# A CHARACTERIZATION OF PSEUDO-EINSTEIN REAL HYPERSURFACES IN A QUATERNIONIC PROJECTIVE SPACE 

By<br>Tatsuyoshi Hamada

## 0. Introduction.

Let $\boldsymbol{H} \boldsymbol{P}^{n}$ be a quaternionic projective space, $n \geqq 3$, with metric $G$ of constant quaternionic sectional curvature 4 , and let $M$ be a connected real hypersurface of $\boldsymbol{H} P^{n}$. Let $\xi$ be a unit local normal vector field on $M$ and $\{I, J, K\}$ a local basis of the quaternionic structure of $\boldsymbol{H} P^{n}$ (cf. [4]). Then $U_{1}=-I \xi, U_{2}=-J \xi, U_{3}=-K \xi$ are unit vector fields tangent to $M$. We call them structure vectors. Now we put $f_{i}(X)=g\left(X, U_{i}\right)$, for arbitrary $X \in T M, i=1,2,3$, where $T M$ is the tangent bundle of $M$ and $g$ denotes the Riemannian metric induced from the metric $G$. We denote $D$ and $D^{\perp}$ the subbundles of $T M$ generated by vectors perpendicular to structure vectors, and structure vectors, respectively. There are many theorems from the point of view of the second fundamental tensor $A$ of $M$ (cf. [1], [8] and [9]). It is known that if $M$ satisfies $g\left(A D, D^{\perp}\right)=0$ then there is a local basis of quaternionic structure such that structure vectors are principal vectors. Berndt classified the real hypersurfaces which satisfy this condition (cf. [1]). On the other hand we know some results on real hypersurfaces of $\boldsymbol{H} \boldsymbol{P}^{n}$ in terms of the Ricci tensor $S$ of $M$ (cf. [3] and [8]). If the Ricci tensor satisfies that $S X=a X+b \sum_{i=1}^{3} f_{i}(X) U_{i}$ for some smooth functions $a$ and $b$ on $M$, then $M$ is called a pseudo-Einstein real hypersurface of $\boldsymbol{H} \boldsymbol{P}^{n}$. This notion comes from the problem for the real hypersurfaces in complex projective space $\boldsymbol{C} P^{n}$. Kon studied it under the assumption that they have constant coefficients (cf. [5]) and Cecil and Ryan gave a complete classification (cf. [2]). In [8] Martinez and Perez studied pseudo-Einstein real hypersurfaces of $\boldsymbol{H} \boldsymbol{P}^{n}, n \geq 3$ under the condition that $a$ and $b$ are constant. Using Berndt's classification we show that we do not need the assumption. The main purpose of this paper is to provide a characterization of pseudo-Einstein real hypersurface in $\boldsymbol{H} P^{n}$ by using an estimate of the length of the Ricci tensor $S$, which is a quaternionic version of a result of Kimura and

[^0]Maeda (cf. [5]).
THEOREM 1. Let $M$ be a real hypersurface of $\boldsymbol{H} P^{n}(n \geqq 3)$ with $f_{i}\left(S U_{i}\right)=\alpha$ for $i=1,2,3, \alpha$ is a function on $M$. Then the following holds:

$$
\begin{equation*}
\|S\|^{2} \geqq 3 \alpha^{2}+\frac{1}{4(n-1)}(\rho-3 \alpha)^{2} \tag{0.1}
\end{equation*}
$$

where $\|S\|$ is the length of the Ricci tensor $S$ of $M$ and $\rho$ is the scalar curvature of $M$. The equality of (0.1) holds if and only if $M$ is an open subset of one of the following:
(a) a geodesic hypersphere,
(b) a tube of radius $r$ over a totally geodesic $\boldsymbol{H} P^{k}, 1 \leqq k \leqq n-2,0<r<\pi / 2$ and $\cot ^{2} r=(4 k+2) /(4 n-4 k-2)$.

The author would like to express his sincere gratitude to Professors Y. Matsuyama and K. Ogiue who encouraged me to study these problems and gave many valuable suggestions.

## 1. Preliminaries.

Let $M$ be a connected real hypersurface of $\boldsymbol{H} \boldsymbol{P}^{n}, n \geqq 3$, and let $\xi$ be a unit normal vector field on $M$. The Riemannian connection $\tilde{\nabla}$ in $H P^{n}$ and $\nabla$ in $M$ are related by the following formulas for arbitrary vector fields $X$ and $Y$ on $M$ :

$$
\begin{gather*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+g(A X, Y) \xi  \tag{1.1}\\
\tilde{\nabla}_{X} \xi=-A X \tag{1.2}
\end{gather*}
$$

where $A$ is the second fundamental tensor of $M$ in $\boldsymbol{H} P^{n}$. We put

$$
\begin{align*}
& I X=\phi_{1} X+f_{1}(X) U_{1}, \\
& J X=\phi_{2} X+f_{2}(X) U_{2},  \tag{1.3}\\
& K X=\phi_{3} X+f_{3}(X) U_{3}
\end{align*}
$$

for any vector field $X$ tangent to $M$, where $\phi_{1} X, \phi_{2} X$, and $\phi_{3} X$, are the tangential parts of $I X, J X$ and $K X$ respectively, $\phi_{i}$ are tensors of type (1,1), $f_{i}$ are 1 -forms for $i=1,2,3$. Then they satisfy

$$
\begin{gather*}
\phi_{i}^{2} X=-X+f_{i}(X) U_{i},  \tag{1.4}\\
f_{i}\left(U_{i}\right)=1, \quad f_{i}\left(U_{i+1}\right)=f_{i}\left(U_{i+2}\right)=0, \tag{1.5}
\end{gather*}
$$

$$
\begin{gather*}
\phi_{i} U_{i}=0, \quad \phi_{i} U_{i+1}=-\phi_{i+1} U_{i}=U_{i+2}  \tag{1.6}\\
\phi_{i+1} \phi_{i+2} X=\phi_{i} X+f_{i+2}(X) U_{i+1}  \tag{1.7}\\
\phi_{i+2} \phi_{i+1} X=-\phi_{i} X+f_{i+1}(X) U_{i+2} \tag{1.8}
\end{gather*}
$$

for $i=1,2$, 3, where we take the index $i$ modulo 3 . From the expression of the curvature tensor of $\boldsymbol{H} \boldsymbol{P}^{n}$ (cf. [4]), we have the following Gauss and Codazzi equations:

$$
\begin{align*}
R(X, Y) Z= & g(Y, Z) X-g(X, Z) Y  \tag{1.9}\\
& +\sum_{i=1}^{3}\left(g\left(\phi_{i} Y, Z\right) \phi_{i} X-g\left(\phi_{i} X, Z\right) \phi_{i} Y-2 g\left(\phi_{i} X, Y\right) \phi_{i} Z\right) \\
& +g(A Y, Z) A X-g(A X, Z) A Y,
\end{align*}
$$

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y-\left(\nabla_{X} A\right) X=\sum_{i=1}^{3}\left(f_{i}(X) \phi_{i} Y-f_{i}(Y) \phi_{i} X-2 g\left(\phi_{i} X, Y\right) U_{i}\right) \tag{1.10}
\end{equation*}
$$

We denote by $S$ the Ricci tensor of type $(1,1)$ on $M$. Then by (1.9) we have

$$
\begin{equation*}
S X=(4 m+7) X-3 \sum_{i=1}^{3} f_{i}(X) U_{i}+(\text { trace } A) A X-A^{2} X \tag{1.11}
\end{equation*}
$$

We use the following lemma.

Lemma 2. Let $M$ be a real hypersurface of $\boldsymbol{H} P^{n} n \geqq 2$. Then $g\left(A D, D^{\perp}\right)=0$ if and only if there exists a local basis $\{I, J, K\}$ of quaternionic structure, such that the corresponding $U_{1}=-I \xi, U_{2}=-J \xi, U_{3}=-K \xi$ are principal vectors.

We know that Berndt classified the real hypersurface with the above condition (cf. [1]).

PROPOSITION 3. Let $M$ be a real hypersurface of $\boldsymbol{H} \boldsymbol{P}^{n}, n \geqq 2$, satisfying $g\left(A D, D^{\perp}\right)=0$. Then $M$ is congruent to an open subset of one of the following:
(a) a geodesic hypersphere,
(b) a tube of radius $r$ over a totally geodesic $\boldsymbol{H} P^{k}, 1 \leqq k \leqq n-2,0<r<\pi / 2$,
(c) a tube of radius $r$ over a totally geodesic $\boldsymbol{C P} P^{n}, 0<r<\pi / 4$.

The geodesic hypersphere of $\boldsymbol{H} \boldsymbol{P}^{n}$ has two distinct principal curvatures. Conversely Martinez and Perez proved the following proposition in [8].

Proposition 4. Let $M$ be a real hypersurface of $\boldsymbol{H} P^{n}, n \geqq 3$, with at most two distinct principal curvatures at each point of $M$. Then $M$ is an open subset of the geodesic hypersphere of $\boldsymbol{H} \boldsymbol{P}^{n}$.

We show the following result, which was proved by Martinez and Perez (cf. [8]) under the additional assumption that $a$ and $b$ are constant.

Proposition 5. Let $M$ be a pseudo-Einstein real hypersurface of $\boldsymbol{H} P^{n}, n \geqq 3$. Then $M$ is an open subset of one of the following:
(a) a geodesic hypersphere,
(b) a tube of radius $r$ over a totally geodesic $\boldsymbol{H} \boldsymbol{P}^{k}, 1 \leqq k \leqq n-2,0<r<\pi / 2$ and $\cot ^{2} r=(4 k+2) /(4 n-4 k-2)$.

Proof. Suppose that $M$ is a pseudo-Einstein real hypersurface of $\boldsymbol{H} \boldsymbol{P}^{n}, n \geqq 3$. Let $H=A^{2}-($ traceA $) A$. From the assumption, we have

$$
\begin{equation*}
H X=(4 n+7-a) X, \quad H Z=(4 n+4-(a+b)) Z, \tag{1.12}
\end{equation*}
$$

for arbitrary $X \in D, Z \in D^{\perp}$. If $b=-3$, from (1.12) we get

$$
\left(A^{2}-(\text { trace } A) A-(4 n+7-a)\right) X=0
$$

for any $X \in T M$. Hence $M$ has at most two distinct principal curvatures at each point of $M$, so that, by Proposition 4, $m$ is an open subset of the geodesic hypersphere. If $b \neq-3, D$ and $D^{\perp}$ are invariant under $H .4 n+4-(a+b)$ is an eigenvalue of multiplicity three of $H$. On the other hand, if $X$ is an eigenvector of $A$, clearly $X$ is an eigenvector of $H$. If $\left\{X_{1}, \cdots, X_{4 n-1}\right\}$ is an orthonormal basis of eigenvectors of $A$, then it is also a basis of eigenvectors for $H$. There must be three $X_{i}$ for $i=1,2,3$, by suitable choice of indices, so that $H X_{i}=(4 n+4-(a+b)) X_{i}$ for $i=1,2,3$. Then $X_{1}, X_{2}$ and $X_{3}$ span the distribution $D^{\perp}$. Thus $g\left(A D, D^{\perp}\right)=0$ and, by Proposition 3, we get the result.

## 2. Proof of Theorem 1.

We first remark that the real hypersurface $M$ is pseudo-Einstein if and only if

$$
\begin{equation*}
g(S X, Y)=\lambda g(X, Y) \text { for any } X, Y \in D \tag{2.1}
\end{equation*}
$$

$\lambda$ is a function on $M$, and

$$
\begin{equation*}
U_{1}, U_{2} \text { and } U_{3} \text { are eigenvectors of } S \text { with the same eigenvalue } \alpha . \tag{2.2}
\end{equation*}
$$

We can rewrite the condition (2.1) to get

$$
\begin{equation*}
g(S X, Y)=\rho_{0} g(X, Y) \quad \text { for any } X, Y \in D \tag{2.3}
\end{equation*}
$$

and

$$
\rho_{0}=\frac{1}{4(n-1)}\left(\rho-\sum_{i=1}^{3} f_{i}\left(S U_{i}\right)\right) .
$$

This equation (2.3) is equivalent to

$$
\begin{aligned}
g\left(S X-\sum_{i=1}^{3} f_{i}(X) S U_{i}\right. & \left., Y-\sum_{j=1}^{3} f_{j}(Y) U_{j}\right) \\
& =\rho_{0} g\left(X-\sum_{k=1}^{3} f_{k}(X) U_{k}, Y-\sum_{l=1}^{3} f_{l}(Y) U_{l}\right)
\end{aligned}
$$

for any tangent vector fields $X, Y$ on $M$. Consequently we obtain

$$
\begin{aligned}
& g(S X, Y)-\rho_{0} g(X, Y) \\
& \quad=\sum_{i=1}^{3}\left(\rho_{0} f_{i}(X) f_{i}(Y)-f_{i}(S X) f_{i}(Y)-f_{i}(X) f_{i}(S Y)\right) \\
& \quad+\sum_{j, k=1}^{3} f_{j}(X) f_{k}(Y) f_{j}\left(S U_{k}\right)=0
\end{aligned}
$$

We define the tensor $T$ by

$$
\begin{aligned}
T(X, Y) & =g(S X, Y)-\rho_{0} g(X, Y) \\
& +\sum_{i=1}^{3}\left(\rho_{0} f_{i}(X) f_{i}(Y)-f_{i}(S X) f_{i}(Y)-f_{i}(X) f_{i}(S Y)\right) \\
& +\sum_{j, k=1}^{3} f_{j}(X) f_{k}(Y) f_{j}\left(S U_{k}\right) .
\end{aligned}
$$

Using (1.4), (1.5), (1.6), (1.7) and (1.8), we calculate the length of $T$ to get

$$
\|T\|^{2}=\|S\|^{2}-\frac{1}{4(n-1)}\left(\rho-\sum_{i=1}^{3} f_{i}\left(S U_{i}\right)\right)^{2}-2 \sum_{j=1}^{3}\left\|S U_{j}\right\|^{2}+\sum_{k, l=1}^{3}\left(f_{k}\left(S U_{l}\right)\right)^{2}
$$

We know the inequality

$$
\sum_{j=1}^{3}\left\|S U_{j}\right\|^{2} \geqq \sum_{k, l=1}^{3}\left(f_{k}\left(S U_{l}\right)\right)^{2} \geqq 3 \alpha^{2}
$$

holds on any real hypersurface $M$ of $\boldsymbol{H} P^{n}$. From the assumption, the equality holds if and only if $U_{1}, U_{2}$ and $U_{3}$ are eigenvectors of $S$ with the same eigenvalue $\alpha$. We assert that the equality (0.1) holds if and only if $M$ is pseudo-Einstein. By Proposition 5, we have proved our theorem.

## References

[1] Berndt, J., Real hypersurfaces in quaternionic space forms, J. reine angew. Math. 419 (1991), 9-26.
[2] Cecil, T. E. \& Ryan, P. J., Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), 481-499.
[3] Hamada, T., On real hypersurfaces of a quaternionic projective space, Saitama Math. J. 11 (1993), 29-39
[4] Ishihara, S., Quaternion Kähler manifolds, J. Differential. Geom. 9 (1974), 483-500.
[5] Kimura, M. \& Maeda, S., Characterizations of geodesichyperspheres in a complex projective space in terms of Ricci tensors, Yokohama Math. J. 40 (1992), 35-43.
[6] Kon, M., Pseudo-Einstein real hypersurfaces in complex space forms, J. Diff. Geom. 14 (1979), 339-354.
[7] Maeda, Y., On real hypersurfaces of a complex projective space, J. Math. Soc. Japan 28 (1976), 529-540.
[8] Martinez, A. \& Perez, J. D., Real hypersurfaces in quaternionic projective space, Ann. Mat. Pura Appl. 145 (1986), 355-384.
[9] Pak, J. S., Real hypersurfaces in quaternionic Kaehlerian manifolds with constant Q-sectional curvature, Kodai Math. Sem. Rep. 29 (1977), 22-61.

Department of Mathematics
Tokyo Metropolitan University
Hachioji, Tokyo, 192-03, Japan
E-mail address: hamada@math.metro-u.ac.jp


[^0]:    Received June 3, 1994. Revised May 26, 1995.

