A CHARACTERIZATION OF RIEMANNIAN MANIFOLDS OF CONSTANT CURVATURE

RICHARD HOLZSAGER

As in [2], consider the parallel bodies of a hypersurface in a Riemannian manifold. That is, suppose M is a submanifold of codimension 1 with oriented normal bundle in a manifold \overline{M} . Define a homotopy $h: M \times R \to \overline{M}$, by letting $h(x, t) = \gamma_x(t)$, where γ_x is the geodesic through x whose tangent at x is the positive (with respect to the orientation on the normal bundle of M) unit normal vector. In other words, $h_t(M)$ is obtained by translating M distance t along orthogonal geodesics.

If M is a compact hypersurface (with or without boundary), it makes sense to consider the area (or volume) $A_M(t)$ of the singular hypersurface M_t . If Mand \overline{M} are C^{∞} , so is $A_M: R \to R$. In [1], we showed that surfaces of constant curvature c are characterized by the fact that for any hypersurface (i.e., curve) A_M satisfies the differential equation A'' + cA = 0. This result is now generalized to higher dimensions.

Theorem. For an n-dimensional C^{∞} Riemannian manifold \overline{M} , there is a differential equation $A^{(n)} + a_1 A^{(n-1)} + \cdots + a_n A = 0$ (a_i constant) satisfied by A_M for every hypersurface M if and only if \overline{M} has constant sectional curvature. The relation between the equation and the curvature is $c = a_2 / {n+1 \choose 3}$.

Remark. It is impossible for an equation of order m less than n to be satisfied by every A_M . To show this choose some $x \in M$ and an orthogonal base T_1, \dots, T_n for the tangent space at x. Define a coordinate system ϕ_m about x by $\phi_m(r_1, \dots, r_n) = \exp_y X$, where $y = \exp_x \sum_{m+2}^n r_i T_i$, and X is the parallel translation of $\sum_{1}^{m+1} r_i T_i$ to y along $\exp_x t \sum_{m+2}^n r_i T_i$. Let U be a small neighborhood of $(1, 0, \dots, 0)$ in an m-sphere S^m , and V a small neighborhood of the origin in an (n - m - 1)-dimensional Euclidean space R^{n-m-1} . For small values of t, ϕ_m will imbed $(tU) \times V$ in $\overline{M}, \phi_m((tU) \times V)$ forms a family of "parallel" hypersurfaces and $A(t) = t^m \int \sqrt{g} \circ \phi \circ (t \times id) d$ Vol, integral over $U \times V$, where g is the determinant of the metric tensor on \overline{M} with respect to ϕ . Then $A^{(m)}(0) = m!$ Vol $(U \times V), A^{(i)}(0) = 0$ for i < m. Thus A cannot satisfy an equation of order m.

Received October 12, 1971.

RICHARD HOLZSAGER

Proof of the theorem. Assume the equation is satisfied by every A_M . Let $\phi = \phi_{n-2}$ be as in the remark (i.e., build a coordinate system using tubes about the geodesic through T_n). Let

$$A_0(t) = \lim A(t) / \operatorname{Vol} (U \times V) = t^{n-2} \sqrt{g} (\phi(1, 0, \dots, 0))$$

limit taken as U and V converge down to $(1, 0, \dots, 0) \in S^{n-2}$ and $0 \in R$ respectively. A_0 will also satisfy the equation, giving for t = 0

(1)
$$\binom{n}{2}(n-2)! T_1 T_1 \sqrt{g} + (n-1)(n-2)! a_1 T_1 \sqrt{g} + (n-2)! a_2 \sqrt{g} = 0$$
,

where we write T_i for $\partial/\partial x_i$ throughout the coordinate system.

Let us also write D_i for covariant differentiation with respect to T_i . Then, as in [2], $T_1\sqrt{g} = \sum_{i=1}^n \gamma_{ii}\sqrt{g}$, where $D_1T_i = \sum_j \gamma_{ij}T_j$ and $T_1T_1\sqrt{g} = (\sum_{i,j=2}^n \gamma_{ii}\gamma_{jj} + \sum_i T_1\gamma_{ii})\sqrt{g}$. By definition of ϕ , $\sum_{i=1}^{n-1} r_iD_i(\sum_{j=1}^{n-1} r_jT_j) = 0$ at any point of the form $(tr_1, \dots, tr_{n-1}, r_n)$. In particular, this implies $D_iT_j = 0$ for all $i, j \leq n - 1$ at x. Also, $D_nT_i = 0$ for all i, so $D_1T_n = D_nT_1 = 0$. Consequently $\gamma_{ii}(x) = 0$ for all i. Thus

(2)
$$\binom{n}{2}\sum_{i}T_{1}\gamma_{ii}+a_{2}=0 \quad \text{at } x.$$

$$egin{aligned} T_1 &\gamma_{ii} = \sum\limits_j \left(T_1 &\gamma_{ij}
ight) ig\langle T_i, T_j ig
angle = T_1 igg(\sum\limits_j &\gamma_{ij} ig\langle T_i, T_j ig
angle igg) - \sum\limits_j &\gamma_{ij} &T_1 ig\langle T_i, T_j ig
angle \ &= T_1 ig\langle T_i, D_1 T_i ig
angle = ig\langle D_1 &T_i, D_1 &T_i ig
angle + ig\langle T_i, D_1 &D_1 &T_i ig
angle = ig\langle T_i, D_1 &D_i &T_1 ig
angle \,, \end{aligned}$$

so (2) becomes

(3)
$$\binom{n}{2}\sum_{i}\langle T_{i}, D_{1}D_{i}T_{1}\rangle + a_{2} = 0$$

At $\phi(x_1, \dots, x_n)$, $\sum_{j,k=1}^{n-1} x_j x_k D_j T_k = 0$. Applying D_i $(i = 1, \dots, n-1)$ at $\phi(x_1, 0, \dots, 0)$ gives $2 x_1 D_i T_1 + x_1^2 D_i D_1 T_1 = 0$. Dividing by x_1 and applying D_1 give $2D_1 D_i T_1 + D_i D_1 D_1 + x_1 D_1 D_i D_1 T_1 = 0$, so $D_i D_1 T_1 = -2D_1 D_i T_1$ at x. Therefore the sectional curvature determined by T_1 and T_i at x for i = $1, \dots, n-1$ is $R(1, i) = -3\langle D_1 D_i T_1, T_i \rangle$. Also, $R(1, n) = -\langle D_1 D_n T_1, T_n \rangle$, since $D_1 T_1$ vanishes along $\phi(0, \dots, 0, t)$, so $D_n D_1 T_1 = 0$ at x. Now (3) becomes

(4)
$$R(1,n) + \frac{1}{3} \sum_{2}^{n-1} R(1,i) = a_2 / \binom{n}{2}$$

The roles played in this whole argument by T_n and T_i $(i = 2, \dots, n - 1)$ may be switched, adding $\frac{2}{3}(R(1, i) - R(1, n))$ to the left side without changing the

104

right. Thus
$$R(1, i) = R(1, n)$$
, so $\frac{n+1}{3}R(1, n) = a_2 / {\binom{n}{2}}$, or $R(1, n) =$

 $a_2 / {\binom{n+1}{3}}$. Since x, T_1, T_n were arbitrary, this finishes the proof in one direction.

Now assume \overline{M} has constant curvature. For any tangent V to M at x, V has a canonical extension along the orthogonal geodesic $(V(h_t(x)) = dh_t(V))$, so if T is the unit normal vector, then $D_T V$ makes sense. Note that if W is another tangent to M at x, $\langle D_T V, W \rangle = \langle D_T W, V \rangle$. To see this, a coordinate system ϕ in \overline{M} about x is said to be allowable if it is obtained by taking a coordinate system ψ in M about x and setting $\phi(r_1, \dots, r_n) = h_{r_1}(\psi(r_2, \dots, r_n))$. If T, V, W are extended to have constant components in an allowable coordinate system, then $[V, W] = [T, V] = [T, W] = \langle T, V \rangle = \langle T, W \rangle = 0$, so

$$egin{aligned} &\langle D_T V, W
angle &= \langle D_V T, W
angle &= -\langle T, D_V W
angle &= -\langle T, D_W V
angle \ &= \langle D_W T, V
angle &= \langle D_T W, V
angle \ . \end{aligned}$$

Further, applying T to the relation $\langle D_T V, W \rangle = \langle D_T W, V \rangle$ gives $\langle D_T D_T V, W \rangle$ = $\langle D_T D_T W, V \rangle$.

Since $\langle D_T V, W \rangle$ is symmetric and bilinear in V and W, it is possible to choose an orthonormal base T_2, \dots, T_n for the tangent space to M at x such that $\langle D_T T_i, T_j \rangle = 0$ for $i \neq j$, and also an allowable coordinate system so that at $x \partial/\partial x_i = T_i$ for $i = 1, \dots, n$ (where we now write T_1 for T). If V is a linear combination of T_2, \dots, T_n at any point of the coordinate neighborhood and R is the curvature tensor, then $\langle R(T_1, V)T_1, V \rangle = \langle D_V D_1 T_1, V \rangle - \langle D_1 D_V T_1, V \rangle = -\langle D_1 D_V T_1, V \rangle = -\langle D_1 D_1 V, V \rangle$ since $D_1 T_1$ is identically 0. If c is the sectional curvature, then since $\langle T_1, V \rangle = 0$ and $\langle T_1, T_1 \rangle = 1$, $c = -\langle D_1 D_1 V, V \rangle / \langle V, V \rangle$. Thus, as quadratic forms on the span of T_2, \dots, T_n at any point, $\langle D_1 D_1 V, V \rangle$ is equal to $\langle -cV, V \rangle$. The symmetric bilinear forms $\langle D_1 D_1 V, W \rangle$ and $\langle -cV, W \rangle$ are equal, so $\langle D_1 D_1 T_i, T_j \rangle = \langle -cT_i, T_j \rangle$ for $i, j \geq 2$. Since also

$$egin{aligned} &\langle D_1 D_1 T_i, T_1
angle = T_1 \langle D_1 T_i, T_1
angle - \langle D_1 T_i, D_1 T_1
angle = T_1 \langle D_i T_1, T_1
angle \ &= rac{1}{2} T_1 T_i \langle T_1, T_1
angle = 0 = \langle -c T_i, T_1
angle \ , \end{aligned}$$

it follows that $D_1D_1T_i = -cT_i$ for $i = 2, \dots, n$.

Next note that $c \langle T_i, T_j \rangle + \langle D_1 T_i, D_1 T_j \rangle$ is constant along $h_t(x)$ $(i, j \ge 2)$, since

$$T_1(c\langle T_i, T_j \rangle + \langle D_1 T_i, D_1 T_j \rangle) = c\langle D_1 T_i, T_j \rangle + c\langle T_i, D_1 T_j \rangle + \langle D_1 D_1 T_i, D_1 T_j \rangle + \langle D_1 T_i, D_1 D_1 T_j \rangle = 0 .$$

But at $x, \langle D_1T_i, T_j \rangle = 0$ for $j \neq i$, so D_nT_i is a multiple of T_i for $i = 2, \dots, n$, so $c \langle T_i, T_j \rangle + \langle D_1T_i, D_1T_j \rangle = 0$ at x and consequently at $h_i(x)$. Thus

RICHARD HOLZSAGER

$$egin{aligned} T_1T_1&\langle T_i,T_j
angle &= \langle D_1D_1T_i,T_j
angle + 2\langle D_1T_i,D_1T_j
angle + \langle T_i,D_1D_1T_j
angle \ &= -4c\langle T_i,T_j
angle \,, \end{aligned}$$

for $i, j \ge 2, i \ne j$. This second order equation, together with the initial conditions $\langle T_i, T_j \rangle = T_1 \langle T_i, T_j \rangle = 0$ at x, implies that $\langle T_i, T_j \rangle$ is identically 0 along $h_t(x)$. Therefore $|dh_t(T_2 \land \cdots \land T_n)| = \prod_{i=1}^n |T_i|$ at $h_t(x)$. Now

$$T_1T_1|T_i| = -c|T_i| + (\langle T_i, T_i \rangle \langle D_1T_i, D_1T_i \rangle - \langle D_1T_i, T_i \rangle^2)/|T_i|^3$$
$$= -c|T_i|$$

 $(D_1T_i \text{ being a multiple of } T_i)$. This means that $|T_i|$ is a linear combination of $\sin \sqrt{ct}$ and $\cos \sqrt{ct}$ or of $\sinh \sqrt{-ct}$ and $\cosh \sqrt{-ct}$ or of 1 and x, depending on whether c is positive, negative or 0. Therefore $|dh_t(T_2 \wedge \cdots \wedge T_n)|$ is a linear combination of $\sin i\sqrt{ct} \cos n - i - 1\sqrt{ct}$ or of $\sinh i\sqrt{-ct} t \cosh n - i - 1\sqrt{-ct}$ or of $1, \cdots, x^{n-1}$. In any of these cases there is a (unique) differential equation of order n with constant coefficients satisfied by any such combination. The same equation would hold for h_t applied to the unit (n-1)-vector at any y in M, and therefore also for A_M , since integration over M will commute with differentiation by t.

Added in proof. More general results have been announced in the author's paper, *Riemannian manifolds of finite order*, Bull. Amer. Math. Soc. **78** (1972) 200–201.

References

- R. A., Holzsager & H. Wu. A characterization of two-dimensional Riemannian manifolds of constant curvature, Michigan Math. J. 17 (1970) 297–299.
- [2] H. Wu. A characteristic property of the Euclidean plane, Michigan Math. J. 16 (1969) 141-148.

AMERICAN UNIVERSITY