1 6= 0.

5. If c1 6= 0, c2 6= 0, a4 = a1 + b2, a1 = a2, b1 + c1 = 0, b1 + c2 = 0, then A becomes
A
(

x;P(1234), P(13)(24), P(1423)

)

with x = (a1, a4 + c1, a3, a4).

6. Consider c1 6= 0, c2 6= 0, a4 = a1 + b2, a1 = a2 = a3, b1 + c1 = 0. Then the orthogonality
condition of A yields a1 = 0 or 2a4 + c2 = 0. For a1 = 0 we obtain a4 = 0. Hence
A ∈ L2 ⊕ L3 or b1 + c2 = 0, which satisfies the previous case. Otherwise for 2a4+ c2 = 0
we obtain b1 = 2a4, which is equivalent to say b1 + c2 = 0, or b1 = 0, hence it follows
from Proposition 3.1 that A = ±(12J4−P(234)). Similarly it can be done for c1 6= 0, c2 6=
0, a4 = a1 + b2, a1 = a2 = a3, b1 + c2 = 0.

7. If c1 6= 0, c2 6= 0, a4 = a1 + b2, a1 = a2 = a3, then the orthonormality of A yields
c1 = c2 or a1+b1 = a4. Now, c1 = c2 implies A = A

(

x;P(14)(23), P(13)(24), P(12)(34)

)

with

x = (a1+b1+c1, a4+c1, a1, a4). In particularA = ±(12J4−P ), P ∈ P4.On the other hand
for a1 + b1 = a4 we have b1 = b2 and A takes the form A

(

x;P(1324), P(1423), P(12)(34)

)

with x = (a4 + c2, a4 + c1, a1, a4).

Using similar arguments of step by step elimination of entries of the polynomial system
defined by orthonormality condition of the columns and rows of concerned matrices it can be
verified that any orthogonal matrix belongs to L1 ⊕ L2 ⊕ L4, L1 ⊕ L3 ⊕ L5, or L1 ⊕ L4 ⊕ L5 is
in OP4. �
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Theorem 3.9. Let A ∈ Li ⊕ Lj ⊕ Lk be orthogonal where i, j, k ∈ {2, 3, 4, 5}, then A ∈ OP4.

Proof: Clearly for all the given choices of i, j, k, A can be a linear combination of at
most 5 permutation matrices and nonzero patterns of A are other than the all-one matrix.
Suppose, A = b1P(24) + b2P(12)(34) + c1P(124) + c2P(234) + eP(23) ∈ L2 ⊕ L3 ⊕ L5. Clearly the
(0, 1) pattern of A is not quadrangular and b2 = 0 or b1 + c2 + e = 0 and e = 0 or b2 + c1 = 0
are satisfied. Hence if e = 0 then A ∈ L2 ⊕ L3. Otherwise if e 6= 0 and b2 = 0 then c1 = 0, so
that nonzero pattern of A,

MA =









1 0 0 0
0 0 1 1
0 1 1 1
0 1 0 1









is non-quadrangular. Then considering the 3rd and 4th rows of A to be orthogonal to each
other, it follows that b1 should be 0. Thus A ∈ L3⊕L5. Finally, b1+ c2+e = 0 and b2+ c1 = 0
can not hold simultaneously since b1 + b2 + c1 + c2 + e ∈ {±1} is a necessary condition for A
to be orthogonal. Hence the proof follows from Theorem 3.7.

Similarly by looking into the nonzero patterns and eliminating some entries for the re-
quirement of orthogonality of A the desired result can be proved when A belongs to each of
the spaces L2 ⊕ L3 ⊕ L4, L2 ⊕ L4 ⊕ L5, L3 ⊕ L4 ⊕ L5. �

Theorem 3.10. Let A ∈ L2 ⊕ L3 ⊕ L4 ⊕ L5 be orthogonal. Then A ∈ OP4.

Proof: Let A = b1P(24) + b2P(12)(34) + c1P(124) + c2P(234) + dP(123) + e(23)P(23) ∈ L2 ⊕
L3 ⊕ L4 ⊕ L5. Let M

k
A for k = 1, . . . , 4 denote the (0, 1) pattern of A arise at different stages.

Now,

M1
A =









1 1 0 0
1 0 1 1
1 1 1 1
1 1 1 1









,

which is not quadrangular. Since R1R
T
2 = 1 where Ri denotes the ith row of M1

A, b2 = 0 or
b1 + c2 + e = 0 holds.

Hence if b2 = 0, then

M2
A =









1 1 0 0
0 0 1 1
1 1 1 1
1 1 0 1









,

which is again not quadrangular since CT
1 C3 = 1 = CT

2 C3, where Ci denotes the ith column
of M2

A. Thus d = 0 or b1 + c1 = 0 and e = 0 or b1 + c1 = 0 are satisfied. If d = e = 0,
then A ∈ L2 ⊕ L3. If d = 0, e 6= 0 then A ∈ L2 ⊕ L3 ⊕ L5. Otherwise if d 6= 0, e = 0 then
A ∈ L2 ⊕ L3 ⊕ L4. Finally if d 6= 0, e 6= 0, b1 + c1 = 0, then

M3
A =









1 1 0 0
0 0 1 0
1 1 0 1
1 1 0 1









and the orthogonality condition of corresponding A implies d = 0 or e = 0, which is a
contradiction. Hence at least one of d = 0 or e = 0 holds whenever b2 = 0.

If b2 6= 0 then b1 + c2 + e = 0 holds. Thus we obtain

M4
A =









0 1 0 0
1 0 1 1
1 1 1 1
1 1 1 1









,
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which is not quadrangular. Hence e = 0 or b2 + c1 + d = 0 and b1 + c2 = 0, or b2 + c1 + d = 0
hold. So that A ∈ L2 ⊕ L3 ⊕ L4 if e = 0. While for e 6= 0 we get b2 + c1 + d = 0 and thus
b1 + b2 + c1 + c2 + d + e = 0. Which leads to a contradiction by Proposition 3.1. Thus the
proof follows from Theorem 3.7 and Theorem 3.9. �

In all the cases above we determine spaces generated by specific permutation matrices
such that any orthogonal matrix belonging to these spaces is either permutative or direct sum
of permutative matrices after pre and post multiplication by permutation matrices to the
original matrix. In the following we determine classes of orthogonal matrices that are linear
combinations of permutation matrices but are not permutative matrices.

Theorem 3.11. Let A ∈ L1 ⊕ L3 ⊕ L4 be orthogonal. Then either A ∈ OP4 or there exist

P,Q ∈ P4 such that PAQ or H(PAQ)H is of the form

[

±1 0T

0 X

]

for some OPM X of order

3, where H is the Hadamard matrix of order 4 as given in equation (16).

Proof: Suppose A = a1P(12) + a2P(34) + a3P(13)(24) + a4P(14)(23) + c1P(124) + c2P(234) +
dP(123) ∈ L1 ⊕ L3 ⊕ L4. Then the unit norm conditions of 1st row and 2nd column, 2nd row
and 3rd column, 3rd row and 1st column of A yield c2 = 0 or a2 = a3, c1 = 0 or a1 = a3 and
c1 = 0 or a1 = a4, respectively. Thus if c1 6= 0 and c2 6= 0 then we get a1 = a2 = a3 = a4
and a further computation for 2nd and 4th rows gives d = 0, which implies A ∈ L1 ⊕ L3. If
c1 = c2 = 0, then A ∈ L1 ⊕ L4. If c1 = 0, a2 = a3 while c2 6= 0 then a further unit norm
condition of 1st and 2nd columns lead to either a1 = a2 or d = 0. If d = 0 then we are done.
Suppose a1 = a2, with c1 = 0, a2 = a3, so that a1 = a2 = a3. Then orthogonality of 1st and
2nd rows of A implies a1 = 0 or a1 + a4 + c2 + d = 0.

1. Now while a1 = 0, we obtain

P(12)AP(13) =









a4 + c2 + d 0 0 0
0 d c2 a4
0 a4 d c2
0 c2 a4 d









,

and hence a4 + c2 + d = ±1.

2. For a1 + a4 + c2 + d = 0 using Proposition 3.1 we obtain 3a1 + a4 + c2 + d = ±1 so that
2a1 = ±1 and a4 + c2 + d = −a1. Hence when row sum of A is 1 and −1, we obtain
a1 = 1

2 and a1 = − 1
2 , respectively. Thus P(12)AP(13) belongs to one of the following

sets:

C1 =























− 1
2

1
2

1
2

1
2

1
2 −a4 − c2

1
2 + c2 a4

1
2 a4 −a4 − c2

1
2 + c2

1
2

1
2 + c2 a4 −a4 − c2









: a4 = −1

2
c2 ±

1

2

√

(1 − 3c2)(1 + c2),

−1 ≤ c2 ≤ 1

3

}

,

C2 =























1
2 − 1

2 − 1
2 − 1

2
− 1

2 −a4 − c2 − 1
2 + c2 a4

− 1
2 a4 −a4 − c2 − 1

2 + c2
− 1

2 − 1
2 + c2 a4 −a4 − c2









: a4 = −1

2
c2 ±

1

2

√

(1 + 3c2)(1 − c2) ,

−1

3
≤ c2 ≤ 1

}

.

where the relations between a4 and c2 can be obtained by considering the unit norm
condition of the rows and columns.
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Then observe that HMH =

[

1 0
0 M1

]

if M ∈ C1 for some matrix M1 ∈ C1, and HNH =
[

1 0
0 N2

]

if N ∈ C2 for some matrix N2 ∈ C2, where

C1 =











− 1
2 − a4 − c2 − 1

2 + a4 c2
c2 − 1

2 − a4 − c2 − 1
2 + a4

− 1
2 + a4 c2 − 1

2 − a4 − c2



 :

a4 = −1

2
c2 ±

1

2

√

(1− 3c2)(1 + c2),−1 ≤ c2 ≤ 1

3

}

,

C2 =











1
2 − a4 − c2

1
2 + a4 c2

c2
1
2 − a4 − c2

1
2 + a4

1
2 + a4 c2

1
2 − a4 − c2



 :

a4 = −1

2
c2 ±

1

2

√

(1 + 3c2)(1− c2),−
1

3
≤ c2 ≤ 1

}

.

It is to be noted that any matrix in C1 has row and column sums −1 while for C2 it is 1.
Also, matrices in C1 and C2 are linear combinations of at most 6 permutation matrices.

Hence the proof. �

Thus from the above theorems we obtain that: Any orthogonal matrix A belonging to the
spaces Li, i ∈ {1, . . . , 5}; Li ⊕ Lj , i, j ∈ {1, . . . , 5}; Li ⊕ Lj ⊕ Lk, i, j, k ∈ {1, . . . , 5}, (i, j, k) 6=
(1, 2, 5) and L2⊕L3⊕L4⊕L5, is always permutative or there exists P,Q ∈ P4 such that PAQ
or H(PAQ)H is direct sum of OPMs. Finally we conclude this section with the following
important remark about orthogonal matrices of order 4 that are direct sum of OPMs.

Remark 3.12. (Orthogonal matrices in L that are direct sum of OPMs) Let A ∈ L be a
4× 4 orthogonal matrix such that PAQ is the direct sum of OPMs for some P,Q ∈ P4. Then

PAQ =

[

1 0
0 B

]

for B ∈ X 1 ∪ Z1, or PAQ =

[

−1 0
0 C

]

for C ∈ Y−1 ∪W−1, where

X 1 =











x y 1− x− y
1− x− y x y

y 1− x− y x



 : x2 + y2 − x− y + xy = 0







,

Y−1 =











x y −1− x− y
−1− x− y x y

y −1− x− y x



 : x2 + y2 + x+ y + xy = 0







,

Z1 = {PA : A ∈ X 1},W−1 = {PB : B ∈ Y−1} and P is the 3 × 3 permutation matrix
corresponds to the permutation (23). Note that union of X 1,Y−1,Z1 and W−1 provides the
set of all permutative orthogonal matrices OPMs of order 3 [10]. Obviously the above matrices
PAQ are not permutative. Clearly if PAQ is the direct sum of two 2×2 permutative matrices,
then PAQ ∈ P4 or equivalently A ∈ P4.

Conclusion. In this paper, we have provided parametric representation of all orthogonal
permutative matrices (OPMs) of order 4 over the field of complex, real and rational numbers.
Consequently, we have shown that OPMs can be written as linear combinations of permutation
matrices. We have determined several matrix spaces such that any orthogonal matrix A
in these spaces is always permutative or PAQ or HPAQH is a direct sum of OPMs for
some permutation matrices P,Q and the Hadamard matrix H given in equation (16). These
matrix spaces are defined by direct sums of linear spaces Li, i = 1, . . . , 5 which are generated
by linearly independent Hadamard orthogonal permutation matrices. However, exploring all
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such matrix spaces and characterizing combinatorial structure of all orthogonal matrices of
order 4 is beyond the scope of this paper. For example, consider the orthogonal matrix

M =
1

11









10 −2 −1 4
−2 7 −2 8
−1 −2 10 4
4 8 4 −5









=
1

11
P(12) +

7

11
P(34) −

1

11
P(13)(24) +

4

11
P(14)(23)

+
9

11
P(24) −

3

11
P(12)(34) −

6

11
P(23) ∈ L1 ⊕ L2 ⊕ L5.

It can be verified that M does not have any of the combinatorial structure as mentioned
above. We plan to explore this problem in future.
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