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Abstract

We obtain a quasi-metric generalization of Caristi’s fixed point theorem for a kind of

complete quasi-metric spaces. With the help of a suitable modification of its proof, we

deduce a characterization of Smyth complete quasi-metric spaces which provides a

quasi-metric generalization of the well-known characterization of metric

completeness due to Kirk. Some illustrative examples are also given. As an

application, we deduce a procedure which allows to easily show the existence of

solution for the recurrence equation of certain algorithms.
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1 Introduction and preliminaries

We start by recalling several notions and properties of the theory of quasi-metric spaces.

Our basic references are [] and [].

By a quasi-metric on set X we mean a function d : X × X → [,∞) such that for all

x, y, z ∈ X: (i) x = y ⇔ d(x, y) = d(y,x) = ; (ii) d(x, z) ≤ d(x, y) + d(y, z).

A quasi-metric space is a pair (X,d) such that X is a set and d is a quasi-metric on X.

Given a quasi-metric d on X, the function d– defined by d–(x, y) = d(y,x) is also a

quasi-metric on X, called the conjugate of d, and the function ds defined by ds(x, y) =

max{d(x, y),d–(x, y)} is a metric on X.

Each quasi-metric d on X induces a T topology τd on X which has as a base the family

of open balls {Bd(x, r) : x ∈ X, ε > }, where Bd(x, ε) = {y ∈ X : d(x, y) < ε} for all x ∈ X and

ε > .

If τd is a T topology on X, we say that (X,d) is a T quasi-metric space.

Note that a quasi-metric space (X,d) is T if and only if for each x, y ∈ X, condition

d(x, y) =  implies x = y.

There exist many different notions of Cauchy net, Cauchy sequence and quasi-metric

completeness in the literature (see, e.g., [–]). For our purposes, here we will consider the

following ones.
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A net (xα)α∈� in a quasi-metric space (X,d) is called left K-Cauchy if for each ε >  there

is αε ∈ � such that d(xα ,xβ ) < ε whenever αε ≤ α ≤ β . The notion of a left K-Cauchy

sequence is defined in the obvious manner.

We say that a quasi-metric space (X,d) is complete if every left K-Cauchy net is con-

vergent for τd– , and say that it is sequentially complete if every left K-Cauchy sequence is

convergent for τd– . (Note that our notion of (sequential) completeness of (X,d) coincides

with the usual notion of right K-(sequential) completeness of (X,d–).)

A quasi-metric space (X,d) is Smyth complete provided that every left K-Cauchy net in

(X,d) is convergent for τds (compare Definition  in [], [], p., etc.).

The following well-known result is a consequence of Definition  and Theorem  in []

(see also [], p., [], p.).

Proposition  A quasi-metric space (X,d) is Smyth complete if and only if every left

K-Cauchy sequence in (X,d) is convergent for τds .

The following implications are also known and easy to check:

Smyth complete ⇒ complete ⇒ sequentially complete.

However, the converse implications do not hold, in general. For instance, the Sorgenfrey

quasi-metric space (see, e.g., [], p. or Example .. in []) provides a distinguished ex-

ample of a completeT quasi-metric spacewhich is not Smyth complete, while Stoltenberg

presented in Example . of [] an example of a sequentially complete T quasi-metric

space which is not complete.

On the other hand, Caristi proved in  the following important and well-known gen-

eralization of the Banach contraction principle.

Theorem  ([]) Let T be a self-mapping of a complete metric space (X,d). If there is a

lower semicontinuous function ϕ : X → [,∞) satisfying

d(x,Tx)≤ ϕ(x) – ϕ(Tx)

for all x ∈ X, then T has a fixed point in X.

Kirk showed in [] that the validity of Caristi’s fixed point theorem in a metric space

characterizes its completeness. More exactly, he proved the following.

Theorem  ([]) For a metric space (X,d), the following conditions are equivalent:

() (X,d) is complete.

() If T is a self-mapping of X such that there is a lower semicontinuous function

ϕ : X → [,∞) satisfying d(x,Tx)≤ ϕ(x) – ϕ(Tx) for all x ∈ X , then T has a fixed

point in X .

Extensions and generalizations of Theorems  and  to partialmetric spaces, conemetric

spaces, quasi-metric spaces and probabilistic metric spaces have been obtained by several

authors (see, e.g., [–]). In particular, Cobzaş ([], Theorem .) proved, among other

interesting results, the following quasi-metric generalization of Caristi’s fixed point theo-

rem.



Romaguera and Tirado Fixed Point Theory and Applications  ( 2015)  2015:183 Page 3 of 13

Theorem ([]) Let T be a self-mapping of a sequentially complete T quasi-metric space

(X,d). If there is a function ϕ : X → [,∞) which is lower semicontinuous for τd– and

satisfies

d(x,Tx)≤ ϕ(x) – ϕ(Tx)

for all x ∈ X, then T has a fixed point in X.

Since complete and Smyth complete non-T quasi-metric spaces provide efficient tools

in several areas as asymmetric functional analysis, domain theory, theoretical computer

science, complexity analysis of algorithms defined by recurrence equations, etc. (see, e.g.,

[, , , , , ] and their references), it seems natural to discuss the question of gener-

alizing Theorem  to (non-necessarily T) quasi-metric spaces. In this direction, we shall

give an example of a sequentially complete quasi-metric space for which Theorem  does

not hold. We shall show that, nevertheless, Theorem  remains valid for complete quasi-

metric spaces. A suitable and slight modification of the proof of that result will be used to

deduce a characterization of Smyth complete quasi-metric spaces which provides a gener-

alization to the quasi-metric framework of Kirk’s characterization ofmetric completeness.

As an application, we obtain a procedure which allows to easily deduce the existence of

solution for the recurrence equation of certain algorithms.

2 Results and examples

In order to simplify the terminology and the statements of our results, we shall use the

following notions.

A self-mapping T of a quasi-metric space (X,d) will be called a d-Caristi mapping (resp.

a ds-Caristi mapping) on (X,d) if there is a function ϕ : X → [,∞) which is lower semi-

continuous for τd– (resp. for τds ) and satisfies d(x,Tx)≤ ϕ(x) – ϕ(Tx) for all x ∈ X.

Clearly, every d-Caristi mapping is a ds-Caristi mapping. The following example shows

that the converse is not true in general.

Example  Let d be the quasi-metric on the set N of all positive integer numbers, given

by d(x,x) =  for all x ∈ N and d(x, y) = /x for all x, y ∈ N with x �= y. Clearly (N,d) is a

T quasi-metric space such that τd , and hence τds is the discrete topology on N. Define

T : N → N as Tx = x for all x ∈ N. Then d(x,Tx) = /x = ϕ(x) – ϕ(Tx), where ϕ : N →

[,∞) is defined as ϕ(x) = /x for all x ∈ N. Since τds is the discrete topology on N, ϕ is

lower semicontinuous for τds and thus T is a ds-Caristi mapping on (N,d). Finally, suppose

that T is also a d-Caristi mapping. Then there exists a function ϕ : N → [,∞) which

is lower semicontinuous for τd– and satisfies d(x, x) = /x ≤ ϕ(x) – ϕ(x) for all x ∈ N.

We easily deduce that ϕ() ≥  + ϕ(x) for all x ∈ N, which contradicts that ϕ is a lower

semicontinuous function for τd– because the sequence (
n)n∈N converges to  for τd– .

Our next example, based on Example . in [], shows that condition T cannot be re-

moved in Theorem .

Example  Let (A,d) be the non-T quasi-metric space such that A is the family of all

nonempty countable subsets of the set R of all real numbers, and d is the quasi-metric on

A defined as d(A,B) =  ifA⊆ B, and d(A,B) =  otherwise. Let (An)n∈N be a left K-Cauchy
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sequence in (A,d). Assume, without loss of generality, that d(An,Am) =  whenever n ≤ m,

i.e., An ⊆ Am whenever n ≤ m. Since
⋃

n∈NAn ∈ A and d(An,
⋃

n∈NAn) =  for all n ∈ N,

we deduce that (A,d) is sequentially complete. Now let

� = {A ∈A : A is a nonempty finite subset of R consisting of irrational numbers}

ordered by inclusion. Then the net (A)A∈� is left K-Cauchy in (A,d) (see Example . in

[]) but it does not converge for τd– because the elements ofA are countable subsets ofR.

We conclude that (A,d) is not complete.

However, we have the following extension of Theorem  whose proof is based on a

classical technique used by Kirk [], which is inspired in the partial order of Brøndsted

[, ].

Theorem  Every d-Caristi mapping on a complete quasi-metric space (X,d) has a fixed

point in X.

Proof Let (X,d) be a complete quasi-metric space and let T : X → X be a d-Caristi map-

ping on (X,d). Then there exists a function ϕ : X → [,∞) which is lower semicontinuous

for τd– and satisfies

d(x,Tx)≤ ϕ(x) – ϕ(Tx)

for all x ∈ X. As in the classical metric case, define a binary relation � on X by

x � y ⇐⇒ d(x, y)≤ ϕ(x) – ϕ(y)

for all x, y ∈ X. Clearly � is a partial order on X. Note also that x � Tx for all x ∈ X.

We shall prove that every (nonempty) linearly ordered subset of the partially ordered

set (X,�) has an upper bound. Indeed, let A be a (nonempty) linearly ordered subset of X.

We show that the net (xx)x∈A is a left K-Cauchy net in (X,d) where we have defined xx := x

for all x ∈ A. To this end, put r = infx∈A ϕ(x). Given an arbitrary ε > , choose x ∈ A such

that ϕ(x) < r + ε. Thus, for any y, z ∈ A with x � y� z, we obtain

d(y, z) ≤ ϕ(y) – ϕ(z) ≤ ϕ(x) – ϕ(z) < r + ε – r = ε.

Consequently, (xx)x∈A is a left K-Cauchy net in (X,d), and hence it converges, for τd– , to

some p ∈ X. Fix x ∈ A and let ε >  be arbitrary. Then there is y ∈ A such that d(z,p) < ε

and ϕ(p)–ϕ(z) < ε whenever z ∈ A and y � z. Choose z ∈ Awith x� z and y� z. Hence

d(x,p) ≤ d(x, z) + d(z,p) < ϕ(x) – ϕ(z) + ε

< ϕ(x) – ϕ(p) + ε.

Since ε is arbitrary, we deduce that d(x,p)≤ ϕ(x) –ϕ(p), i.e., x� p, so p is an upper bound

of A. It follows from Zorn’s lemma that (X,�) has a maximal element, say a. Since a� Ta,

we conclude that a = Ta, so a is a fixed point of T . The proof is finished. �
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Of course, Caristi’s fixed point theorem is a consequence of Theorem  when (X,d) is a

metric space. Next we present two examples of complete quasi-metric spaces (X,d) with

appropriate d-Caristi mappings, for which Caristi’s fixed point theorem cannot be applied

to the metric space (X,ds).

Example  Let X = N ∪ {∞}. Define a nonnegative real-valued function d on X × X by

d(∞,∞) = , d(x, y) = |/x – /y| if x, y ∈ N, d(x,∞) = /x and d(∞,x) =  for all x ∈ N.

It is easily seen that (X,d) is a complete T quasi-metric space (in fact, note (X, τd– ) is

a compact topological space). Define T : X → X as T∞ = ∞, and Tx = x for all x ∈ N.

Now define ϕ : X → [,∞) as ϕ(∞) = , and ϕ(x) = /x for all x ∈ N. Then ϕ is clearly

a lower semicontinuous function for τd– . Since d(∞,T∞) = d(,T) = , and for every

x ∈ X\{,∞},

d(x,Tx) =


x
–



x
= ϕ(x) – ϕ(Tx),

we conclude that T is a d-Caristi mapping on (X,d). Hence, we can apply Theorem  to

this case. In fact, T has  and ∞ as fixed points. However, we cannot apply Caristi’s fixed

point theorem to the metric space (X,ds) because it is not complete. Indeed, (x)x∈N is a

Cauchy sequence in (X,ds) that does not converge for τds .

In the above example the metric space (X,ds) is not complete. Now, we give an example

of a complete quasi-metric space (X,d) where the metric space (X,ds) is complete and

there is a d-Caristi mapping on (X,d) which is not a Caristi mapping for the metric space

(X,ds).

Example  As in Example , let X =N∪ {∞}. Define a nonnegative real-valued function

d on X×X by d(x, y) =  if x ≤ y, and d(x, y) = y if y < x (here,≤ denotes the usual order on

X). It is routine to check that (X,d) is a complete quasi-metric space (note that every net in

X converges to∞ for τd– ). DefineT : X → X asTx = x+ for all x ∈N andT∞ = ∞. Then

d(x,Tx) =  for all x ∈ X, so that T is trivially a d-Caristi mapping on (X,d). Hence, we can

apply Theorem . Finally, suppose that there exists a lower semicontinuous function, for

τds , ϕ : X → [,∞), such that ds(x,Tx)≤ ϕ(x) – ϕ(Tx) for all x ∈ X. Then

ds(x,x + ) = x +  ≤ ϕ(x) – ϕ(x + )

for all x ∈ N. We deduce that ϕ() = ∞, a contradiction. Hence, we cannot apply the clas-

sical Caristi fixed point theorem in this case.

Observe that the aforementioned example of Stoltenberg and Example  (or Example )

above show that Theorems  and  are independent of each other.

Although we do not know whether the converse of Theorem  holds, i.e., if Kirk’s the-

orem can be generalized to complete quasi-metric spaces, we are going to show that it is

possible to obtain such a generalization for Smyth complete quasi-metric spaces. To this

end, the following essentially well-known fact (see, e.g., Proposition .. in []) will be

useful.

Proposition  Let (xn)n∈N be a left K-Cauchy sequence in a quasi-metric space (X,d). If

(xn)n∈N has a subsequence convergent to x ∈ X for τds , then (xn)n∈N converges to x for τds .
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Theorem  A quasi-metric space (X,d) is Smyth complete if and only if every ds-Caristi

mapping on (X,d) has a fixed point in X.

Proof Suppose that (X,d) is a Smyth complete quasi-metric space, and letT be a ds-Caristi

mapping on (X,d). Then there exists a function ϕ : X → [,∞) which is lower semicon-

tinuous for τds and satisfies d(x,Tx) ≤ ϕ(x) – ϕ(Tx) for all x ∈ X. Exactly as in the proof

of Theorem , we construct a left K-Cauchy net in (X,d), which converges for τds to an

element p ∈ X by Smyth completeness of (X,d). Finally, we deduce that p is a fixed point

of T again as in the proof of Theorem  and taking into account that ϕ is now lower semi-

continuous for τds .

Conversely, it will be enough to prove, by Proposition , that every left K-Cauchy se-

quence in (X,d) converges for τds . Assume the contrary. Then there exists a left K-Cauchy

sequence (xn)n∈N in (X,d) which is not convergent for τds . For each k ∈ N, there exists

nk ≥ k such that d(xnk ,xn) < –(k+) for all n ≥ nk . Therefore d(xnk ,xnk+ ) < –(k+) for all

k ∈ N. Put yk := xnk for all k ∈ N. Then, by Proposition , we can suppose, without loss of

generality, that yk �= yj whenever k �= j, and that the sequence {yk : k ∈N} does not have any

convergent subsequence for τds .

We want to show that the self-mapping T of X given by Tyk = yk+ for all k ∈ N, and

Tx = y for all x /∈ {yk : k ∈ N}, is a ds-Caristi mapping. To this end, construct a function

ϕ : X → [,∞) as follows: ϕ(yk) = –k for all k ∈N, and ϕ(x) = ds(x, y) + / whenever x /∈

{yk : k ∈N}. Since, for each k ∈ N, ϕ(yk) < ϕ(x) whenever x /∈ {yk : k ∈N}, and the function

x → ds(x, y) is continuous for τds , we immediately deduce that ϕ is lower semicontinuous

for τds . Moreover, we have

d(yk ,Tyk) = d(yk , yk+) < –(k+) = ϕ(yk) – ϕ(Tyk)

for all k ∈N, and

d(x,Tx) = d(x, y) ≤ ds(x, y) = ϕ(x) – ϕ(Tx)

for all x /∈ {yk : k ∈ N}, so T is a ds-Caristi mapping on (X,d). However, T has no fixed

point. This contradiction concludes the proof. �

As in the metric case, we are going to deduce a multivalued version of Theorem .

Given a quasi-metric space (X,d), we denote by P(X) the collection of all nonempty

subsets of X. A multivalued mapping T : X → P(X) will be called ds-Caristi on (X,d) if

there is a function ϕ : X → [,∞) which is lower semicontinuous for τds and satisfies the

following condition: For each x ∈ X, there exists yx ∈ Tx such that d(x, yx) ≤ ϕ(x) – ϕ(yx).

As usual, we say that a point z ∈ X is a fixed point of T : X →P(X) if z ∈ Tz.

Corollary A quasi-metric space (X,d) is Smyth complete if and only if every ds-Caristi

multivalued mapping on (X,d) has a fixed point.

Proof Suppose that (X,d) is Smyth complete, and let T : X → P(X) be a d
s-Caristi mul-

tivalued mapping. Then there is a function ϕ : X → [,∞) which is lower semicontinuous

for τds and satisfies that for each x ∈ X there exists yx ∈ Tx such that d(x, yx) ≤ ϕ(x) –ϕ(yx).

Define a self-mapping f on X as follows: fx = yx for all x ∈ X. Obviously f is a ds-Caristi
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mapping on (X,d), so, by Theorem , there is z ∈ X such that z = fz. Therefore z = yz . Since

yz ∈ Tz, we conclude that z is a fixed point of T .

Conversely, suppose that every ds-Caristi multivalued mapping on (X,d) has a fixed

point. Then every ds-Caristi mapping on (X,d) has a fixed point, so (X,d) is Smyth com-

plete by Theorem . �

Note that if (X,d) is a quasi-metric space and T is a self-mapping of X such that

d(x,Tx) =  for all x ∈ X, then T is a ds-Caristi mapping on (X,d). If, in addition, (X,d)

is Smyth complete, then T has a fixed point by Theorem . Our next example illustrates

this situation.

Example  Let � be a nonempty alphabet. Denote by �∞ the set of all finite and infinite

words (sequences) over �, and denote by φ the empty word. For each x, y ∈ �∞, we define

x⊓ y as the longest common prefix of x and y, and for each x ∈ �∞, we denote by ℓ(x) the

length of x. Then ℓ(x) ∈ [,∞] whenever x �= φ and ℓ(φ) = . Now, for each x, y ∈ �∞, let

d(x, y) =  if x is a prefix of y, and d(x, y) = –ℓ(x⊓y) otherwise. Then d is a quasi-metric on

�∞ [, ]. In fact, the quasi-metric space (�∞,d) is Smyth complete [], Example ..

Define T : �∞ → �∞ as follows: For each x ∈ �∞, Tx is an element of �∞ such that x is

a prefix of Tx with ℓ(Tx) = ℓ(x) + . Then d(x,Tx) =  for all x ∈ �∞. By Theorem , T has

a fixed point. In fact, Tx = x if and only if ℓ(x) = ∞.

Observe that if (X,d) is a non-Smyth complete quasi-metric space such that (X,ds) is

complete, we can apply Caristi’s fixed point theorem to (X,ds). However, by Theorem ,

there exists a ds-Caristi mapping on (X,d) without fixed point. We conclude this section

with an example illustrating this fact.

Example  Let d be the quasi-metric on R given by d(x, y) = y – x if x ≤ y, and d(x, y) = 

if x > y. Then (R,d) is the Sorgenfrey quasi-metric space. Since ds(x, y) ≥  for all x, y ∈

R with x �= y, we deduce that the metric space (R,ds) is complete and τds is the discrete

topology on R. As we indicated in Section , (R,d) is not Smyth complete (indeed, note

that the sequence ((n – )/n)n∈N is left K-Cauchy but it does not converge for τds ). Define

T : R → R as Tx =  for all x > , T = –, and Tx = x/ for all x < . Although T has no

fixed point, we show that it is a ds-Caristi mapping on (R,d). To this end, define ϕ : R →

[,∞) as ϕ(x) =  for all x > , ϕ() = , and ϕ(x) = –x for all x < . Obviously ϕ is lower

semicontinuous for τds . Moreover, for x > , we obtain

d(x,Tx) = d(x, ) =  = ϕ(x) – ϕ(Tx).

For x = , we obtain

d(x,Tx) = d(,–) =  = ϕ(x) – ϕ(Tx),

and for x < ,

d(x,Tx) = d

(

x,
x



)

= –
x


= ϕ(x) – ϕ(Tx).
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Hence T is a ds-Caristi mapping on (X,d) without fixed point. Finally, observe that for

x = – one has

ds(x,Tx) =  >



= ϕ(x) – ϕ(Tx).

3 An application

In this section we shall apply Theorem  to obtaining a general fixed point theorem in the

setting of the complexity space, from which we shall deduce, in a unified and fast way, the

existence of solution for a large class of algorithms defined by recurrence equations that

includes Hanoi, Largetwo (average case), and Quicksort (worst case), (see, e.g., [] for a

detailed study of these algorithms).

Let us recall that the so-called complexity space was introduced by Schellekens in []

to the development of a topological foundation for the complexity analysis of algorithms

and programs. Further contributions to the study of this space and its applications may be

found in [, , –], etc.

The complexity space is the quasi-metric space (C,dC), where

C =

{

f :N → (,∞] :

∞
∑

n=

–n


f (n)
< ∞

}

,

and dC is the quasi-metric on C given by

dC(f , g) =

∞
∑

n=

–n max

(



g(n)
–



f (n)
, 

)

for all f , g ∈ C . (We adopt the convention that /∞ = .)

The set {f ∈ C : f (n) <∞ for all n ∈N} is denoted by C.

The elements of C are called complexity functions. According to Schellekens [], p.,

given two complexity functions f and g , the numerical value dC(f , g) (the complexity dis-

tance from f to g) can be interpreted as the relative progress made in lowering the com-

plexity by replacing any program P with complexity function f by any program Q with

complexity function g . Therefore, condition dC(f , g) = , with f �= g , can be read as the pro-

gram P is at least as efficient as the programQ because dC(f , g) =  if and only if f (n) ≤ g(n)

for all n ∈ N. Obviously, the metric (dC)
s is not able to give this information since in the

case that dC(f , g) = , with f �= g , we deduce that dC(g, f ) = (dC)
s(f , g), and thus the last

measure does not indicate that program is more efficient. However, we know that the pro-

gram with complexity function f is more efficient than the one with complexity function

g (see [], p.).

Now let c and a be positive real constants and h ∈ C. Define

Ccah =
{

f ∈ C : f () = c and f (n) ≥ af (n – ) + h(n) for all n≥ 
}

.

Observe that Ccah �= ∅ since the complexity function f defined by f() = c and f(n) = ∞

for all n ≥  clearly belongs to Ccah.

The restriction of the quasi-metric dC to Ccah will be denoted by dCcah .

The following auxiliary results will be useful in the proof of themain result of this section

(Theorem  below).
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Lemma  Let (fk)k∈N be a sequence in C such that limk→∞(dC)
s(f , fk) =  for some f ∈ C ,

and let m ∈N.

(a) If f (m) < ∞, then fk(m) <∞ eventually, and limk→∞ fk(m) = f (m).

(b) f (m) = ∞ if and only if limk→∞ fk(m) = ∞.

Proof Since limk→∞(dC)
s(f , fk) = , for each ε > , there is kε ∈N such that

∞
∑

n=

–n
∣

∣

∣

∣



f (n)
–



fk(n)

∣

∣

∣

∣

< ε

for all k ≥ kε . In particular

–m
∣

∣

∣

∣



f (m)
–



fk(m)

∣

∣

∣

∣

< ε ()

for all k ≥ kε .

Suppose that f (m) < ∞. Taking ε = –m/f (m), it follows from () that fk(m) < ∞ for all

k ≥ kε . Hence limk→∞ fk(m) = f (m) by Proposition  of []. Thus, we have shown (a).

If f (m) = ∞, relation () gives –m/ε < fk(m) for all k ≥ kε . Since ε >  is chosen arbitrarily,

we deduce that limk→∞ fk(m) = ∞. Conversely, if limk→∞ fk(m) = ∞, again it follows from

() that /f (m) = , i.e., f (m) = ∞. Thus, we have shown (b). �

Lemma  ([]) The quasi-metric space (C,dC) is Smyth complete.

Lemma  Let c and a be positive real constants and h ∈ C. Then the quasi-metric space

(Ccah,dCcah ) is Smyth complete.

Proof We first show that Ccah is a closed subset of the metric space (C, (dC)
s). Indeed, let

(fk)k∈N be a sequence in Ccah and f ∈ C such that limk→∞(dC)
s(f , fk) = .We shall show that

f () = c and f (m)≥ af (m – ) + h(m) whenever m ≥ .

To this end, we distinguish the following cases.

Case . m = . Then fk() = c for all k ∈ N, so by Lemma (b), f () < ∞. Then f () = c by

Lemma (a).

Case .m >  and f (m) = ∞. Then f (m)≥ af (m – ) + h(m), obviously.

Case . m >  and f (m) < ∞. Then, by Lemma (a), there is k ∈ N such that fk(m) < ∞

for all k ≥ k, and limk→∞ fk(m) = f (m). From this equality and the fact that fk ∈ Ccah, we

deduce the existence of k ≥ k such that for each k ≥ k,

 + f (m)≥ fk(m)≥ afk(m – ) + h(m). ()

Consequently, fk(m – ) < ∞ for all k ≥ k, and by Lemma (b), f (m – ) < ∞ (otherwise,

limk fk(m – ) = ∞, which contradicts ()). Therefore, we also have limk→∞ fk(m – ) =

f (m – ), by Lemma (a).

Now choose an arbitrary ε > . Then there exists kε ∈N such that

∣

∣fk(m – ) – f (m – )
∣

∣ < ε and
∣

∣fk(m) – f (m)
∣

∣ < ε



Romaguera and Tirado Fixed Point Theory and Applications  ( 2015)  2015:183 Page 10 of 13

for all k ≥ kε . Hence

ε + f (m) > fk(m)≥ afk(m – ) + h(m) ≥ a
(

f (m – ) + ε
)

+ h(m)

for all k ≥ kε . Thus ε + f (m) > a(f (m – ) + ε) + h(m) for any ε > , so f (m) ≥ af (m – ) +

h(m). Consequently, f ∈ Ccah, and hence Ccah is closed in the metric space (C, (dC)
s). Then

(Ccah,dCcah ) is Smyth complete by Lemma . �

Theorem  Let c and a be positive real constants with a ≥ , let h ∈ C, and let � be the

mapping on Ccah defined as

�(f )(n) =

{

c if n = ,

f (n – ) + h(n) if n≥ .
()

Then the following hold:

(A) � is a self-mapping on Ccah.

(B) For each f ∈ Ccah,

dCcah (f ,�f ) = ϕ(f ) – ϕ(�f ),

where ϕ : Ccah → [,∞) is the lower semicontinuous function for τ(dCcah )
s given by

ϕ(f ) =
a + 

ac
–

∞
∑

n=

–n


f (n)

for all f ∈ Ccah.

(C) � has a fixed point in Ccah.

Proof (A) Let f ∈ Ccah. Then �f () = c by definition of � . We also have �f () = af () +

h() = a�f () + h().

Now let n > . Then

�f (n) = af (n – ) + h(n)

≥ a
[

af (n – ) + h(n – )
]

+ h(n)

= a�f (n – ) + h(n).

We conclude that �f ∈ Ccah.

(B) We first observe that, in fact, ϕ(f ) ≥  for all f ∈ Ccah. Indeed, since a ≥ , we have

f (n) ≥ f (n – ) for all n≥ , and thus f (n) ≥ f ()≥ ac for all n ≥ . Therefore

∞
∑

n=

–n


f (n)
=



c
+

∞
∑

n=

–n


f (n)

≤


c
+



ac
=
a + 

ac
.



Romaguera and Tirado Fixed Point Theory and Applications  ( 2015)  2015:183 Page 11 of 13

Let now f ∈ Ccah and (fk)k∈N be a sequence in Ccah such that limk→∞(dCcah )
s(f , fk) = . Since

ϕ(f ) – ϕ(fk) =

∞
∑

n=

–n


fk(n)
–

∞
∑

n=

–n


f (n)

≤

∞
∑

n=

–n
∣

∣

∣

∣



fk(n)
–



f (n)

∣

∣

∣

∣

≤ (dCcah )
s(f , fk),

we deduce that ϕ(f ) ≤ lim infk→∞ ϕ(fk). Therefore ϕ is lower semicontinuous for τ(dCcah )
s .

Furthermore, for each f ∈ Ccah, we have f ≥ �f , and hence

dCcah (f ,�f ) =

∞
∑

n=

–n max

(



�f (n)
–



f (n)
, 

)

=

∞
∑

n=

–n
(



�f (n)
–



f (n)

)

=

∞
∑

n=

–n


�f (n)
–

∞
∑

n=

–n


f (n)
= ϕ(f ) – ϕ(�f ).

(C) From (B) we deduce that � is a (dCcah )
s-Caristi mapping on (Ccah,dCcah ). Then � has

a fixed point by Lemma  and Theorem . �

It follows fromTheorem that those algorithms defined by recurrence equations, whose

associated functional is a mapping � of type (), admit a solution. We conclude the paper

by applying this fact to deduce the existence of solution for the three algorithmsmentioned

at the beginning of this section.

Example  The algorithm Hanoi solves the celebrated Towers of Hanoi problem. The

running time of computing of this algorithm is the solution of the recurrence equation

S :N→ (,∞) given by

S(n) =

{

c if n = ,

S(n – ) + d if n≥ ,

with c,d >  (see, e.g., []). The functional �S naturally associated to S is defined as

�S(f )(n) =

{

c if n = ,

f (n – ) + d if n≥ .

Clearly�S is a mapping of type () for a = , and h ∈ C defined as h(n) = d for all n ∈N. By

Theorem , there exists fS ∈ Ccah such that fS = �fS . Hence fS is a solution of the recurrence

equation S.

Example  The algorithm Largetwo is a typical example of average case behavior whose

running time of computing is the solution of the recurrence equation S :N → (,∞) given

by

S(n) =

{

c if n = ,

S(n – ) +  – /n if n≥ ,
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with c >  (see, e.g., []). The functional �S naturally associated to S is defined as

�S(f )(n) =

{

c if n = ,

f (n – ) +  – /n if n ≥ .

Clearly �S is a mapping of type () for a = , and h ∈ C defined as h(n) =  – /n for all

n ∈N. By Theorem , there exists fS ∈ Ccah such that fS = �fS . Hence fS is a solution of the

recurrence equation S.

Example  The running time of computing of the well-known algorithm Quicksort is,

for the worst case, the solution of the recurrence equation S :N → (,∞) given by

S(n) =

{

c if n = ,

S(n – ) + bn if n≥ ,

with c,b >  (see, e.g., []). The functional �S naturally associated to S is defined as

�S(f )(n) =

{

c if n = ,

f (n – ) + bn if n ≥ .

Clearly�S is amapping of type () for a = , and h ∈ C defined as h(n) = bn for all n ∈ N. By

Theorem , there exists fS ∈ Ccah such that fS = �fS . Hence fS is a solution of the recurrence

equation S.
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