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A CHARACTERIZATION OF RIEMANNIAN MANIFOLDS
OF CONSTANT CURVATURE

RICHARD HOLZSAGER

As in [2], consider the parallel bodies of a hypersurface in a Riemannian
manifold. That is, suppose M is a submanifold of codimension 1 with
oriented normal bundle in a manifold M. Define a homotopy h: M x R —>
M, by letting h(x, t) = γx(t), where γx is the geodesic through x whose tangent
at x is the positive (with respect to the orientation on the normal bundle of M)
unit normal vector. In other words, ht(M) is obtained by translating M distance
t along orthogonal geodesies.

If M is a compact hypersurface (with or without boundary), it makes sense
to consider the area (or volume) AM(t) of the singular hypersurface Mt. If M
and M are C°°5 so is AM: R-^> R. In [1], we showed that surfaces of constant
curvature c are characterized by the fact that for any hypersurface (i.e., curve)
AM satisfies the differential equation A" + cA = 0. This result is now gener-
alized to higher dimensions.

Theorem. For an n-dimensional C°° Riemannian manifold M, there is a
differential equation A(n) + β1^4(rι~1) + + anA = 0 (at constant) satisfied
by AM for every hypersurface M if and only if M has constant sectional
curvature. The relation between the equation and the curvature is

Remark. It is impossible for an equation of order m less than n to be
satisfied by every AM. To show this choose some x e M and an orthogonal base
T19 - - -, Tn for the tangent space at x. Define a coordinate system φm about x
by ψm(r19 -, rn) = expj, X, where y = exp^ 2 ^ + 2 rtTi9 and X is the parallel
translation of Σ ! Λ + 1 r < Γ i

 t o y a l o n g e x P * * Σm + 2 r<ΪV Let ί/ be a small
neighborhood of (1,0, , 0) in an m-sphere Sm, and V a small neighborhood
of the origin in an (n — m — l)-dimensional Euclidean space i^-™-1. For
small values of t, φm will imbed (if/) X V in M, φm((tU) X V) forms a family

of "parallel" hypersurfaces and A(t) == tm Γ V T ° 0 ° ( * X id)dVol, integral

over U X V, where g is the determinant of the metric tensor on M with respect
to φ. Then Ai7ϊl)(0) = m! Vol (17 X F), A{i)(0) = 0 for / < m. Thus A cannot
satisfy an equation of order m.
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Proof of the theorem. Assume the equation is satisfied by every AM. Let
φ = φn_2 be as in the remark (i.e., build a coordinate system using tubes about
the geodesic through Γn). Let

A0(t) = lim A(t)IVol (U X V) = tn~2V~g(φ(l,O, . , 0)) ,

limit taken as U and V converge down to ( 1 , 0 , ,0) € Sn~2 and OeR

respectively. Ao will also satisfy the equation, giving for t = 0

(1) [^(n-2)\ TJ^ + (n-l)(n-2)\ aJ^J + (n-2)\

where we write Tt for d/dJt̂  throughout the coordinate system.
Let us also write Dt for covariant differentiation with respect to TV Then,

as in [2], 7 \ V 7 = Σ?-iΓ«V7> where D.T, = ΣJTZJTJ and T^VJ =
(Σ",y-« Γ«JVJ + Σ* Ϊ > « V S . By definition of φ, p:,1 r.D, ( Σ j i 1 i^Γ,) = 0
at any point of the form (tr19 , ίrn - 1, rn). In particular, this implies DtTj =
0 for all ί,j <n- ί at Λ. Also, D^Γ^ = 0 for all /, so DxTn = DnTι = 0.
Consequently j^Cc) = 0 for all i. Thus

V L ) \ Λ ) 2_, J- iTiί -t- α2 — υ a i x .

1/ a ~~~ * *

so (2) becomes

( 3 )

At ^(Λ:1? , * n ) , Σ?,"i=i xjχkDjTk = 0. Applying D^ (/ = 1, , n - 1)

at 0(* 1 5 0, , 0) gives 2 ^DtT 1 ! + x2

1DίD1T1 = 0. Dividing by ^ and applying

A give 2DιDiTι + D^D, + xιDιDίDιTι = 0, so AA7\ = -2DιDiΊι at*.
Therefore the sectional curvature determined by 7\ and 7\ at x for z =
1, , n - 1 is Λ(l, 0 = -3<DA7\, Γ,>. Also, Λ(l, n) = -φxDnTl9 Tn>,
since D ^ vanishes along ̂ (0, , 0, t), so DnDιTι = 0 at *. Now (3) becomes

(4) Λ(l,π) + J Σ
3 2

The roles played in this whole argument by Tn and Tt (i = 2, , n — 1) may
be switched, adding |CR(1, 0 — R(l, ή)) to the left side without changing the
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right. Thus #(1,0 = R(ί,n), so JL±J-R(l,n) = <h/l")> o r *U» ») =

( i 1 \
n T ]. Since JC, Γl5 Γn were arbitrary, this finishes the proof in one

direction.
Now assume M has constant curvature. For any tangent F to M at x, V has

a canonical extension along the orthogonal geodesic (V(ht(x)) = dht(V)), so
if Γ is the unit normal vector, then DTV makes sense. Note that if W is another
tangent to M at JC, φτV, Wy = <DΓJF, F>. To see this, a coordinate system
0 in M about JC is said to be allowable if it is obtained by taking a coordinate
system ψ in M about JC and setting 0(r1? , rn) = hri(ψ(r2, , rn)). If T, F, W
are extended to have constant components in an allowable coordinate system,
then [F, W] = [Γ, F] = [Γ, W] = <Γ, F> = <ϊ\ Ŵ> = 0, so

φτV, Wy = <DFΓ, ίF> = —<Γ,DF^> = —(ΓjD^F)

= φwτ, vy = φτw9 vy .

Further, applying T to the relation φτV, Wy = φτW, F> gives φτDτV, Wy

= ΦTDTW, vy.
Since φτV, Wy is symmetric and bilinear in F and W, it is possible to

choose an orthonormal base T29 , Tn for the tangent space to M at x such
that φτTi9 T3y = 0 for ί ̂  7, and also an allowable coordinate system so
that at x d/dXi = Tt for i = 1, . , n (where we now write Tλ for T). If F is
a linear combination of T29 , Tn at any point of the coordinate neighborhood
and R is the curvature tensor, then ^ ( Γ ^ V)TX, F> = φvDxT19 F> —
φxDvTX9 Vy = —φxDvTX9 Vy = —φxDxV, Vy since DXTX is identically 0.
If c is the sectional curvature, then since ζTX9 F> = 0 and <Γ15 Γ2> = 1,
c = —φxDxV9 Vy/(V, Vy. Thus, as quadratic forms on the span of
T29 , Γn at any point, φxDxV9 F> is equal to < —cF, F>. The symmetric
bilinear forms φxDxV, Wy and < - c 7 , W> are equal, so <D1D1Γf,Γi> =
<—cΓ<, Γ̂ > for 1,7 > 2. Since also

= I^ΓK^I, r,> = 0 = <-cτ,, rx> ,

it follows that DιDιTi = — cΓ* for 1 = 2, , π.
Next note that c<Γί5 Γ̂ > + φ^^D^j} is constant along Λ^JC) (/,/ > 2),

since

= cφxTi9 Tj} + c<JuDxTsy + φfrTtoDJj) + φ^DβJ j) = 0 .

But at x, φ{Γi9 Tj} — 0 for / Φ i, so DnTi is a multiple of Ίi for ΐ = 2, , n,
so c<Tί? Γ̂ > + φxTuDxTjy = 0 at JC and consequently at A£(JC). Thus
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r . IXT, , ! - , ) = <D,D1Γ<,ΓJ> + 2<D 1Γ i,D 1Γ i> + <Γ i,ΰ 1D 1Γ^>

= - 4 c < Γ i , Γ ί > ,

for i, / >2,iφ j . This second order equation, together with the initial con-
ditions <Γ1, Γ,) = Γ^Γj, Γ,> = 0 at x, implies that <Tt, Γ,> is identically 0
along ht{x). Therefore \dht(T2 Λ Λ Γ J | = Π " |T«I at *,(*). Now

(DjΓ^ being a multiple of 7^). This means that \Tt\ is a linear combination of
sin V c t and cos V c t or of sinh V — c ί and cosh V — c ί or of 1 and jt,
depending on whether c is positive, negative or 0. Therefore \dht(T2 Λ •
Λ T w ) | is a linear combination of sin V c ί cos n-i~1^/ c t or of sinh ι\l — c t
cosh n~i-1^ — c t or of 1, , JC71"1. In any of these cases there is a (unique)
differential equation of order π with constant coeίicients satisfied by any such
combination. The same equation would hold for ht applied to the unit (n — 1)-
vector at any y in M, and therefore also for AM, since integration over M will
commute with differentiation by t.

Added in proof. More general results have been announced in the author's
paper, Rίemannian manifolds of finite order, Bull. Amer. Math. Soc. 78 (1972)
200-201.
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