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Abstract In formal language theory, there is a well-known corre-
spondence between the set of regular expressions and the
We solve an open question of Milner ([15]). We define a set of finite (non-deterministic) automata: for each regular
set of so-called well-behaved finite automata that, modulo expression a finite automaton can be found that admits the
bisimulation equivalence, corresponds exactly to the set ofsame language, and vice versa. But it is also well-known
regular expressions, and we show how to determine whetheithat this correspondence breaks down if we consider other
a given finite automaton is in this set. As an application, we notions of equivalence, other than language equivalence.
consider the star height problem. Of particular interest is bisimulation equivalence. Milner
proves in [15] that not every finite automaton is bisimulation
equivalent to a regular expression, a closed term in the pro-
1 Introduction cess algebra with atomic actions, successful and unsuccess-
ful termination, choice, sequential composition and itera-

Automata and formal language theory have a place in ey-tion. He poses thg questi_on how the set of finite behgviours
ery undergraduate computer science curriculum, as this prothat are bisimulation equivalent to a regular expression can
vides students with a simple model of computation, and an P& characterized. Here, we solve this open question. We de-
understanding of computability. This simple model of com- fine a set of so-calledell-behavedinite behawours_, that
putation does not include the notion of interaction, which orresponds exactly to the set of regular expressions. We
is more and more important at a time when computers areShow how to determine wh.eth(_ar a given finite behaviour is
always connected, and not many batch processes remaintVell-behaved. As an application, we show how to deter-

Adding interaction to automata theory leads to concurrency Mine the minimal star height (with respect to bisimulation)
theory: of a regular expression. This paper extends [2], where well-

behaved specifications were introduced. For other related
automatat- interaction= concurrency work, see [10].

The basic ideas of concurrency theory should have a place

in every undergraduate curriculum, alongside automata the-

ory. Then, it helps to consider similarities and differences 1 1 Acknowledgements

between the two. Concurrency theory would benefit from

an approach more along the lines of automata theory. We
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2 Process Algebra x -y + z - 2 (the ‘wrong’ distributivity, these terms differ in
the moment of choice), and the law 0 = 0 (thus,0 is not

We start out from the equational theory BPA Closed a ‘real’ zero); inx - 0, actions fromz can be executed but no
terms in this theory correspond exactly to the regular ex- termination can take place). KS1 defines iteration in terms
pressions of formal language theory. We use notations fromof a recursive equation. Taking= 0 yields0* = 1. KS2
regular expressions mainly, but want to emphasise the facexpresses that immediate termination can be omitted in it-
that we consider bisimulation equivalence as our notion of eration behaviour (in language theory, we say that we can
equivalence, and not language equivalence. &%(tends assume that the iterated term does not have the empty word
the basic process algebra BPA (see [6]) with constaatsd ~ property); takingr = 0 yields1* = 1. KS3 is the axiom of
1 and iteration operator. We assume we have given a set Troeger ([19]).
of actionsA. This set, usually (but not necessarily) finite,

is considered a parameter of the theory. The signature ele- Table 1. Axioms of BPA 3 ;.

ments are:

e Binary operator+ denotesalternative compositioor r+y=y+zx Al
choice. Process + y executes either. or y, but not (z+y)+z=a+ (y+2) A2
both. The choice is resolved upon execution of the first r+r=ux A3
action. Notationt- is also used for regular expressions. (x+y)-z=a-2+y- 2 A4

. . . (x-y)-z=z-(y-2) A5
¢ Binary operator denotessequential compositioriVe 40— A6

choose to have sequential composition as a basic op- 0-2=0 A7
erator, different from CCS (see [16]). As a result, we

have a difference between successful terminatign ( Clc :i ; i 22

and unsuccessful terminatiof) ( As is done for regu- =1t KS1

lar expressions, this operator is sometimes not written. (@+1)* = 2* KS2
e Constantd denotesinaction (or deadlock), and is the ' (y-(z+y) +1)=(r+y)* KS3

neutral element of alternative composition. This con-

stant is denoted in ACP-style process algebra [4].

Proces9) cannot execute any action, and cannot ter-

minate. Notatior) is also used in |anguage theory_ The regular eXpreSSionS are tbh®sedterms over this

theory (i.e. the terms without variables). Many results

e Constantl denotes thempty proceser skip. Itisthe in process algebra, like the following normal form lemma,

neutral element of sequential composition. This con- only hold on the set of closed terms.
stant is denoted in ACP-style process algebra [4].

Processl cannot execute any action, but terminates pefinition 1 We define a set of normal forms inductively:
successfully. Notation is also used in language the-

ory. 1. the constants, 1 are normal forms;
e We have a constant for eacha € A, a so-called 2. if t, s are normal forms, andis an atomic action, then
atomic action Process: executes actiom and then alsoa - ¢ t* - s andt + s are normal forms.

terminates successfully. This coincides with the nota-
tion in language theory. The set of actiatiss consid-

ered a parameter of the theory. Proposition 2 Let ¢ be a closed BP§\;-term. There is an

effective algorithm producing a normal formsuch that

e There is a unary operatercallediteration or Kleene ~ BPAj, Ft=s.
star. Processc* can executer any number of times,
but can also terminate successfully. This coincides
with the notation in language theory. In [5]bénary
version of this operator is used. We can use the unary
version, common in language theory, as we have a con-
stantl.

Proof We can turn the axioms A3-9 of BRA into
rewrite rules, by orienting them from left to right. We
obtain a confluent and terminating term rewrite system
modulo A1-2. Then, reduceto normal form. The result
may still contain summands of the forn(only an atomic
action) ora* (only an iteration). These have to be replaced

The equational theory BRA is given by axioms A1-9  bya -1 anda* - 1, respectively. This proof is like several
and KS1-3 in Table 1. Axioms A1-9 are standard. Com- examples in [4] or [3]. O
pared to language theory, we do not have thedaw-+z) =



As a consequence of this proposition, each closed term

over BPA; ; can be written a8, 1 or in the form Table 2. Transition rules for BPA 5, (a € A).

ap -t +...antyFul v+ uk, v, + {1},

1] x* | a—1
for certainn, m € IN with n +m > 0, certaina; € A and a
z— y— 1y
normal formst;,u;,v;. Thel summand may or may not - -
occur. r+y—a r+y—y
We will have need to strengthen this result a little bit. For
. ) > _ x| yl
this, we use a result of Milner, proposition 6.2 of [15]:
r+yl T4yl
Proposition 3 [15]: For each closed BRA -term¢ there r 5 zlySy xlyl
is.an effective algorithm producing a closed BPAterm s oy -y Ty >y Tyl
with "
z—

BPA,  Ft=s
ands has no subterm of the forrft* with f = f + 1.

Using this result, we can require in the normal form in
addition that terms; do not satisfyu; = u; + 1, i.e. these ~ Proposition 5 Bisimulation equivalence is a congruence
terms do not have the empty word property. This will ensure relation on closed BP#\, -terms.
that the recursive specifications we define further down are
guarded.

Next, we provide a model for BRA on the basis of
structured operational rules (so-call&DS ruley in the
style of Plotkin (see [17]). The rules in Table 2 define the
following relations on closed BRA -terms: binary rela-

tions. % . (for a € A) and a unary relatiog. Intuitively,
they have the following meaning:

Proof This is a standard result following from the
format of the deduction rules, see e.g. [3]. O

Theorem 6 The theory BP§, is sound for the model of
transition systems modulo bisimulation, i.e. for all closed
termst, s we have

. . BPA,  Ft=s — tos
e = % 2/ means that: can evolve intar’ by executing .1 =

atomic actiorz; Proof This is also a standard result. O

e = | means that: has an option to terminate success-

: i . Note that the reverse implication in the theorem above,
fully (without executing an action)

indicating completeness of the axiom system, does not hold.

Thus, the relations concern action execution and termi- In fact, a finite complete equational axiomatization is not
nation, respectively, we do not have need of a mixed relationPossible, as shown by Sewell ([18]). This impossibility is
. % Jasin[4]or [3]. due to the presence of tlieconstant. In the absence of

The rules provide a transition system for each closed 0> more positive results can be found in [8] and [9] where a
term. Next, we define an equivalence relation on the re- complete axiomatization of regular expressions up to bisim-

sulting transition systems in the standard way. ulation equivale_nce is given when the language satisfie_s the
so-called hereditary non-empty word property (essentially

requiring that the non-empty word property be satisfied at

Definition 4 Let R be a binary symmetricrelation on -
ysy any depth within a star context).

closed terms. We saR is abisimulationif the following

holds: The first axiom of iteration is a specific instance aka
cursive equationlt is standard to use recursive equations to
e wheneverR(z,y) andz - 2’ then there is a terny/ specify processes with poss_ible infinit.e bf—}haviour, see e.g.
such thayy % o' andR(z', y/) [4] or [3]. We proceed to define recursion in our setting.
Let V be a set of variables ranging over processes. A
e wheneverR(z,y) andz | theny | recursive specificatiot = E(V) is a set of equations =

o _ _ {X = tx | X € V} where eachx is a term over the

We say two closed termss arebisimulation equivalent  signature in question (in our case, BPA and variables
or biSim”ar, notationt«: s if there is a bisimulatior? with from V. A solutionof a recursive Spemﬁéaﬂoﬂ(‘/) inour
R(s,1). theory is a set of process¢sx | X € V'} in some model



of the theory such that the equationsi&fl”) hold, if for all e RDP (theRestricted Recursive Definition Principle

X €V, px is substituted fotX. Mostly, we are interested each guarded recursive specification has at least one
in one particular variabl& € V, called thenitial variable. solution;

Let ¢ be a term containing a variablé. We call an oc- )
currence ofX in ¢ guardedif this occurrence ofX is pre- Note that, due to the presence of the constaatdiffer-
ceded by an atomic action (i.¢.has a subterm of the form ~ €Nnce between BRgy and the standard theory BPA is that
a - s, and thisX occurs ins). finite guarded recursion allows the specification of a pro-

We call a recursive specificatioguardedif all occur- cess with .unbound.eq.brqnchlng (see _[7])'
rences of all its variables in the right-hand sides of all its ~1he third possibility is adding still fewer constants,
equations are guarded or it can be rewritten to such a re-2dding only (X|E) for so-calledregular recursive speci-
cursive specification using the axioms of the theory and thefications. We call an equatiaregular if it is in one of the
equations of the specification. two forms

We can formulate the following principles: 1. X=04ay-Xy+-+a,-X,,o0r
* RDP (theRecursive Definition Princip)e each recur- 2. X =14a1 - X1 4+-+a,- X,

sive specification has at least one solution;

for certainn € N, a; € A, X; € V. In this case, each vari-

e RSP (theRecursive Specification Princigle each  able corresponds directly to a state in the generated transi-

guardedrecursive specification has at most one solu- tion system. We usually present a regular equation as fol-

tion. lows:

X = Z a; - X; + {1},

Different models of BP4; will satisfy none, one or both of

1<i<n

these principles. Let us look at the transition system models o _
in particular. where an empty sum stands forand thel summand is

Consider a recursive specificatidn For each variable ~ OPtional. . o
X of E, we can add a new constafiX |E) to our syntax. The modelR _of BPAj ; is obtamed if we add constants
Table 3 provides deduction rules for these constants. Theyt-X |Z2) only for finite regularE. R is the model ofegular
come down to looking upotiX |E) as the procesé x |E), processes, it is equivalent to the model of finite transition
which is ¢y with, for all Y’ € V, all occurrences ot in ~ Systéms modulo bisimulation, see e.g. [6]. Again we can
tx replaced by(Y'|E). To be more explicit, ifF is afinite establish thaR is really smaller tharGz, a process in the
recursive specification over variablég,, . .., X,,_1, with difference is the countef’ defined by the following speci-

equationsX; = t;(Xo, ..., Xn_1) (i < n), then(t;|E) is fication (p standing for plusy for minus):

defined to be;((Xo|E), ..., (Xn_1|E)). CoTC Teps  S—maT.s

Finally, the term modeP of BPA{ ; is even smaller than
R. In [5] it is shown that there are regular processes that
cannot be defined just using iteration. In the madBekhe
principle RSP boils down to the following conditional ax-
iom:

Table 3. Transition rules for recursion ( a € A).

(tx|B) Sy (tx|E) |
(XIE) Sy (X]E) |

r=y-x+zguarded = z=y* 2 RSP*

Now if we add such constants{|E) for all specifica-  The guardedness of this equation would be expressed in lan-

tions £ to our syntax, we obtain a mod&!™ for BPA ; guage theory as followsy does not have the empty word
that satisfies RDP and RSP (see e.g. [4]). If we add con-property ¢ does not have as a summand). Operationally,
stants(X|E) only for guardedE, we obtain a model: this is denoted J, so we will use the following formulation

satisfying RSP. The modék is really smaller tharG>°, of RSP*;

since using unguarded recursion we can specify infinitely

branching processes, whereas for guarded recursionwecan z=y-z+2 & y ) = z=y" 2 RSP*
always get a finitely branching solution. Thus, RDP doesn’t

hold any more on the second model in full generality; still, It is an open problem whether the addition of principle
all guarded recursive specifications have a solution. We callRSP* to the axiomatization BRA provides a complete ax-
this RDP~: iomatization of the moddP.



3 Well-Behaved Specifications

We define a class of recursive specifications over BPA

that we will callwell-behaved The idea is that the class of
well-behaved specifications corresponds exactly to the class

of closed BPA ;-terms.

Consider sequences of natural numbers ranged over by

o, p (sometimes with a prime or indexy (0 € IN*). Call
a subsetS of N* downwards closed the empty sequence
e € S, and, whenevesn € S, alsoo € S andok € S for
all k < n.

Definition 7 A recursive specificatiod’ over BPA; ; isin
suitable formif

1. itis finite and guarded;

2. the set of variables(, is indexed by a downwards
closed subset dN*;

3. each equation has the following form:
Xo =¢€50  Xoo+ ...+ €o(m—1) " Xa(mfl)'i_

+es-Xote, X, +ec

wherem > 0, e,4, €5, ¢, are closed BPj\;-terms,c €
A U {0,1}, andp is a proper prefix ob. The last

three terms may or may not be present (of course, i
m = 0, at least one of them must be present). If there

is a summand of the form, - X, present, we call the
variableX, acyclingvariable;

4. whenX, is a cycling variable (it occurs in the right-

hand side of an equation of a variable with longer in-

dex) then its equation is of the form
X,=1-X,04+1-X,1,

i.e. m = 2,e,0 = e, = 1 and none of the optional
summands is present.

A recursive specification im regular suitable formif it
is in suitable form and all the occurring closed terpsare
constants, i.e. elements dfu {0,1}.

e in caseX, is not cycling, we require that its equation
is of the form

Xo =¢€50 - Xoo+ ...+ €o(m—1) " Xo(mfl)""_

+es - Xote, X,

so there is no constant term present, the last two sum-
mands are optional, and &ll,,; cycle back taX,.

Next, we define when a variabl¥, is well-behaved,
again with induction on the depth of the variable tree be-
low X,. We sayX, iswell-behavedf:

e in caseX, is cycling, we sayX, is well-behaved iff
X, cycles back toX,, and X, is well-behaved,;

e in caseX, is not cycling, we require that its equation
is of the form

Xo =es0-Xs0t.- '+eo(m—l)'Xo(m—l)"_ea'XU"_Cy

so there is no cycling variable present, the next to last
summand is optional, and aX,; are well-behaved.

Finally, we call a recursive specificatiafi in suitable
formwell-behavediff its initial variable X is well-behaved.

Theorem 9 Every well-behaved recursive specificatiéh

¢ has a closed termin BRA as a solution (up to bisimulation

equivalence).

In order to prove this theorem, we prove two lemmas.
The theorem will follow from the two lemmas (for, when
we have a closed term for each variable of the specification,
these closed terms together make up a solutioy,imand
since bisimilarity of closed terms o@ and P coincides,
also a solution irP).

In these lemmas, we will use the following notation.
Write X, | X, if the equation ofX,, contains a summand
e, - X, with e, |. |} denotes the transitive closure of the
relation | on recursion variables. A useful characerization
of guardedness is the following: a recursive specification in
suitable form is guarded if and only if for each variaBig,
we have thafX,, §} X,.

Lemma 10 Let E be a recursive specification in suitable

Definition 8 Let E be a recursive specification in suitable form, and suppos&, cycles back taX,. Then there is a

form over a set of variable§X, : 0 € S C N*}. AsS'is

closed ternme over BPA; , such thatX, = e - X, (here, =

finite, we can define a notion with induction on the depth of denotes derivability in BPj\, + RDP~ + RSP*). Moreover,

the variable tree belowX, (so, we define this first for the
maximalsequences < 5).
Let p be a prefix oir. We sayX, cycles back toX,, if:

e in caseX, is cycling (so its equation is of the form
Xo =1 X,0+1-Xs1), thenX, cycles back toX,
iff X0 cycles back toX,, andX,; cycles back toX,;

if X, Jf X,, we can take such that J.

Proof
below X, .
In the base case, there are no variables belgw so
the equation ofX, must be eitheX, = ¢, - X, or X, =
eo-Xo+e, X,0r X, =e,-X,. Byguardedness, J. In

By induction on the depth of the variable tree



the first case, we are done immediately, in the second case, e if X, is not cycling, we haveX, = e,q -

it follows from RSP* thatX,, = e -e,- X, and in the third
case, we havé(, = e} - 0- X,. WhenX, / X,, we must
havee, ), which impliese} - e, J. Alwayse - 0 ).

In the induction case, there are two subcases.

e if X, is cycling, we haveX, = 1 X 9 +1- X,
and X, cycles back taX, and X,; cycles back to
X,. SinceX, | X0, we must haveX,o J X,. We
can apply the induction hypothesisXg,, andX,, so
there are closed terny$, f1 such thatX,q = fo - X,
andX,; = f1 - X, and fy J. Putting this together,
we obtainX, =1-X,0+1-Xs1 = Xo0+ Xo1 =
fo-Xo+fi-X,=ffr- X, WhenX, §¥ X,,
thenX,; § X,, and we can takg; ), which implies
RN

e if X, isnotcycling, we hav&X, = e,q - Xo0 + ... +
€o(m—1)"Xo(m—1)te€oXs+e, X, and allX,; cycle
back to X,. Again, e, J. By induction hypothesis
there are closed term$ such thatX,,; = f; - X,. But
thenX, = €50 Xoo+ ...+ €o(m—1)" Xa'(m—l) +eéq-
XU+€p'Xp = ea(]'f()'Xp+' . '+ea(m—1)'fm71'Xp+
ea'XU+ep'Xp = eo"XU""(eUO'fO"i_-'-ea(mfl) .
fm—l +ep)'Xp = e;'(GUO'fO"'- ~-eo—(m71)'fm—1+
ep) - X,. WhenX, | X,, thene, J, and moreover for
eachi < m we have eithee,; Jor X,; ¢ X,. In
the latter case we can talfg J, so in all cases we have
eqi- fi J. Consequently,o- fo+. .. €x(m—1) frm-1+
€p yand S%Z . (600 “fo+-.. - €o(m—1) " fm—1+ ep) V.

O

Lemma 11 Let E be a recursive specification in suitable
form, and suppose variablé, is well-behaved. Then there
is a closed terna over BPA; | such thatX,, = e (= is again
derivability in BPA; ; + RDP~ + RSP¥).

Proof
below X .
In the base case, there are no variables betgwso the
equation ofX, must be eitheX, = cor X, = e, - X, +¢
or X, = e, - X,. Notee, J/. In the first case, we are done
immediately, in the second case, it follows from RSP* that
X, =€ - ¢, and in the third caseX, = ¢ - 0.

In the induction case, there are two subcases.

By induction on the depth of the variable tree

e if X, is cycling, thenX, = 1- X, + 1 X, and
X0 cycles back taX, and X, is well-behaved. By
the definition of cycling back there is a closed tefm
such thatX,o = f - X,. As X, | X,0, we must
have X,y | X,, and we can tak¢ ). By induction
hypothesis there is a closed terfhsuch thatX,; =
f/'ThUSXa:XUO+X01:f'XU+f/ f*f/

XO'O +
oot €o(m—1) ° Xa(mfl) + e, - X, + cand all X,;

are well-behaved. By induction hypothesis this implies
that there are closed ternfissuch thatX,; = f;. Thus
Xo = €50 Xo0t-- '+ea(m—1) 'Xo(m—l) +eq Xo+
02600'f0+~~~+€a(m—1) 'fmfl"*'ea'Xa""_c:

6;‘; . (eao : fO +...F €o(m—1) " fmfl + C)-

Note 12 Our notion of cycling was inspired by (but is dif-
ferent from) the notion of ruling in [10]; our notion of well-
behaved was inspired by their notion of hierarchical. It
should be noted that they work in a different setting, as they
use the law: - 0 = 0, which is invalid in the present setting.
(Another difference is that the law+ = = « is not valid

in their setting, but this is not the crucial difference for the
present results.)

On the other hand, the present work also can be applied
in their setting. Adding the law - 0 = 0 amounts to con-
sidering the constaftaspredictable failurein the words of
[1]. In[1], itis proven that using this law, every closed term
over BPA is either equal td or can be written withoud.
This can be extended to BRA (crucial point:0* = 1), and
using a normal form withoud in the sequel will make all
results go through.

4 Regular Expressions

Now we consider the reverse direction, how to transform
a given regular expression into a well-behaved recursive
specification of a particular form. Recall from Section 2
that each closed term over BPA can be written a8, 1 or
in the form

apt14 ... anty+ul v+ uk, v, + {1},

for certainn, m € IN with n + m > 0, certaina; € A and
normal formst;, u;, v;, with w; . Thel summand may or
may not occur.

Starting from such a normal form, we describe an al-
gorithm to arrive at a recursive specification. Consider an
example, taken from [10]. Take = a(a*b + ¢) + (¢* +
a*b)*c* + a. This term is in normal form, but the star term
c¢* 4+ a*b has the empty word property, as |. Therefore,
we rewrite this term te’ = a(a*b+c)+ (cc* +a*b)*c* +a.
Actually, the algorithm in Section 2 also rewrites constants
atoa-1andterms:* to a* - 1, but we ignore this in the
example. Associat& to e’

1. X. = aXy + 1X; + a. Thus, X; is associated to
a*b+ ¢, X1 t0 (ec* 4+ a*b)*c*.



. Xo = 1Xgo + ¢. Thus, X is associated ta*b.

. Xoo = Xooo + Xoo1. Each star-term is split into two
parts: a part where the loop is executed at least once
and a part where the exit is chosen. Such a term will
turn into a cycling variable. HereX oo corresponds to
a - Xoo, and Xy, corresponds té.

4. X0 = aXgp. Variable X cycles back taXgy.

5. Xoo1 = 0.

6. X; = X0 + X1:1. Again, a star-term is split into two
parts. Here X34 corresponds t@cc* + a*b) - X, and
X1, corresponds to*.

7. X190 = ¢X100 + X101- Here, Xy99 corresponds to
c¢* - X1, andXo; corresponds ta*b - X;.

8. X100 = X100 + X1001- Again, a star term.

9. X900 = c¢X100. VariableXgg cycles back taX .

10. X901 = X;. Variable X ¢g; cycles back toX;.

11. X901 = X010 + X1011- Split of star.

12. X910 = aXy01. Variable X191 cycles back taX;.
13. X911 = bX;. Variable X411 cycles back taX;.

14. X717 = X110 + X111 Split of star.

15. X110 = cX11.

16. Xq1; = 1.

Note that the resulting recursive specification is guarded.
Note that the resulting specification is much more restricted
than the general format of well-behaved specifications, in
the following way: an equation is required to be in the form

Xa' = €50 ° XUO + .+ €o(m—1) " Xo(m—1)+

+es - Xote, X, +c

Here, we have that all expressions, e, are constants, and
that terme,, - X, does not occur (stated differently, we can
always takee, = 0). Moreover, we can require that the
constantc is either0 or 1. If X, has a summand of the
form a - X,, we write X, % X,. The notationX, |

X, used in the previous section now means thigthas a
summand of the formi - X.. Note that if X, | X, then
either X, or X is a cycling variable. Let us call a well-
behaved specification in this restricted form a well-behaved
specificatiorin restricted form

In general, we define a well-behaved recursive specifica-

tion in restricted form with solution a given BRA-terme
by structural induction oa.

Proposition 13 Let e be a closed BPg\, -term. There is an
effective algorithm giving a well-behaved recursive specifi-
cation in restricted form with solutioa

Proof The proof goes by structural induction epas-
suminge is given as a normal form as given in Section 2.
In the base case, € {0,1}, and we get the specification
X. = e, so the results are immediate (the variable is not
cycling).

In the induction step, we have= ag - to + ... an_1 -
b1 +ul - vo+ ... +ul,_y - vm_1 + {1} for certain
n,m € N with n +m > 0, certaina; € A and simpler
termst;, u;, v;, with u; J. By induction hypothesis, we can
produce well-behaved recursive specificatidist;, G in
restricted form with these terms as solutions. We proceed to
define a recursive specification as follows:

1. Xe = aO-X0+. .. an,]_-anl +Xn+ . '+Xn+m71+
{1}.

2. For eachi = 0,...,n — 1, the set of equation&
which is produced fron¥; by replacing each occur-
ring variableX, by X, .

3. For eachj = 0,...,m — 1, the equationX,,;;, =
Xn+i)0 + X(ntj)1-

4. For eacly = 0,...,m — 1, the set of equationgjf
which is produced fron¥; by replacing each occur-
ring variableX, by X, )0, and replacing each con-
stant summandby ¢ - X, ;

5. For eachj = 0,...,m — 1, the set of equation&’;

which is produced frontz; by replacing each occur-
ring variableX, by X, 1)1,

Now fix 5 € {0,...,m — 1}, and consider the specifica-
tion defined forX,,, ; in the last three items.

First of all, note that this specification is guarded: for all
variablesX . 1, in G we haveX ;1o ¥ X(nij)1o
asX, {¥ X, in G;; on the other hand, if for some variable
X(nt4)00 in Fj we would haveX 1 jy0o 4 X(nt )00, this
cannot be due to a cycle dfsteps inF; by the same ar-
gument, so we must havk,,; jyoo | Xnij ¥ Xntj)00-
This implies X, jy0 | X4, and in turn that the initial
variable of F; satisfies|, which means:; | and this is
a contradiction. Finally, the guardednessXf,, ;); and
X(n+j)0 imply the guardedness of,, , ;.

Next, variableX,,; is a cycling variable: its equation is
in the required form, and every exitin F} is turned into a
termc - X, ; that cycles back. Further, cycling variables
in I, G’ exactly correspond to cycling variablesi, G
(just a prefix added to the index). Thus, the specification of
Xn+j isin suitable form.

Further, variableX,,, ; is well-behaved: each variable
X(n+j)10 is well-behaved irG’j as the corresponding .



is well-behaved inG;, and each variablé&((,, . ;o Cycles transitions of a state are omitted, we get a substate of this

back toX,,,; as the corresponding,, is well-behaved in  state; thus, ifX, | X,, thenX, corresponds to a substate

F;. Takingo = e yields the well-behavedness &f, . ;. It of the state given by,). A descending pattn the specifi-

is easy to show that the specification is in restricted form. cation is a sequence of variabl&s, X,;,, X4, - .. Such
Finally, using RDP and RSP, from the fact thgtis a that for each pair of consecutive variablEs, X .; we have

solution of F; we can inferX, ;0 = u; - Xn+;, and so  eitherX; % X.; or X, | X,;. The proposition follows

Xnti = Xnaio T X1 = Uj - Xngj + 05 = uj - vj, from the following three key observations.
where the last step follows from RSP* singg J/. _

Now this is established for eaghe {0 o m - 1} 1. We can assume that each descending path of length
we can consider the whole specification. Establishing n + 1 contains a cycling variable.

guardedness and preservation of cycling variables is easier
than in the previous case, thus the specification is in
suitable form. All variablesX; are well-behaved, since

2. We can assume that each equation of each variable has
at mostk summands.

the initial variables off; are well-behaved, and s&. is 3. We can assume that each descending path contains at
well-behaved. It is easy to show that the specification is in mostn? - 23 cycling variables.
restricted form. Finally, using RDP and RSP, from the fact
thatt; is a solution ofE; we can inferX; = ¢;, and saX, = For, if we have these three observations, then we can as-
ap- Xo+ .. ap—1-Xpn1+Xn+ -+ Xpnimaa+{1} = sume that each descending path starts with a series of steps
ag-to+-. .. Ap_1-tn_1tul-vot- - -+ul,_;-om_1+{1} =e. of at mostn + 1 to the first cycling variable, followed by a
O series of steps of at most+ 1 to the next cycling variable,
and so on, so we have at magt- 23* 41 blocks between at
Thus, for each closed BRA-term we can find a well- mostn? - 23 cycling variables, and we can limit the length
behaved recursive specification in restricted form that hasof any descending path @ + 1)3 - 23%, Thus, the index
this term as a solution. set of variables only needs to contain sequences of length at

most(n + 1)% - 23%, and the number of summands in any
given equation is bounded liy

It remains to show the three observations. For the first
one, consider there is a descending path of lemgth 1

hNiXt’ We_glvef'a. decision procr?dure In "ordehr to decide \yithout a cycling variable. By the restricted format, this
whether a given finite automaton has a well-behaved recur-eans that for each pair of consecutive variables X .

sive specification or not. Suppose we have given a finite ..o must be some atomic actiersuch thatX. % X_.
s . . .« . . T TV
transition system. We can assume this system is minimized., ., aach variable in the descending path (except maybe the

i.e. the largest autobisimulation has been.d!vu_jed out. Then, ¢ one) corresponds to a state in the given transition sys-
we can assume that all states are not bisimilar. However,tem As a result, two distinct variables in this path, Say

this is not necessary for the following procedure. and X,,, must correspond to the same state in the given

The following proposition is reminiscent of the pumping 5 nsition system. Now consider the specification where the
lemma in formal language theory. It provides a bound on part belowX, is replaced by the part below,,,, i.e. we

the set of well-behaved recursive specifications we need Othrow out all equations of variables of the for, ., and
consider. we put in new equations

5 A Decision Procedure

Proposition 14 Let a finite transition system be given with X, = co- Xoro+. ..+ cm—1-Xor(m—1) +Cm  Xe+Cmi1
n states and branching degreedfc > 2). If this transition

system is bisimilar to a well-behaved specification, then it whenever there was an equation

is bisimilar to a restricted well-behaved specification with

index setS where all sequences ii have length less than  Xopr = co-Xoprot- - - +Cm—1"Xopr(m—1)tCm Xer+Cmi1

(n + 1)3 - 23k and entries less than o _ _ _
skipping thep part in the summands. If an occurring cycling

Proof Let a finite transition system be given with variable X, has aop prefix, then also there the part can
states and branching degreekathat is bisimilar to a well-  be skipped; otherwise, it must lie befoke,, and can re-
behaved specification. Due to the results of the previousmain unchanged. The resulting specification is again well-
two sections, we can takerastrictedwell-behaved spec- behaved, and in restricted form, becausés in restricted
ification E that is bisimilar to the given transition system. form andX,, X,, are not cycling variables. This procedure
Each variable in the specification is bisimilar to a state or can be repeated until the specification has no descending
a substate of the given transition system (if some outgoingpaths of lengt + 1 without a cycling variable.



For the second observation, suppose there is a variable Next, notice that we can assume that there are at most
X, whose equation contains more thasummands. But  n - 2¥ consecutive cycling variables on a descending path
X, must be bisimilar to a state or a substatef the given such that each cycling variable is in the exit part of the
transition system. This (sub)state has a number of transi-previous one. For, if not, then there must be two cycling
tionss — s', and maybe a termination optian|, number- variables that correspond to the same substate of the given
ing in total at most:. By bisimulation, each of these tran- transition system, and we can replace the first one by the
sitions or termination option must be matched by at least second one, resulting in a bisimilar well-behaved specifica-
one of the summands of,. For each of them, pick one tion in restricted form.
of the summands where it is matched, in total at miost Now, given these observations, it can still occur that
Now all other summands can be left out (together with their there is a sequence of cycling variables, that alternatingly
entire subspecifications), resulting in an equivalent speci-occur in the cycling part and in the exit part. l.e. there can
fication. Next, some renaming is required to obtain again be cycling variables,, X, ,, X, such thatX, is bisim-

a downwards closed index set. Due to the fact that in thisilar to X,,., X,, is below X, (the exit part ofX,) and
simplification step cycling variables are only removed to- X, . is belowX, ,, (the cycling part ofX, ). To illustrate
gether with incoming transitions as well as with their entire this phenomenon, we give an example. Consider the regular
subspecifications, the resulting specification is again in re-expressiorub*c(db*c)*e. This expression gives rise to the

stricted form. following well-behaved recursive specification.
For the third observation, first we do both reductions of
the two previous cases, so we can assume that each descend- X = aXp
ing path of lengtlm+1 contains a cycling variable, and each Xo = Xoo + Xo1
variable has at mogt summands. Xoo = bXo
Xo1 = cXoiwo
Claim 15 Cycling variables can be nested onl\22* deep, ?2120 _ é%ti%; Xowos
i.e. there are at most - 22* cycling variables where each Xowooo = Xotoooo + Xo10001
variable is in the cycling part of the previous one. Xot0000 = bXo1000
. . Xoioo01 = c¢Xo1o
In order to prove the claim, suppose not. Each cycling Xo101 —

variable is bisimilar to a state or a substate of the given tran-
sition system. As this transition system has at mostates, Now cycling variablesX, and X(190¢ correspond to bisim-

and a branching degree at masit has at most: - 2* sub- ilar states of the process. The second one occurs inside the
states. If there are more than2” nested cycling variables, cycling part of variableXy,, the first one does not. In the
there must be two that are bisimilar, so there &g X, case of this specification, it turns out that it cannot be re-

such thatX,, is in the cycling part ofX,, i.e. itis below  duced to a simpler well-behaved specification.
Xo0. Now X,,, X,,, are bisimilar, but it need not be the case However, combining the last observation with the claim,
that X, X, ,0 are bisimilar, as the split into the cycling we see that the total number of cycling variables on a
and the exit part can be done differently in the two cases.descending path is bounded by - 23%. For, the total
But notice that there are onf different cycling parts pos-  number of nested cycling variables is at mast22*, and
sible, as each outgoing transition will belong to the cycling between one of these and the following, there can be at
part or not. Thus, if there are more than 22* nested cy-  mostn - 2¥ cycling variables each of which is in the exit
cling variables, there must be two that are bisimilar and that part of the previous one. O
moreover have bisimilar cycling parts. Thus, it must be the
case that there ar&,, X,, such thatX,, is below X, This proposition gives a bound on the size of the specifi-
and X,,, X,,, are bisimilar, and moreoveK,, X,,0 are  cation that we need to consider. We expect that this bound
bisimilar. can be tightened further, in fact we have a further reduction
Now consider the specification where the part frain, that reduce$n + 1) - 23% to (n + 1) - 22*. This bound im-
is replaced by the part fromX, 0, i.e. we replace the cy- mediately gives rise to a decision procedure, as there are
cling part of the cycling variabl&, and keep the exit part  only finitely many regular recursive specifications within
(the part fromX,1). This replacement is done in the same the bound. We can check for each one, whether or not it
way as outlined in the proof of the first observation, skip- is bisimilar to the given transition system, as bisimulation is
ping thep part in the cycling variables. The result is a well- decidable on finite transition systems.
behaved specification in restricted form that has fewer cy- To give an example of a transformation into well-
cling variables and still is bisimilar to the given transition behaved form, consider the guarded recursive specification
system. This means we have proved the claim. {X =aY)Y =bX +aZ,Z = cX + aY}. Inthis form,



it is not a well-behaved recursive specification. It turns into +tes - Xote, X, +c
one, by replacingX by oY everywhere on the right-hand

side. We get the following specification: and we define

X, — X, sh(X,) = max{sh(es0), sh(Xs0),- - -,

Xo = Xogo+ Xoz *

Xoo = bXooo + aXoo1 sh(es(m—1)), Sh(Xo(m—1)), sh(e}), sh(e,)}.

Xooo = aXo Finally, the star height oF is defined bysh(E) = sh(X).
Xoor = cXoowo+aXy

Xooio = aXp Now Lemma’s 10 and 11 can be strengthened as follows,
Xo1 = 0. by following the proofs step by step, using the definitions

just given.
6 Star Height
Lemma 18 Let E be a recursive specification in suitable
In this section we consider some consequences of the reform, and suppos&’, Sycle_s back taX,. Then there is a
sults obtained. In particular, we look at the star height prob- ¢10S€d terme over BPA; ; with sh(e) = sh(X,) such that
lem. The star height of a regular expression is the maximum~e = ¢ X,

number of nested stars it contains. In formal language the- . e .
ory, the notion of star height originates in [11]. Lemma 19 Let E be a recursive specification in suitable

form, and suppose variablé, is well-behaved. Then there
Definition 16 Let ¢ be a closed BPA,-term. Thestar IS aclosed terme over BPA; with sh(e) = sh(X,) such
heightof ¢, sh(t) is defined inductively: that X, = e.

1. sh(0) = sh(1) = sh(a) = 0 (for all actionsa € A); Thus, the procedure of Theorem 9 assigns to each well-
behaved recursive specification a regular expression of the
2. sh(t +s) = sh(t - s) = max{sh(t), sh(s)}; same star height; conversely, the procedure of Section 4 as-

3. sh(t*) = 1 + sh(t). signs to each regular expression a well-behaved recursive
specification of the same star height. This is the statement of
Let ¢ be a closed BPj\;-term. We sayt hasminimal the following lemma. The result can again be found by fol-

star heightn iff n is the minimal number such that there |owing the procedure step by step, checking that star height
is regular expression equal tqi.e., bisimilar tot) of star is preserved at every step.

heightn.

Lemma 20 Lete be a closed term over BRA. Then there

is a well-behaved specificatiafi in restricted form withe

as a solution that satisfied(E) = sh(e).

An obvious question is now how to determine the min-
imal star height of a given regular expression. In language
theory, this problem was solved in [12]. In our setting, using
bisimulation equivalence instead of language equivalence, With the help of these propositions, the star height prob-
we can achieve the same result, by use of well-behavedem can be solved.
specifications.

Given the correspondence between regular expressiongheorem 21 Lete be a closed term over BRA. There is
and well-behaved specifications proved earlier, star heightan algorithm to find the minimal star height af
can also be defined for well-behaved specifications. This ) _
amounts to the following. Proof Let e be given. LetFE be the restricted well-

behaved specification with solutiangiven by the proce-
Definition 17 Let E be a recursive specification over dure in Section 4. By the reductions in Sectionbcan

BPA; ; in suitable form over variable§X, : ¢ € S C be reduced to satisfy certain bounds, which depend on
IN*}. Define, for each variabl&,, its star heightsh(X,) the branching degree and the length of descending paths in
by induction on the variable tree beloky, : E. Note that none of these reductions increase star height.

They can reduce star height, though. The star height of the

e If X, isacycling ve.lriable, defineh(X,) = max{1+ reduced specification is the star height of some closed term
sh(Xo0), sh(Xo1)}; that is bisimilar toe.

e If X, is not a cycling variable, its equation is of the ~ USing this observation, it is a consequence of the pre-
form vious lemma that there exists a well-behaved specification
in restricted form below the mentioned bounds that hias
Xo=¢€50" Xoo+ .-+ €om-1) " Xo(m-1)+ as a solution and that has the minimal star height af



its star height. Therefore it is enough to search throughto variableY,, in the specification above. It follows that
all restricted well-behaved specifications below these each variable i is bisimilar to a (sub)state of one of the
bounds for ones that have solutiepand to choose, among variablesy;. It is not difficult to prove that if, for a variable
the finitely many specifications with these properties, a X, in E, i is minimal with the property thakX ,, is bisimilar
specification with the least possible star height. It follows to Y; or to a substate df;, then the star height of, must
from the previous lemmas that the minimal star height of be at least. From this,sh(E) = sh(X.) > n follows. O

e is equal to the star height of this specification, and from

this specification, a closed term can be constructed that is  Finally notice that if the set of atomic actions is empty,
bisimilar toe and that has star height equal to the minimal then the set of closed terms reduces to jistl}, so all
star height ot. (] closed terms have minimal star height

Star height gives a hierarchy on regular expressions. In
language theory, for any, there is a regular expression with
minimal star height:, as long as the alphabet has at least
two letters (A| > 2), but the hierarchy collapses if there is We have defined a set of well-behaved recursive specifi-
just one action (if A| = 1, then the minimal star height of cations that corresponds exactly to the set of regular expres-
any regular expression is at madst(see [11, 14]). sions, using bisimulation as the notion of equivalence. The

Milner [15] speculates that in the case of bisimulation, same result holds if we restrict to the set of well-behaved
the hierarchy is non-trivial, even in the case of a single- recursive specifications in restricted form, that have a rather
ton alphabet, and gives a set of regular expressigrthat direct interpretation as a set of finite transition systems.

should have minimal star height Hirshfeld and Moller ~ Thus, we can say that we have defined a structural property,
prove in [13] that this is indeed the case. We give an alter- that characterizes the set of finite automata that are express-

7 Conclusion

native proof of this fact using our theory. ible by a regular expression (modulo bisimulation). This
means we have solved the open question of Milner ([15]).
Proposition 22 Define the set of regular expressignsin- Given a finite transition system, we have presented a de-
ductively: cision procedure to determine whether or not this transition
system is equivalent to a well-behaved specification. This
*p1=a’ decision procedure may still require a large number of spec-

ifications to be checked. Note that Bosscher describes an al-

* Pt1 = (Pn-a)". gorithm that decides the analogous problem in the absence

Then the minimal star height @f, is n. of the constan®, and another algorithm in the absence of
] . the two constants, 1 (see [7]).
Proof We give a proof sketch using well-behaved oy results can be adapted to the setting of [10], where

specifications. Consider the following recursive specifica- {ha constan® really acts as the zero process.
tion: As an application of our results, we give an algorithm
to determine the star height of a regular expression (under
bisimulation). We give an alternative proof of the fact that
Yoor = a-Yit...ta Y, the star height hierarchy is non-trivial, even in the case of a

singleton alphabet.

Y, = aY1+...4a- Y, +1

Yl = 0,'Y1+O,'Y2.
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