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Abstract. We prove that all smooth fans having a dense set of endpoints are

topologically equivalent.

Let I bea smooth fan whose set of endpoints is dense in X. Such fans

have been constructed, e.g., by J. H. Roberts [6], who proved that the space of

rational sequences of the Hubert cube can be embedded in the Cantor fan, and

by A. Lelek [3], who showed the existence of a fan whose (one-dimensional) set

of endpoints can be connectified by adding the vertex. Lately, spaces similar

to X \{v}, where v is the vertex of X, were discovered to be Julia sets of

some nice analytic functions (see R. L. Devaney and M. Krych [2]; see also J.

C. Mayer [4]). We are going to prove that all such examples are homeomorphic.

Theorem. All smooth fans having dense set of endpoints are topologically equiv-

alent.

Let us recall that a continuum X is said to be hereditarily unicoherent if

K n L is connected for every pair K , L of subcontinua of X . A continuum

X is called a dendroid if it is arcwise connected and hereditarily unicoherent.

By a fan we will mean a dendroid having exactly one ramification point; we will

call this point the vertex of X . A fan X is said to be smooth if the sequence

of arcs [w,xn] converges to the arc [v,x] for every sequence xn converging

to x , where x, xn e X and v is the vertex of X. If X is a fan, then E(X)

will denote the set of endpoints ofX.Ifx.yGÍHxíH, then by \x - y\ we

will denote the Euclidean distance between points x and y and by [x, v] we

will mean the linear segment with endpoints x and y .

Mappings between inverse systems

The following lemma is similar to [5, Theorem 2 ]. The proof is a standard

inductive argument and is left to the reader.
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Lemma 1. Suppose Pn and Qn are compact metric spaces, X = lim (Pn ,pnm),

Q = lim (Qn ,q"m), and ^n is a class of mappings from Pn onto Qn such that

for every n, positive real e, and mapping f e^n, there exists a mapping g e

3rn+x such that the following diagram is e-commutative, i.e.   dist(g o p"n+ (x),

Qnn + X ° 8ÍX)) < £ f°r each  X e Pn+\ ■

P   *-l— P   ,
n ' n+l

Qn   «-   Qn+l

Let sn be a decreasing sequence converging to 0. Then for each n there exists an

hne^rn such that the following diagram is en-commutativefor every k < n < m.

(*)

P   -*- P
n m

h„

By Mioduszewski's result [5, Theorem 2], the sequence hn induces a map

h: X ^2 Y defined by h((xx ,x2 ,...)) = (y,,y2, ...), where

yn ~ lim %'o/*m (•*„)■

Let us omit the standard proof of the following lemma.

Lemma 2. Let X = lrm(Pn,p"m), Y = lim(Qn,qnm), {e„: n = 1,2,...},

{hn: n = 1,2,...}, and h be as in the statement of Lemma 1. Assume, in

addition, that spaces X, Pn, and Qn are embedded in the Hubert cube in such

a way that pn: X —► Pn and qn: Y —► Qn are 1 /'n-mappings. Let xn e Pn be a

sequence converging to x e X. Then limn_>oo hn(xn) = h(x).

Preliminary lemmas

Let C denote a Cantor set lying in [0,l]x{l} çmxm. Let v = (1/2,0) and

let T be the Cantor fan being the union of all linear segments joining v with

points of C. Let p: T -+ [0,1] be the natural second coordinate projection.

Let X be a fan such that E(X) is dense in I. By the result of Carruth

[1], we may assume that X is embedded in T. There is a natural monotone

mapping n: X\{v} —► C such that e e[v , n(e)] for every e e E(X). We may

assume that n(E(X)) is dense in C. The assertion of the following lemma is

a consequence of the density of E(X).
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Lemma 3. For every point e e E(X) there is a sequence {en e E(X) : n =

1,2, ...} such that n(e) = limn_>oo n(en) and cl{en : n = 1,2, ...} = [v , e] U

{<?„:« = 1,2,...}.

For a subset A of C define

h(A) = sup{p(e): e e E(X) and n(e) e A}.

Without loss of generality we may assume that h(C) = 1. Let us omit the easy

proof of the following lemma.

Lemma 4. For every nonempty closed-and-open subset U of C there is a point

e e E(X) such that n(e) e U and p(e) = h(U).

Lemma 5. For every e > 0, nonempty closed-and-open subset U of C and

point e e E(X) such that n(e) e U and p(e) = h(U), there is a null partition

{Un: n = 1,2, ...} of U\{n(e)} into closed-and-open subsets of C of diameter

less than e such that {h(Un): n = 1,2, ...} is dense in p([v ,e]). Moreover,

if en e E(X) is such that n(en) e Un and p(en) = h(Un), then cl{en: n =

l,2,...} = [v,e]u{en:n = 1,2,...}.

Proof. By Lemma 3, there is a sequence f e E(X) such that n(e) =

Hmw_007T(/m) and cl{fm: m = 1,2, ...} = [v ,e]U {fm: m = 1,2, ...} . Let

!T = {Wm :/w=l,2,...}bea sequence of disjoint closed-and-open subsets of

U \ {n(e)} such that n(fj e Wm , diam Wm<e, lim^^ diam Wm = 0, and

\P(fm) - h(Wm)\ < I/m. Observe that {h(Wm): m = 1,2, ...} is dense in

p([v ,e]). Hence, any completion of ^7" to a null partition of U \ {71(e)} with

mesh less than e will satisfy the assertion of the lemma.

Construction of an inverse sequence (Tn,p"m) associated with X

Choose e0 e E(X) such that p(e0) = h(C). Let TQ = [v ,eQ] and let

p0: X —» F0 be the horizontal projection onto T0 . Since p(eQ) = h(C), the

map p0 is well defined. We will call e0 the endpoint of TQ and will write

E(T0) = {e0}. Put ^ = {C} and let &[ = {Un : n = 1,2, ...} be a partition

of C \ {n(eQ)} guaranteed by Lemma 5 for e = e0 and e = 1 . For every

n choose en e E(X) such that Tt(en) e Un and p(en) = h(Un). Let Tx =

T0li\J{\v ,en]: n = 1,2, ...} . We may define px : X —> Tx in such a way that

PX\TQ is the identity and px\n~ (Un) is the horizontal projection into [v,en].

Suppose we have already defined sets T0, ... ,Tn c X, mappings pk: X -+ Tk

for k = 0, ... ,n , and collections ¿^, ... ,!Tn such that

( 1 )  Tk is a fan for k = 1,2, ... ,n ,

(2) T0cTxc---GTn,

(3) E(T0)cE(Tx)c---cE(Tn),
(4) Pk+X\Tk is the identity for k = 0, ... ,n - I ,

(5) &k+\ is a null family of disjoint closed-and-open sets of diameter less

than or equal to l/(k + I), refining S^k and such that \J^+X — C \

n(E(Tk)),
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(6) for every U e ¡Tk there is a unique point ek(U) e E(Tk) such that

n(ek(U))eU; further,

(a) p(ek(U)) = h(U),

(b) Pk\n~ (U) is the horizontal projection into [v ,ek(U)] and

(c)if WeJ~k_x and ^ = {U eJ~k: U c W}, then

cl{ek(U): U e^} = {ek(U): U eJ-}u[v ,ek_x(W)].

Observe that in view of Lemmas 4 and 5 the induction can be continued.

Define p"n = Pm\Tn for m < n and observe that pm = p"mopn and p(x) =

p°pn(x) for every n and x e X. Since X = cl\J{Tn: n = 0,1, ...} and every

pn : X —> Tn is a l/«-map, the space X is homeomorphic to lim (Tn,p"m) and

the maps pn converge to the identity on X. We will say that the above inverse

sequence is associated with the fan X .

Construction of a homeomorphism

Now, let X and Y be smooth fans having a dense set of endpoints and

let (Pn,p"m) and (Qn,q"m) be inverse sequences associated with X and Y,

respectively. To complete the proof of the theorem we will construct a sequence

of homeomorphisms hn : Pn °^° Qn inducing a homeomorphism between the

limit spaces.

Let v be the vertex of X and w the vertex of Y. We may assume that

p(X) = p(Y) = [0,1]. Let hQ: P0 °^° Q0 be the linear map such that hQ(v) =

w. Let ^ = {/z0}. Let {<?„: n = 1,2,...} = E(PX)\E(PQ) and {/„: n =

1,2, ...} = E(QX)\E(Q0). We may find a permutation cp of positive integers

such that

for every n , where a(n) = min{«, cp(n)}.

Let hx : Px °^*° Qx be the extension of h0 , such that hx maps [v , en] linearly

onto [w ,fi"   ,] for every n . Observe that if x e Px \{v} , then noq0 ohx(x) =

n o/z0 op0(x). Hence, \q0 o hx(z) - h0 opQ(z)\ < 1/2 for every z.

For each nonnegative integer n we will inductively construct a class ^ of

homeomorphisms mapping Pn onto Qn such that for every h e ¡?~n and e > 0

there is a g e ^n+x satisfying the following conditions:

(V) g\Pn = h,

(8) for every e e E(Pn) the function A|[v,e]: [v,e] °^f [w,h(e)] is a

linear homeomorphism,

(9) noq"+l og(x) = nohop"n+l(x),

(10) \poqnn+ioq(x)-pohop"n + \x)\<e,and

(11) \p(x) - p o h(x)\ < p(x)/4 for each x ePn.

Suppose that classes of homeomorphisms J^" satisfying (7)-(ll) have al-

ready been defined for each  z,   0 < i < n.   Let ^[2^"]  be the partition
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of C \ E(Pj_x) [ofC \ E(Qj_x), respectively] used for the construction of

^iiQj] > where i = 1,2,...,«. Let {Uk : k = 1,2,...} be an enumeration

of Í¿n and let ek = e(Uk). The homeomorphism h: Pn —> Qn maps each

ek to a point fk e E(Qn). Let Vk be the unique element in 2^ containing

fk. Then {Vk: k = 1,2, ...} is an enumeration of <VH. For every k, let

KM) = {U e %' : U c Uk},and Tn+x(Vk) = {VeTn+x:Ve Vk). Let
{Uk •: j = 1,2,...} and {Vk .: j = 1,2, ...} be enumerations of ^„^(L^)

and'^n+x(Vk), respectively. Put t?fcJ = e(uk,j) and -4 j = /(** j) • Reca11 that

p(x) = popnJx). By (11), l^^-^oAopf'^^'K^j)^.

For every /c we may find a permutation cpk of positive integers such that

and

(***) \Pohopl+\ekJ)-p{fkinU))\<tmn^^^^,

where a(y') = min{y, cpk(j)} . Let g be the extension of h which maps [u , ek A

linearly onto [w ,fk , ,]. Then (7) and (8) follow immediately; (10) and the

continuity of g follow from (* * *) and the linearity of g; and (11) for g

follows from (11) for h , the condition (**), and the fact that h\[v ,ek j\ is

linear.

Let 3rn+x be the class of homeomorphisms g mapping Pn+X onto Qn+X

obtained as described above for every he^n and e = 1/r, where r = 1,2,_

By Lemma 1, we can select a sequence hn e 3^ of homeomorphisms such

that for each k < n < m diagram (*) is 1/2"-commutative. Hence the home-

omorphisms hn induce a continuous map h: X °™ Y defined by h(x) — y,

where qs(y) = lim^^ q" o hn opn(x). To complete the proof it suffices to show

that h is one-to-one.

Let x ^ a e X and let xn = Pn(x), an = Pn(a), h(x) = y, and h(a) = b.

Suppose first that for some n , n(xn) ^ n(an). By (9), the definition of h and

the fact that each hn is a homeomorphism, n o qR o h(x) # n o qn o h(a), and

h(x) ^ h(a). Hence we may assume that either n(xn) = n(an), for each n or

a = v.

Then there exists a (unique) e e E(Pn) such that pn([v ,e\) c [v,en].

Since e e E(X), Um^^v ,en] = [v,e] and lim^^ p(en) = p(e). Clearly,

p{en+x)<p(en) for each n. By (11),

P0Kien)>^Pien)^^e)

for each n . Since each hn is linear,

3
\P ° *„(*») - P ° hnM Ï l\P(Xn) - P&n)\

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



534 WITOLD D. BULA AND LEX G. OVERSTEEGEN

for each n and xn,yn e [v,en].  Since Limn^00[v,en] = [v,e], there exist

cn, dne [v ,en] such that limn_oo cn = x and lim^^ dn = a. Hence,

Urn \p o hn(cn) - p o hn(dn)\ > nlim |/>(c„) - p(dn)\ = \p(x) - p(a)\ > 0.

Hence, by Lemma 2, \p o /z(x) - p o «(a)| > 0 and /z(jc) ̂  «(a).

Added in proof. The main result of this paper was proved independently by W.

J. Charatonik [The Lelekfan is unique, (to appear in Houston J. of Math.)].
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