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Abstract

We consider the problem of choosing a subset of a finite set of indivisible

objects (public projects, facilities, laws, etc.) studied by Barberà, Son-

nenschein, and Zhou (1991). Here we assume that agents’ preferences are

separable weak orderings. Given such a preference, objects are partitioned

into three types, “goods”, “bads”, and “nulls”. We focus on “voting rules”,

which rely only on this partition rather than the full information of pref-

erences. We characterize voting rules satisfying strategy-proofness (no one

can ever be better off by lying about his preference) and null-independence

(the decision on each object should not be dependent on the preference of

an agent for whom the object is a null). We also show that serially dictato-

rial rules are the only voting rules satisfying efficiency as well as the above

two axioms. We show that the “separable domain” is the unique maxi-

mal domain over which each rule in the first characterization, satisfying a

certain fairness property, is strategy-proof.

Keywords: Strategy-proofness, null-independence, efficiency, separable

weak ordering
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1 Introduction

Collective decision is often required to be made on multiple issues. We consider

a simple model, in which each issue is associated with two possible decisions. For

example, in Congress, legislators need to consider several bills at the same time.

They can either accept or reject each bill. Another example is the problem of

qualifying members of a society for a certain activity. Each member is either

qualified or disqualified.

Such a problem can be represented by the problem of choosing a subset of

a set of indivisible objects (public projects, facilities, laws, etc.) studied by

Barberà, Sonnenschein, and Zhou (1991).1 Each subset is an alternative and

agents have preferences over these alternatives. A social choice rule, or simply,

a rule, associates with each preference profile a single desirable alternative. We

are interested in rules satisfying strategy-proofness, the requirement that no one

can ever be better off by lying about his preference.

When there is no restriction on admissible preferences, the Gibbard-Satterthwaite

Theorem (Gibbard, 1973 and Satterthwaite, 1975) applies. Every strategy-proof

rule satisfying the “full-range condition”, or voter sovereignty, is dictatorial, when

there are at least three alternatives. However, it is often the case that the con-

sumption of an object affects agents’ welfare separately from the consumptions

of other objects. When preferences have such a “separability” restriction, the

Gibbard-Satterthwaite Theorem does not apply. A great variety of strategy-proof

rules, called schemes of “voting by committees”, are characterized by Barberà,

Sonnenschein, and Zhou (1991). They also show that within these rules, only dic-

tatorial ones are efficient, when there are at least three objects. These results are

established under the additional restriction of linearity (no indifference between

any two alternatives) on preferences.

They do not apply directly in the domain of separable but possibly non-linear

preferences, which we think is more natural. Even if non-linear preferences are

admissible, all schemes of voting by committees are still strategy-proof. However,

they may not be the only such rules. On the other hand, no scheme of voting

by committees is efficient when non-linear preferences are admissible (dictatorial

schemes are “weakly efficient” but not efficient). In order to satisfy efficiency,

we need more sophisticated decisions. No earlier study on this choice problem, so

far, provides a characterization of strategy-proof rules for separable and possibly

non-linear preferences. We establish one such result by imposing the following

two additional requirements.

1See also Barberà, Massó, and Neme (1997, 2000).
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Given a separable preference, objects are partitioned into three kinds; “goods”,

“bads”, and “nulls” (an object is a good if its consumption always increases the

welfare, independently of other objects; it is a bad if its consumption always de-

creases the welfare; it is a null if its consumption never makes any difference).2

We require that decisions should rely only on such simple “three-tiered” informa-

tion rather than the full information of preferences. We refer to this requirement

as votes-only property and refer to rules satisfying it as voting rules. We next

introduce a new requirement, called null-independence, which says that if an ob-

ject is a null for an agent, then his preference should not play a critical role in

the decision on this object.

We characterize the family of strategy-proof rules satisfying votes-only prop-

erty and null-independence. This family (to be explained later) includes all

schemes of voting by committees; it is much bigger than that. Adding efficiency,

we characterize “serially dictatorial rules”, under which a priority ordering of

agents is given and the first agent, the dictator, always guarantees one of his pre-

ferred alternatives and the second agent always guarantees one of his preferred

alternatives in the set of dictator’s preferred alternatives and so on. Even though

we weaken efficiency to weak efficiency (no simultaneous welfare improvement of

all agents is possible), we cannot escape dictatorship. Finally, we show that the

separable domain is the unique maximal “rich” domain over which each rule in

the first characterization, satisfying a certain fairness property, is strategy-proof.

Votes-only property coincides with “tops-only property” when preferences are

linear. As shown by Barberà, Sonnenschein, and Zhou (1991), tops-only property

is implied by strategy-proofness and voter sovereignty. However, when non-linear

preferences are admissible, this implication does not hold: see Example ??. For

linear preferences, any object is either a good or a bad (there is no null). So

null-independence is vacuously satisfied by any rule.

Another important line of research on similar choice problems has been di-

rected to study several normative requirements of social choice rules. Among

others are Wilson (1975), Rubinstein and Fishburn (1986), Kasher and Rubin-

stein (1998), and Samet and Schmeidler (2001).3 We establish logical relations

between our main requirements and the following two central requirements in

2When preferences are additively separable, an object is a good if and only if it gives positive

utility, it is a bad if and only if it gives negative utility, and it is a null if and only if it gives

zero utility.
3Kasher and Rubinstein (1998) and Samet and Schmeidler (2001) consider problems which

are special examples of our choice problem. In particular, Samet and Schmeidler (2001) consider

the “qualification problem”, in which the set of objects coincide with the set of individuals.
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this literature. Monotonicity requires that when the set of goods expands and

the set of bads contracts for each agent, the choice should expand.4 Independence

requires that the decision on an object should rely only on agents’ three-tiered

evaluations on this object.5

We show that voting rules satisfying monotonicity and independence are de-

scribed in terms of sets consisting of pairs of disjoint groups, called “power struc-

tures”. For each object, a power structure is given and the object is chosen if

and only if the group of agents in favor of the object and the group against it

constitute a pair in that power structure. Each power structure has the natural

property that the decisive power of a group against another increases if the for-

mer group expands and the latter group contracts. We call the family of all such

rules Family Φ∗. We show that a voting rule satisfies strategy-proofness and null -

independence if and only if it satisfies monotonicity and independence. Therefore,

rules in Family Φ∗ are the only voting rules satisfying strategy-proofness and

null -independence. Adding some combinations of efficiency, voter sovereignty,

anonymity, and neutrality, we characterize several subfamilies of Family Φ∗.

Our study is related with the following literature. Public goods problems often

have the form of decisions from a discrete or indiscrete box (Cartesian product

of intervals). Components of each point in the box represent levels of their cor-

responding public goods provision. In the 1-dimensional case, Moulin (1980)

exhibits a remarkable contrast to the Gibbard-Satterthwaite Theorem by char-

acterizing a great variety of strategy-proof rules for “single-peaked preferences”.

He focuses on rules, called “voting schemes”, which depend only on agents’ peaks

for each preference profile. He shows that a family of rules, called “generalized

median voter schemes” are the only strategy-proof voting schemes that respect

unanimity in the following sense; whenever everyone’s peak coincides, the com-

mon peak should be chosen.

Border and Jordan (1983) strengthen Moulin’s conclusion by characterizing

the same family of rules in the 1-dimensional case without focusing on vot-

ing schemes. They, moreover, extend this conclusion to the multi-dimensional

case. They consider several multi-dimensional counterparts of the 1-dimensional

single-peakedness. “Star-shaped” preferences have the “1-dimensional single-

4Monotonicity is introduced by Kasher and Rubinstein (1998) and Samet and Schmei-

dler (2001) in slightly different forms. We generalize their notion to deal with non-linear

preferences.
5Independence is introduced by Rubinstein and Fishburn (1986) in the abstract model of

algebraic aggregation. Later, it is considered by Kasher and Rubinstein (1998) and Samet and

Schmeidler (2001).
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peakedness” over each linear path through the peak. “Separable” preferences

have a uniform “marginal preference” over each coordinate, independently of val-

ues of other coordinates. Over the domain of star-shaped separable preferences

or the domain of quadratic separable preferences, they characterize strategy-proof

rules that respect unanimity.

When the alternative space is a discrete box, Barberà, Gül, and Stacchetti (1993)

consider linear preferences satisfying, what they call, “multi-dimensional single-

peakedness” (given an alternative x, any alternative in-between x and the peak in

terms of L1-norm is ordered in-between x and the peak). They show that “multi-

dimensional generalized median voter schemes” are the only strategy-proof rules

satisfying voter sovereignty.6 Their conclusion is generalized by Le Breton and

Sen (1999). They identify a certain general richness condition for domains con-

sisting of linear preferences. The condition encompasses a variety of domains

including the domain of multi-dimensional single-peaked preferences. Under this

richness condition, they characterize rules satisfying strategy-proofness and voter

sovereignty.7 When each coordinate in the alternative space contains only two

points, the domain of separable linear preferences satisfies the richness condition.

Thus, their conclusion generalizes also the result by Barberà, Sonnenschein, and

Zhou (1991), which is for such “coordinate-wise-binary choice problems”.

Le Breton and Sen (1995) exhibit a difficulty of extending their “decom-

posability result” in linear preference domains to domains with possibly non-

linear preferences. In the coordinate-wise-binary case, we overcome such diffi-

culty by imposing the two additional requirements, votes-only property and null-

independence, which do not have any logical relation with strategy-proofness and

voter sovereignty altogether.

Le Breton and Weymark (1999) consider the multi-dimensional alternative

space. While they also consider possibly non-linear preferences, their main con-

clusions rely either on the assumption that each coordinate has more than two

points or on the assumption that each preference in the domain has a unique

best alternative. Since neither of the two assumptions holds in our domain, their

“component-wise dictatorship” conclusion does not apply. It is remarkable to

notice that Le Breton and Weymark (1999) do not impose any additional re-

quirement other than strategy-proofness and voter sovereignty. They prove that

6Voter sovereignty, here, can be replaced with the requirement of unanimity respect.
7More precisely, their richness is satisfied by a proper subdomain of the domain of multi-

dimensional single-peaked preferences. They first characterize strategy-proof rules in this sub-

domain. Then they extend such characterization and obtains the result by Barberà, Gul, and

Stacchetti (1993).
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strategy-proofness and voter sovereignty imply tops-only property over certain re-

stricted domains that include possibly non-linear preferences but not all of them.

When all non-linear preferences are admissible, such an implication does not hold.

The existence of normatively appealing strategy-proof rules over restricted

domains casts the following important question. How far these domains can be

enlarged with the possibility result intact? This question is addressed by Barberà,

Sonnenschein, and Zhou (1991). They show that the separable linear domain is

the unique maximal rich domain of linear preferences, over which normatively

appealing schemes of voting by committees are strategy-proof. Whether a similar

result holds without focusing on linear preferences is not studied by them. Since

non-linear preferences may have multiple top alternatives, it is not clear how

to define schemes of voting by committees. For separable preferences, such a

difficulty can be resolved easily using the set of goods instead of top alternatives.

In fact, the set of goods coincides with the intersection of all top alternatives for

separable preferences. We make use of this intersection to define schemes of voting

by committees for arbitrary domains and establish a similar maximal domain

result without focusing on linear preferences. Our result also applies to other rules

in Family Φ∗ which are not schemes of voting by committees. Maximal domain

results are also established in extended models of multidimensional problems by

Serizawa (1995) and Le Breton and Sen (1999).

This paper is organized as follows. In Section 2, we introduce our model

(Section 2.1) and define some important families of rules (Section 2.2). In Sec-

tion 3, we define our axioms. In Section 4, we state our characterization results

(Section 4.1) and the maximal domain result (Section 4.2). We conclude with

several remarks in Section 5. Finally, all proofs for Section 4.1 are collected in

the Appendix.

2 The model

2.1 Basic concepts

There is a finite set A of indivisible objects. Any subset of A is an (social)

alternative. There are n ≥ 2 agents who have preferences (complete and

transitive binary relations) over the set 2A of all social alternatives. Let N ≡

{1, · · · , n} be the set of all agents. For each preference Ri, we denote its strict

relation by Pi and indifference relation by Ii.

We focus on preferences with the following restriction. A preference Ri is
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separable if for all x ∈ A and all X ⊆ A\x,8

[X ∪ x] Pi X if and only if x Pi ∅;

[X ∪ x] Ii X if and only if x Ii ∅.

Let S be the set of all separable preferences. A preference is additively sepa-

rable if it has an additive numerical representation. Let Sadd be the set of all

additively separable preferences. A preference is linear if no two alternatives

are indifferent. Let Slin be the set of all linear separable preferences. Note that

when preferences are linear, the second part of the definition of separability holds

vacuously. So in this case, our definition of separability coincides with the def-

inition by Barberà, Sonnenschein, and Zhou (1991). For separable preferences,

objects are partitioned into the following three kinds. An object x ∈ A is a good

for Ri ∈ S if for all X ⊆ A\x, [X ∪ x] Pi X. Object x is a bad for Ri if for

all X ⊆ A\x, X Pi [X ∪ x] . Object x is a null for Ri if for all X ⊆ A\x, X

Ii [X ∪ x] . Let G(Ri) be the set of goods for Ri and B(Ri) be the set of bads.

For each R ∈ SN and each x ∈ A, we say that x is a null for R when x is a null

for Ri for each i ∈ N .9 For all R ∈ SN and all x ∈ A, N is partitioned into the

group of agents for whom x is a good, denoted by NG
x (R), the group of agents

for whom x is a bad, denoted by NB
x (R), and the group of agents for whom x is

a null.

For each agent i, let Di ⊆ S be a set of his admissible preferences. Let

D ≡ D1×· · ·×Dn be the set of profiles of admissible preferences. A social choice

rule, or simply, a rule, is a function ϕ : D → 2A mapping each preference profile

into a single alternative. Thus, we call D the domain of preference profiles.

Important examples of domains are SN , SN
add, and SN

lin, which are called the

separable domain, the additive domain, and the linear separable domain

respectively.

We focus on rules that depend only on the simple information of preferences in

terms of goods, bads, and nulls. Formally, a rule ϕ is a voting rule if it satisfies

the following property: for all R,R′ ∈ D, if for all i ∈ N , G (Ri) = G (R′
i) and

B (Ri) = B (R′
i), then ϕ (R) = ϕ (R′) . We refer to this property as votes-only

property.10

8For convenience, we denote each singleton {x} by x.
9We use notation, R, R′, R̄, R̄′, etc. for elements in RN . Following standard notational

convention, we write i’s component of R with Ri and we write i’s component of R′ with R′

i.
10In the domain of separable linear preferences, votes-only property coincides with the “tops-

only property” in Barberà, Sonnenschein, and Zhou (1991).

7



Important Domain Properties

Our main results are established over the separable domain SN and they

also hold over the additive domain SN
add. We specify several properties of the

two domains, which will play critical roles. Our results will apply to any other

subdomains of the separable domain satisfying these properties. Therefore, in

stating the domain properties, we do not restrict our attention only to the two

domains.

However, we are only interested in domains that admit a sufficiently large

variety of preferences in the sense described by the following three properties A1,

A2, and A3.

The first property is that each object is potentially a good and also potentially

a bad in the domain.

A1. For all i ∈ N and all x ∈ A, there exists Ri, R
′
i ∈ Di such that x ∈ G(Ri)

and x ∈ B (R′
i) .

The second property is that for each agent i and each object x, if x is not a

good for a preference Ri, then there is another admissible preference R′
i that has

more goods, including x, and less bads than Ri.

A2. For all i ∈ N, all Ri ∈ Di and all x ∈ A with x /∈ G(Ri), there exists R′
i ∈ Di

such that G(R′
i) ⊇ G(Ri) ∪ x and B(R′

i) ⊆ B(Ri)\x.

The third property is that for each agent i and each object x, if x is a bad and

a null for preferences Ri and R′
i, respectively, then there is another admissible

preference R′′
i that has more goods and less bads than Ri and for which x is a

null.

A3. For all i ∈ N and all Ri, R
′
i ∈ Di with x ∈ B(Ri) and x /∈ G (R′

i) ∪ B (R′
i) ,

there exists R′′
i ∈ Di such that G(R′′

i ) ⊇ G(Ri), B(R′′
i ) ⊆ B(Ri), and x /∈

G(R′′
i ) ∪ B(R′′

i ).

Note that A3 is trivially satisfied by any domain in which no preference has

any null; for example, the linear separable domain SN
lin and any subdomain of

SN
lin. Two properties, A2 and A3, are somewhat complicated. However, they

are implied by the following natural property. It states that for all two disjoint

subsets of objects, each agent has an admissible preference in which the two sets

become the set of goods and the set of bads.
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A4. For all i ∈ N and all disjoint X,X ′ ⊆ A, there exists Ri ∈ Di such that

G (Ri) = X and B (Ri) = X ′.11

Note that A4 is not satisfied by the linear separable domain SN
lin. Yet, both

A2 and A3 are satisfied by SN
lin. Property A4 is similar to the “richness property”

by Barberà, Sonnenschein, and Zhou (1991, p.605). Their richness property is

stronger than the combination of A1, A2, and A3, for the case of linear separable

preferences.12 The three properties are crucial for showing Proposition 1. We

take several examples of domains satisfying them.

Example 1. Domains satisfying A1, A2, and A3.

(i) The separable domain SN , the additive domain SN
add, and the linear separable

domain SN
lin satisfy A1-A3.

(ii) A preference R0 ∈ S is trichotomous if it is described by goods, bads, and

nulls as follows: for all X, X ′ ⊆ A,

X R0 X ′ if and only if |G (R0)∩X|−|B (R0)∩X| ≥ |G (R0)∩X ′|−|B (R0)∩X ′|.

Thus any agent with a trichotomous preference cares only about the “net” num-

ber of goods (the number of goods minus the number of bads). Clearly, each

trichotomous preference is additive. Also all goods are indifferent, all bads are

indifferent, and the utility of each good is equal to the disutility of each bad. Let

STri be the family of all trichotomous preferences. It is easy to show that SN
Tri

satisfies A1-A3.

(iii) A preference R0 ∈ S is dichotomous if it is trichotomous and all objects

are either goods or bads (no null). Let SDi be the family of all dichotomous pref-

erences. By definition, STri ⊃ SDi. It is easy to show that SN
Di satisfies A1-A3. ¤

We will make use of the following additional properties of the separable do-

main SN and the additive domain SN
add. Roughly speaking, both of the first two

properties state that there are at least three objects and the domain admits a

sufficient variety of preferences in ordering the three objects.

Definition. A domain D satisfies Property P if there exist at least three ob-

jects and D satisfies the following two conditions:

P1. For all i ∈ N and all distinct x, y, z ∈ A, there exist Ri, R
′
i, R̄i, R̄

′
i ∈ Di such

that x Pi {x, z} Pi y Pi ∅ Pi z and for all w /∈ {x, y, z} , ∅ Pi w;

x P ′
i ∅ P ′

i y P ′
i {x, z} P ′

i z and for all w /∈ {x, y, z} , ∅ P ′
i w;

x P̄i ∅, y P̄i ∅, z P̄i {x, y}, and for all w /∈ {x, y, z} , ∅ P̄i w;

11It is easy to show that this property implies A2 and A3. For A2, let X ≡ G (Ri) ∪ x and

X ′ ≡ B (Ri) \x. For A3, let X ≡ G (Ri) and X ′ ≡ B (Ri) \x.
12The proof is available under request.

9



∅ P̄ ′
i x, ∅ P̄ ′

i y, {x, y} P̄ ′
i z, and for all w /∈ {x, y, z} , ∅ P̄ ′

i w.

P2. For all i ∈ N and all distinct x, y, z ∈ A, there exist Ri, R
′
i ∈ Di such that

x Ii y Ii ∅ and for all w /∈ {x, y} , ∅ Pi w;

x I ′
i y I ′

i z I ′
i ∅ and for all w /∈ {x, y, z} , ∅ P ′

i w.

Definition. A domain D satisfies Property Q if there exist at least three ob-

jects and D satisfies the following two conditions:

Q1. For all i ∈ N and all distinct x, y, z ∈ A, there exist Ri, R
′
i, R̄i, R̄

′
i ∈ Di such

that y Pi ∅ Pi z and for all Y, Y ′ ⊆ A\x , [Y ∪ x] Pi Y ′;

x P ′
i ∅ P ′

i y and for all Y, Y ′ ⊆ A\z , Y P ′
i [Y ′ ∪ z] ;

x P̄i ∅, y P̄i ∅, and for all Y, Y ′ ⊆ A\z , [Y ∪ z] P̄i Y ′;

∅ P̄ ′
i x, ∅ P̄ ′

i y, and for all Y, Y ′ ⊆ A\z , Y P̄ ′
i [Y ′ ∪ z] .

Q2. For all i ∈ N and all distinct x, y, z ∈ A, there exists Ri ∈ Di such that

x Ii y Ii z Ii ∅.

Either one of Property P and Property Q is crucial for showing Propositions 2

and 3.

The next property says that for any preference and any good x (bad, respec-

tively), there is an admissible preference that has the same sets of goods and bads

as the initial preference and in which the utility (disutility, respectively) of x is

so great that having x is always better (worse, respectively) than not having it,

independently of decisions on other objects.

Definition. A domain D satisfies Property R if D satisfies the following two

conditions:

R1. For all i ∈ N, all Ri ∈ Di, and all x ∈ G (Ri) , there exists R′
i ∈ Di such that

G (R′
i) = G (Ri), B (R′

i) = B (Ri), and for all Y, Y ′ ⊆ A\x , [Y ∪ x] P ′
i Y ′.

R2. For all i ∈ N, all Ri ∈ Di, and all x ∈ B (Ri) , there exists R′
i ∈ Di such that

G (R′
i) = G (Ri), B (R′

i) = B (Ri), and for all Y, Y ′ ⊆ A\x , Y P ′
i [Y ′ ∪ x] .

Property R is crucial for showing Proposition 4 and Theorems 1 and 2. Note

that the linear separable domain SN
lin violates Properties P and Q but satisfies

Property R. Neither the trichotomous domain SN
Tri nor the dichotomous domain

SN
Di in Example 1 satisfies any of the three properties.

2.2 Examples of voting rules

We define an important family of voting rules, crucial in our work. These

rules make the decision on each object, according to a predetermined set of

ordered pairs of disjoint groups, or a “power structure”, as follows. The ob-
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ject is chosen if and only if the group of agents in favor of the object and the

group of agents against the object constitute a pair in that set. In this case,

the unanimous approval of the object by members in the first group “overpow-

ers” the unanimous objection by members in the second group. Formally, let

C
� ≡ {(C1, C2) ∈ 2N × 2N : C1 ∩ C2 = ∅} be the set of all pairs of disjoint

groups of agents. For each x ∈ A, let Cx ⊆ C
∗. When (C1, C2) ∈ Cx, we say that

C1 overpowers C2. Set Cx satisfies power-monotonicity, or P-monotonicity if

whenever group C1 overpowers group C2, each supergroup of C1 also overpowers

each disjoint subgroup of C2: that is, for all (C1, C2) ∈ Cx, if (C ′
1, C

′
2) ∈ C

∗ is

such that C ′
1 ⊇ C1 and C ′

2 ⊆ C2, then (C ′
1, C

′
2) ∈ Cx. For each x ∈ A, a power

structure associated with x is a set Cx of pairs of disjoint groups, satisfy-

ing P-monotonicity. A profile of power structures is a list (Cx)x∈A of power

structures indexed by objects.

Definition. A rule is in Family Φ� if there exists a profile of power struc-

tures (Cx)x∈A such that for all R ∈ D and all x ∈ A, x ∈ ϕ(R) if and only if
(

NG
x (R), NB

x (R)
)

∈ Cx.
13

Several properties of profiles of power structures are in order. A profile (Cx)x∈A

satisfies power-unanimity, or P-unanimity if for all x ∈ A, (N, ∅) ∈ Cx and

(∅, N) /∈ Cx. It satisfies power-neutrality, or P-neutrality if for all x, y ∈ A and

all (C1, C2) ∈ C∗, (C1, C2) ∈ Cx ⇔ (C1, C2) ∈ Cy. It satisfies power-anonymity, or

P-anonymity if for each x ∈ A, Cx can be described by a set Ix ⊆ {(t1, t2) ∈

Z+ ×Z+ : t1 + t2 ≤ n} as follows: (C1, C2) ∈ Cx ⇔ (|C1|, |C2|) ∈ Ix.
14 We call Ix

the index set for x.

Definition (Barberà, Sonnenschein, and Zhou, 1991). A rule ϕ is a scheme

of voting by committees if for each x ∈ A, there exists a nonempty collection

Cx of groups of agents such that (i) ∅ /∈ Cx; (ii) for all C0 ∈ Cx and all C ′
0 ⊇ C0,

C ′
0 ∈ Cx; (iii) for all R ∈ D, x ∈ ϕ (R) ⇔ NG

x (R) ∈ Cx .

Any scheme of voting by committees associated with (Cx)x∈A is the rule in

Family Φ∗ associated with the following profile of simple power structures (Cx)x∈A.

For all x ∈ A, let Cx ≡ {(C1, C2) ∈ C
∗ : C1 ∈ Cx, C2 ⊆ N\C1}. Note that by

nonemptiness of Cx, Cx is nonempty. Then by part (i) in the above definition,

13Power structures and Family Φ∗ are similar to “binary constitutions” and “binary decision

rules” by Ferejohn and Fishburn (1979), which are preference aggregation rules in the Arrovian

social choice model. Binary constitutions have another restriction, called “asymmetry”, since

they are used to determine social ordering of two alternatives.
14We denote the set of non-negative integers by Z+.
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the profile satisfies P-unanimity. Hence over the linear separable domain SN
lin and

also over any subdomain of SN
lin, the family of schemes of voting by committees

coincide with the subfamily of Family Φ∗, consisting of rules associated with

P-unanimous profile of power structures.

For all i ∈ N , all Ri ∈ Di, and all X ⊆ 2A, let Max[Ri : X ] be the set of all

best alternatives for Ri in X . A rule ϕ is dictatorial if there exists i ∈ N such

that for all R ∈ D, ϕ(R) ∈ Max
[

Ri : 2A
]

. We call such i the dictator. Not every

dictatorial rule is in Family Φ∗. A rule in Family Φ∗ is dictatorial if and only

if its profile of power structures (Cx)x∈A has the following property: there exists

i ∈ N such that for all x ∈ A, (i, N\i) ∈ Cx and (N\i, i) /∈ Cx.

Let π be a permutation on N. Let R ∈ D. Let M1(R, π) ≡ Max
[

Rπ(1) : 2A
]

.

For all k ∈ {2, · · · , n}, let Mk(R, π) ≡ Max
[

Rπ(k) : Mk−1(R, π)
]

. A rule ϕ is

serially dictatorial with respect to π if for all R ∈ D and all k ∈ N,

ϕ(R) ∈ Mk(R, π). Not every serially dictatorial rule is in Family Φ∗. The power

structure (Cx)x∈A of the serially dictatorial rule in Family Φ∗, associated with

π is such that for all x ∈ A and all disjoint non-empty groups C1, C2 ⊆ N,

(C1, C2) ∈ Cx if and only if there exists k ∈ {1, · · · , n} such that π (k) ∈ C1 and

for all k′ < k, π (k′) /∈ C1 ∪ C2.

Family Φ∗ is a subset of a larger family of voting rules, in which decisions

are made in the following procedure. First, for each object, the set of agents in

favor of it and the set of agents against it are identified. Second, based on these

two groups, the “score” for the object is determined by a “scoring function” that

maps each pair of disjoint groups into the score (a real number) for the object.

Third, given a list of scores for all objects, the “threshold score” is determined by

a “threshold scoring function” that maps each list of scores into a threshold score.

Finally, each object is accepted if and only if its score is higher than or equal to the

threshold score. Formally, a scoring function associated with x is a mapping

sx : C
∗ → R satisfying the following property: for all (C1, C2), (C

′
1, C

′
2) ∈ C

∗, if

C1 ⊆ C ′
1 and C2 ⊇ C ′

2, then sx(C1, C2) ≤ sx(C
′
1, C

′
2). A threshold scoring

function is a mapping s̄ : R
|A| → R satisfying the following property: for all

(Sx)x∈A, (S ′
x)x∈A ∈ R

|A|, if (Sx)x∈A ≤ (S ′
x)x∈A, then s̄((Sx)x∈A) ≤ s̄((S ′

x)x∈A). A

rule ϕ is a scoring rule if for each x ∈ A, there exist a scoring function sx and

a threshold scoring function s̄ such that for all R ∈ D and all x ∈ A,

x ∈ ϕ(R) ⇔ sx(N
G
x (R), NB

x (R)) ≥ s̄((sx(N
G
x (R), NB

x (R)))x∈A).

For example, plurality-based scoring rule, denoted by ϕpl-scoring, is the scor-

ing rule that is associated with the following scoring functions (sx)x∈A and thresh-

old scoring function s̄: for each x ∈ A and each (C1, C2) ∈ C
∗, sx(C1, C2) ≡

12



|C1| − |C2| − 1; for each (Sx)x∈A ∈ R
|A|, s̄((Sx)x∈A) ≡ max{

∑

x∈A Sx/|A|, 0}.

Clearly, if an object is accepted by plurality-based scoring rule, then there are

more agents in favor of it than agents against it.

Every rule in Family Φ∗, associated with (Cx)x∈A, is a scoring rule whose

threshold scoring function is constant with the value 1 and whose profile of scoring

functions (sx)x∈A are such that for all x ∈ A and all (C1, C2) ∈ C
∗,

sx(C1, C2) =

{

1, if (C1, C2) ∈ Cx;

0, otherwise.

Note that for any scoring rule, the score for each object x at a preference profile

R is determined by
(

NG
x (R) , NB

x (R)
)

and so other information in (G (Ri) , B (Ri))i∈N

do not play any role for the score of x. In particular, for rules in Family Φ∗, the

decision on x, not just the score, rely only on
(

NG
x (R) , NB

x (R)
)

; decisions on

objects are made “independently”. However there are a variety of other types

of voting rules. For example, weighted plurality rule, denoted by ϕweight-pl,

is the voting rule such that for all R ∈ D and all x ∈ A, x ∈ ϕweight-pl (R) ⇔
∑

i∈NG
x (R)

1
|G(Ri)|

>
∑

i∈NB
x (R)

1
|B(Ri)|

. Thus, for the decision on x, the positive vote

by an agent i in favor of x is weighted by 1
|G(Ri)|

and the negative vote by an agent

i against x is weighted by 1
|B(Ri)|

; x is accepted if and only if the sum of weighted

positive votes is bigger than the sum of weighted negative votes.

3 Axioms

In this section, we define several important strategic and non-strategic require-

ments, or axioms, of rules. We start with our two main axioms. The first axiom

requires that misrepresenting one’s preference should never pay off, independently

of what others’ representations are.

Strategy-Proofness. For all R ∈ D, all i ∈ N, and all R′
i ∈ Di,

ϕ(Ri, R−i) Ri ϕ(R′
i, R−i).

If a rule satisfies strategy-proofness, it can be implemented in dominant strat-

egy equilibrium in the “direct revelation mechanism”, and conversely. We refer

readers to Gibbard (1973), Satterthwaite (1975), Barberà, Sonnenschein, and

Zhou (1991), and Thomson (2000) for more discussions on strategy-proofness. In

particular, Barberà, Sonnenschein, and Zhou (1991) consider the same model as

ours and study strategy-proof rules over the linear separable domain.
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We next introduce a new axiom. Suppose that an object a is a null for an

agent i. Then the decision on a will never have any effect on agent i’s welfare and

so he will be indifferent to the decision. It would be unappealing if the preference

of such an agent plays a key role in the decision on a. The next axiom rules out

this possibility. Formally:

Null-Independence. For all i ∈ N, all x ∈ A, all Ri, R
′
i ∈ Di, and all R−i ∈

Πj 6=iDj, if x is null for both Ri and R′
i, then

x ∈ ϕ(Ri, R−i) ⇔ x ∈ ϕ(R′
i, R−i).

Example 2. Family Φ∗. Every rule in Family Φ∗ satisfies both axioms. Null-

independence is trivial. Strategy-proofness can be shown as follows. Each rule

ϕ in Family Φ∗ makes decisions object-by-object. That is, the decision on each

object x relies only on the group of agents in favor of x and the group of agents

against x. Moreover, the decision responds non-negatively to the increase in the

first group and non-positively to the increase in the second group. Thus, when

an agent is in favor of x, he cannot increase the chance of the acceptance of x by

saying he is against x. He cannot be better off by such a lie. Similarly, an agent

cannot be better off by saying he is in favor of x, when he is against x. Therefore

truthful announcement is always weakly better than lying, independently of what

others’ announcements are. ¤

Example 3. Scoring rules. Our results will imply that all scoring rules not in

Family Φ∗ violate at least one of the two axioms. Here we show that plurality-

based scoring rule ϕpl-scoring violates both strategy-proofness and null-independence.

For simplicity, suppose that there are three agents and three objects and let

N ≡ {1, 2, 3} and A ≡ {a, b, c}. Consider a preference profile (R1, R2, R3)

such that (G(R1), B(R1)) = ({a, b}, ∅), (G(R2), B(R2)) = ({a, c}, {b}), and

(G(R3), B(R3)) = ({a, b}, {c}). Then the score of a is 2, the score of b is 0 and the

score of c is -1. Therefore the threshold score is the average score 1/3 and so only

object a is chosen, that is, ϕpl-scoring(R) = {a}. Now suppose that agent 1 with

true preference R1 reports R′
1 such that (G(R′

1), B(R′
1)) = ({a, b}, {c}). Then the

score of c decreases to -2, which lowers the average score and the threshold score

to 0. Since there is no change in the scores of a and b, a is still chosen and now,

in addition, b is chosen, that is, ϕpl-scoring(R′
1, R2, R3) = {a, b}. Since {a, b} P1

{a}, agent 1 is better off after the misrepresentation with R′
1. It is easy to show

that this rule also violates null-independence.15 ¤

15Let R1, R2, and R3 be such that (G(R1), B(R1)) = ({a, b}, ∅), (G(R2), B(R2)) =
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We relate the two main axioms with the following two axioms, called “mono-

tonicity” and “independence”, studied by Rubinstein and Fishburn (1986), Kasher

and Rubinstein (1998), and Samet and Schmeidler (2001).16

Monotonicity requires that when the set of goods expands and the set of bads

contracts for every agent, the choice should expand. Formally:

Monotonicity. For all R, R′ ∈ D, if for all i ∈ N, G(Ri) ⊆ G(R′
i) and B(Ri) ⊇

B(R′
i), then ϕ(R) ⊆ ϕ(R′).

The next axiom requires that the decision on each object should depend only

on agents’ evaluations of this object in terms of good, bad, or null. For all

Ri ∈ S and all x ∈ A, let Ri|{{x},?} be the restriction of Ri to {{x}, ∅}. Let

R|{{x},?} ≡
(

Ri|{{x},?}
)

i∈N
.

Independence. For all x ∈ A and all R, R′ ∈ D with R|{{x},?} = R′|{{x},?},

x ∈ ϕ(R) ⇔ x ∈ ϕ(R′) .

We consider the above axioms in conjunction with several combinations of

the following standard axioms. We first define useful notation. Given each per-

mutation on N, π : N → N and each R ∈ D, let R� ≡ (Rπ(i))i∈N . For each

x, y ∈ A and each X ∈ 2A, let ρx;y (X) ∈ 2A be such that x ∈ ρx,y(X) ⇔ y ∈ X,

y ∈ ρx,y(X) ⇔ x ∈ X, and for all z ∈ X\{x, y}, z ∈ ρx,y(X). Thus, ρx,y is the

renaming operation that switch names between x and y. Given i ∈ N, for each

Ri ∈ Di, let ρx;yRi ∈ Di be the preference where the roles of x and y in Ri are

switched: that is, for all X,X ′ ⊆ A, X ρx,yRi X ′ ⇔ ρx,y(X) Ri ρx,y(X
′). Then x

(or y) plays the same role in Ri as y (or x) does in ρx,yRi. For each R ∈ D, let

ρx;yR ≡ (ρx,yRi)i∈N .

Voter sovereignty. For all x ∈ A, there exist R,R′ ∈ D such that x ∈ ϕ (R)

and x /∈ ϕ (R′) .17

Weak efficiency. For all R ∈ D, there exists no X ⊆ A such that for all i ∈ N ,

X Pi ϕ(R).

({a, c}, {b}), and (G(R3), B(R3)) = ({a, b, c}, ∅). Then ϕpl-scoring (R) = {a}. Let R′

1 be such

that (G (R′

1) , B (R′

1)) = ({a}, {b}) . Then ϕpl-scoring (R′

1, R2, R3) = {a, c}. Since c is a null for

both R1 and R′

1, this shows a violation of null-independence.
16Our axioms are stated differently from the axioms in these papers. We generalize their

axioms in order to deal with non-linear preferences.
17Our voter sovereignty is weaker than “voter sovereignty” in Barberà, Sonnenschein, and

Zhou (1991), which states that for all X ∈ 2A, there exists R ∈ D such that ϕ (R) = X.
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Efficiency. For all R ∈ D, there exists no X ⊆ A such that for all i ∈ N , X Ri

ϕ(R) and for some j ∈ N, X Pj ϕ(R).

Anonymity. For all R ∈ D and all permutation π on N, ϕ(R) = ϕ(Rπ).

Neutrality. For all R ∈ D and all x, y ∈ A, x ∈ ϕ(R) if and only if y ∈ ϕ(ρx,yR).

4 Results

4.1 Characterizations of strategy-proof voting rules

Throughout Section 4.1, we consider the separable domain (our results also apply

to the additive domain) unless stated otherwise. We first characterize rules that

satisfy monotonicity, independence, and some combinations of voter sovereignty,

anonymity, and neutrality.

Proposition 1. A rule satisfies monotonicity and independence if and only if

it is in Family Φ∗.

See the proof in the Appendix.

Remark 1. In proving Proposition 1, we only use the three properties, A1-A3, of

the separable domain. Thus, the same result also holds for any other subdomains

satisfying these properties.18 Examples are subdomains in Example 1.

Within Family Φ∗, it is easy to show that voter sovereignty, anonymity,

18For domains without properties A1-A3, Proposition 1 may not hold. Here is an example.

For simplicity, let A ≡ {a, b, c} and N ≡ {1, 2}. Let D∗ be the domain consisting of only the

following three admissible preferences. First is a preference R0, in which only a is a good and

both b and c are nulls. Second is a preference R′

0, in which only b is a good and both a and c

are nulls. Last is a preference R′′

0 , in which a is a good, b is a bad, and c is a null. Then clearly

this domain D∗ violates A1, since a is never a bad and c is always a null. Let ϕ∗ be the rule

defined in the following table, where each cell represents the choice for the profile composed of

its corresponding row and column preferences.

R0 R′

0 R′′

0

R0 {a, b} {a, b} {a}

R′

0 {a, b} ∅ {a}

R′′

0 {a} {a} {a}

Note that the set of goods expands and the set of bads contracts only when preference changes

from R′′

0 to R0. So clearly, ϕ∗ satisfies monotonicity. It is tedious to check independence of ϕ∗.

However since b ∈ ϕ∗(R0, R0) and b /∈ ϕ∗(R′

0, R
′

0), then ϕ∗ violates objectwise monotonicity

(see p.27 for the definition) and so is not a rule in Family Φ∗.
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and neutrality are equivalent respectively to three properties, P-unanimity, P-

anonymity, and P-neutrality, of profiles of power structures. Therefore, we obtain

the following corollary.

Corollary 1. (i) A rule satisfies monotonicity, independence, and voter sovereignty

if and only if it is a rule in Family Φ∗ associated with a P-unanimous profile of

power structures.

(ii) A rule satisfies monotonicity, independence, and anonymity if and only if it

is a rule in Family Φ∗ associated with a P-anonymous profile of power structures.

(iii) A rule satisfies monotonicity, independence, and neutrality if and only if it

is a rule in Family Φ∗ associated with a P-neutral profile of power structures.

The corresponding examples to show the independence of axioms in Proposi-

tion 1 and also in Corollary 1 can be easily obtained. Adding efficiency, we are

left only with serially dictatorial rules in Family Φ∗. Formally:

Proposition 2. A rule satisfies monotonicity, independence, and efficiency if

and only if it is a serially dictatorial rule in Family Φ∗.

Although we relax efficiency with weak efficiency, we cannot escape dictator-

ship.

Proposition 3. A rule satisfies monotonicity, independence, and weak effi-

ciency if and only if it is a dictatorial rule in Family Φ∗.

See the proofs of Propositions 2 and 3 in the Appendix A.

Remark 2. In proving Propositions 2 and 3, we use either one of the two prop-

erties, Property P and Property Q, of the separable domain. The two results

can also be established for any subdomain satisfying Property P or Property Q.19

For domains not satisfying either one of the two properties, the results may not

19Properties A1-A3 are also required for Propositions 2 and 3. For example, in the domain

D∗, defined in the footnote of Remark 1, let ϕ be defined by the following table.

ϕ R0 R′

0 R′′

0

R0 {a, b} {a, b} {a}

R′

0 {a, b} {b} {a}

R′′

0 {a} {a} {a}

Note that the set of goods expands and the set of bads contracts only when preference changes

from R′′

0 to R0. So clearly, ϕ satisfies monotonicity. It is tedious to show independence and

efficiency of ϕ. Since agent 1 does not attain his best alternative at (R′

0, R
′′

0 ) and agent 2

does not attain his best alternative at (R′′

0 , R′

0), none of them can be a dictator. So ϕ is not

dictatorial.
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hold. For instance, when there are only two objects (see Example ?? for an-

other example with more than three objects), there exist non-dictatorial rules

satisfying the three axioms. For example, consider the following rule. Let

τ : {(C1, C2) ∈ C
∗ : |C1| = |C2|} → {0, 1} be a function, called, tie-breaking

function, such that for each pair (C1, C2) of disjoint groups with the same size,

either τ(C1, C2) = 1 or τ(C2, C1) = 1 but not both. Let ϕτ be the rule that makes

the same decision on each object x as the “plurality rule” whenever the group

of agents in favor of x and the group of agents against x have different sizes.

When the sizes of the two groups ties, the decision relies on the tie-breaking

function τ . Formally, for all R ∈ SN and all x ∈ X, (i) if |NG
x (R)| 6= |NB

x (R)|,

then x ∈ ϕτ (R, X) ⇔ |NG
x (R)| > |NB

x (R)| ; (ii) if |NG
x (R)| = |NB

x (R)|, then

x ∈ ϕτ (R, X) ⇔ τ(NG
x (R), NB

x (R)) = 1 . By definition, ϕτ , which is neither se-

rially dictatorial nor dictatorial in Family Φ∗, clearly satisfies monotonicity and

independence. However, it is shown by Ju (2002a) that ϕτ satisfies efficiency

when there are only two objects. In the “variable agenda model”, he charac-

terizes the family of all such rules based on “non-manipulability”, “restricted

efficiency”, and anonymity.

Example 4. Trichotomous or dichotomous preferences. Consider the trichoto-

mous domain SN
Tri and the dichotomous domain SN

Di, defined in Example 1. Every

preference Ri in both domains is represented by Ui defined as follows: for all

X ⊆ A, Ui (X) ≡ |G (Ri)∩X|− |B (Ri)∩X|. Note that for each profile R ∈ SN
Tri,

the sum of utilities of X,
∑

i∈N Ui (X), can be calculated in the following two

equivalent ways:20

∑

i∈N

Ui (X) =
∑

i∈N

(|G (Ri) ∩ X| − |B (Ri) ∩ X|)

=
∑

x∈X

(

|NG
x (R) | − |NB

x (R) |
)

. (∗)

Clearly, SN
Tri and SN

Di violate both Property P and Q. We now show that over

any one of these two domains, there are non-dictatorial voting rules, for exam-

ple, plurality rule ϕpl, satisfying the three requirements in Proposition 2.21 To

explain this, let R ∈ SN
Tri and Y ≡ ϕpl (R). Let X ⊆ A. We only have to

show that if someone is better off in X than in Y , then there is another who

is worse off. Note first that for all y ∈ Y , |NG
y (R) | − |NB

y (R) | > 0 and all

x /∈ Y , |NG
x (R) | − |NB

x (R) | ≤ 0. Hence
∑

x∈X\Y

(

|NG
x (R) | − |NB

x (R) |
)

≤ 0

20See Lemma 1 in Ju (2002c) for the proof.
21Ju (2002c) characterizes rules satisfying efficiency, independence, and anonymity over the

two restricted domains, SN
Tri and SN

Di.
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and
∑

y∈Y \X

(

|NG
y (R) | − |NB

y (R) |
)

> 0 and so

∑

x∈X\Y

(

|NG
x (R) | − |NB

x (R) |
)

+
∑

x∈X∩Y

(

|NG
x (R) | − |NB

x (R) |
)

≤
∑

y∈Y \X

(

|NG
y (R) | − |NB

y (R) |
)

+
∑

y∈X∩Y

(

|NG
y (R) | − |NB

y (R) |
)

.

Therefore by (∗),
∑

i∈N Ui (X) ≤
∑

i∈N Ui (Y ). It follows from this inequality

that if someone is better off in X than in Y , then there is another who is worse

off. ¤

We next establish the logical relation between the following two combinations

of axioms; the combination of strategy-proofness and null-independence and the

combination of monotonicity and independence. We show that within voting

rules, the two combinations are equivalent.

Proposition 4. A voting rule satisfies strategy-proofness and null-independence

if and only if it satisfies monotonicity and independence.

See the proof in the Appendix. Now we are ready to state our main results.

It follows from Propositions 1 and 4 that rules in Family Φ∗ are the only voting

rules satisfying strategy-proofness and null-independence. Formally:

Theorem 1. A voting rule satisfies strategy-proofness and null-independence if

and only if it is in Family Φ∗.

Examples ??-?? establish the independence of strategy-proofness, null-independence,

and votes-only property.

Example 5. Strategy-proofness and null-independence. Let ϕ be such that for

all R ∈ D, ϕ(R) ∈ Max[R1 : {{x} : x ∈ A}]. Then clearly, ϕ satisfies strategy-

proofness and null -independence. However, ϕ violates votes-only property. ¤

Example 6. Strategy-proofness and votes-only property. Define ϕ as follows. For

each R ∈ D, (i) if G(R1) 6= ∅, ϕ(R) ≡ G(R1), (ii) if G(R1) = ∅ and B(R1) 6= ∅,

ϕ(R) ≡ A\B(R1), and (iii) if G(R1) = ∅ = B(R1), ϕ(R) ≡ ∅. Clearly, ϕ satisfies

votes-only property. Since agent 1 always attains one of his best alternatives and

ϕ does not depend on any other’s preference, ϕ is strategy-proof. Suppose that

x is a null for both R1 and R′
1 and that part (ii) applies for R1 and part (iii)

applies for R′
1. Then for all R−1 ∈ ΠN\1Di, x ∈ ϕ(R1, R−1) and x /∈ ϕ(R′

1, R−1).

Therefore ϕ violates null-independence. ¤
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Example 7. Null-independence and votes-only property. Consider the weighted

plurality rule ϕweight-pl. Clearly, ϕweight-pl satisfies null-independence and votes-only

property. Let x ∈ A. Let R ∈ D be such that
∑

i∈NG
x (R)

1
|G(Ri)|

=
∑

i∈NB
x (R)

1
|B(Ri)|

and for some i ∈ NG
x (R) , |G (Ri) | ≥ 2 and if X,X ′ ⊆ A\x, X ∪ x Pi X ′.

Then x /∈ ϕweight-pl (R) . However, if i reports R′
i such that G (R′

i) = {x}, then

x ∈ ϕweight-pl (R′
i, R−i) and so ϕweight-pl (R′

i, R−i) Pi ϕweight-pl (Ri, R−i) , violating

strategy-proofness. ¤

It follows from Proposition 4 and Corollary 1 that:

Corollary 2. (i) A voting rule satisfies strategy-proofness, null-independence,

and voter sovereignty if and only if it is a rule in Family Φ∗, associated with a

P-unanimous profile of power structures.

(ii) A voting rule satisfies strategy-proofness, null-independence, and anonymity

if and only if it is a rule in Family Φ∗, associated with a P-anonymous profile of

power structures.

(iii) A voting rule satisfies strategy-proofness, null-independence, and neutrality

if and only if it is a rule in Family Φ∗, associated with a P-neutral profile of power

structures.

Remark 3. In proving Proposition 4, Theorem 1, and Corollary 2, Property R

plays a critical role. Therefore, the same results can be established for any sub-

domain satisfying this property. These results may not hold for domains not

satisfying Property R. See Example ?? below.

Example 8. A strategy-proof and null-independent rule over the dichotomous

domain SN
Di

, which is not in Family Φ∗. Define ϕ∗ as follows. Fix two objects

a∗ and b∗. For all R ∈ SN
Di and all x ∈ A\a∗, x ∈ ϕ∗ (R) ⇔

∣

∣NG
x (R)

∣

∣ >
∣

∣NB
x (R)

∣

∣; if
∣

∣NG
a∗ (R)

∣

∣ 6=
∣

∣NB
a∗ (R)

∣

∣, then a∗ ∈ ϕ∗ (R) ⇔
∣

∣NG
a∗ (R)

∣

∣ >
∣

∣NB
a∗ (R)

∣

∣

and if
∣

∣NG
a∗ (R)

∣

∣ =
∣

∣NB
a∗ (R)

∣

∣, then a∗ ∈ ϕ∗ (R) ⇔ [b∗ ∈ ϕ∗ (R)].

Note that when the number of agents is even, ϕ∗ clearly is not in Family Φ∗. Note

also that for all R ∈ SN
Di, ϕ∗ (R) \a∗ = ϕpl (R) \a∗ and that when a∗ ∈ ϕpl (R),

ϕ∗ (R) = ϕpl (R) and when a∗ /∈ ϕpl (R), ϕ∗ (R) = ϕpl (R) ∪ a∗ if and only if a∗

makes a tie at R and b∗ ∈ ϕpl (R). Decisions by ϕ∗ do not depend on agents’ labels

(or names). So ϕ∗ is anonymous. Since SN
Di does not allow for nulls, ϕ∗ satisfies

null-independence vacuously. To give an intuition for strategy-proofness, consider

R ∈ SN
Di at which both a∗ and b∗ make ties, that is,

∣

∣NG
a∗ (R)

∣

∣ =
∣

∣NB
a∗ (R)

∣

∣ and
∣

∣NG
b∗ (R)

∣

∣ =
∣

∣NB
b∗ (R)

∣

∣. Then by definition, b∗ is rejected and so a∗ is also rejected

at R. Consider an agent i ∈ N for whom a∗ is a good and b∗ is a bad. He can make

a∗ accepted only by reporting b∗ as a good and such a misrepresentation will make
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b∗, which is a bad for him, accepted also. Since his preference is dichotomous,

the utility from a∗ will be cancelled out by the disutility from b∗. Therefore,

such a misrepresentation will not benefit him. Considering different cases, one

by one, we can show that no one can ever be benefited by misrepresenting his

preference.22
¤

Over the linear separable domain SN
lin, null-independence is vacuously satisfied

by any rule. Thus, it follows from Corollary 2 and Remark 3 that:

Corollary 3. Over the linear separable domain SN
lin, schemes of voting by com-

mittees are the only voting rules satisfying strategy-proofness and voter sovereignty.

By Propositions 2, 3, and 4, we characterize serially dictatorial or dictatorial

rules in Family Φ∗. Formally:

Theorem 2. (i) A voting rule satisfies strategy-proofness, null-independence,

and efficiency if and only if it is a serially dictatorial rule in Family Φ∗.

(ii) A voting rule satisfies strategy-proofness, null-independence, and weak effi-

ciency if and only if it is a dictatorial rule in Family Φ∗.23

Remark 4. This result can also be obtained over any subdomain satisfying Prop-

erty R and either Property P or Property Q. If the domain violates these prop-

erties, the result may not hold. For example, when there are only two objects,

neither Property P nor Property Q holds and the non-dictatorial rule defined

in Remark ?? satisfies strategy-proofness, null-independence, and efficiency. An-

other examples are the trichotomous domain and the dichotomous domain. As

explained in Example ??, the plurality rule satisfies all the three axioms.

4.2 The maximal domain result

In this section, we study how further the domain can be enlarged in order for

rules in Family Φ∗ to be strategy-proof. To address this question, we need a more

general definition of rules in Family Φ∗. Our previous definition is made in terms

of the set of goods and the set of bads, which are well-defined only for separable

preferences. Note that the set of goods coincides with the intersection of all

“top (or best) alternatives” and the set of bads coincides with the intersection

of all “bottom (or worst) alternatives”. We use these intersections to extend the

definition of rules in Family Φ∗.

22Formal proof is provided in the Appendix of Ju (2002c). He also shows that over the

dichotomous domain, ϕ∗ satisfies efficiency.
23Examples showing independence of axioms in Theorem 2 are available upon request.
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For all preferences Ri, let T � (Ri) be the intersection of all top alternatives

and B� (Ri) the intersection of all bottom alternatives. For example, when Ri is

separable, T ∗ (Ri) = G (Ri) and B∗ (Ri) = B (Ri) . For each preference profile R,

let NT �
x (R) ≡ {i ∈ N : x ∈ T ∗ (Ri)} and NB�

x (R) ≡ {i ∈ N : x ∈ B∗ (Ri)}. We

extend the definition of Family Φ∗, replacing NG
x (R) and NB

x (R) in the previous

definition with NT ∗

x (R) and NB∗

x (R) respectively. More precisely, a rule ϕ is in

Family Φ∗ if for each object x ∈ A, there exists a power structure Cx such that

for all R ∈ D, x ∈ ϕ (R) ⇔
(

NT ∗

x (R) , NB∗

x (R)
)

∈ Cx .

Throughout this section, we restrict our attention to domains in which any

object that is either in all top alternatives or in all bottom alternatives is critical

when added to any alternative not including it. The addition either makes an

improvement or the opposite. Formally:

Assumption D. For all i ∈ N, all Ri ∈ Di, all x ∈ T ∗ (Ri) ∪ B∗ (Ri) , and all

X ⊆ A\x, either X ∪ x Pi X or X Pi X ∪ x.

Clearly, both the separable domain and the additive domain satisfy this as-

sumption. However, it has nothing to do with the separability restriction. Indeed,

any domain consisting of linear preferences satisfies Assumption D.

We further focus on domains that have enough variety of preferences in the

following sense.

Definition. Domain D is rich if for all i ∈ N and all disjoint alternatives

X,X ′ ⊆ A, there exists Ri ∈ Di such that T ∗ (Ri) = X and B∗ (Ri) = X ′.

Note that the richness property is an extension of property A4, which applies

to subdomains of the separable domain. It corresponds to the richness property

considered by Barberà, Sonnenschein, and Zhou (1991, p.605).

Given a power structure C, a pair (C1, C2) ∈ C is minimal in C if there exists

no (C ′
1, C

′
2) ∈ C\ (C1, C2) such that C ′

1 ⊆ C1 and C ′
2 ⊇ C2. A pair (C1, C2) ∈ C

∗\C

is maximal in C
�\C if there exists no (C ′

1, C
′
2) ∈ C

∗\C such that (C ′
1, C

′
2) 6=

(C1, C2), C ′
1 ⊇ C1, and C ′

2 ⊆ C2. Let ϕ be a rule in Family Φ∗ associated with

profile (Cx)x∈A . Agent i ∈ N is a dummy of object x if either (i) for all minimal

pair (C1, C2) in Cx, i /∈ C1 or (ii) for all maximal pair (C1, C2) in C
∗\Cx, i /∈ C2.

24

Thus, the dummy agent does not play any essential role in accepting or rejecting

x. Agent i ∈ N is a vetoer of object x if either for all (C1, C2) ∈ Cx, i /∈ C2 or

for all (C1, C2) ∈ C∗\Cx, i /∈ C1.
25 Thus a vetoer always has an option to reject or

24The definition of dummy is a natural extension of the corresponding notion in Barberà,

Sonnenschein, and Zhou (1991, p.606). In the linear domain, they coincide with each other.
25The definition of vetoer is a natural extension of the corresponding notion in Barberà,
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accept x. We are interested in rules in Family Φ∗ that do not have any dummy

or vetoer.

Fact 1. A preference Ri is separable if and only if for all x ∈ A and all X ⊆ A\x,

[X ∪ x] Pi X ⇔ x ∈ T ∗ (Ri) ; (1)

X Pi [X ∪ x] ⇔ x ∈ B∗ (Ri) . (2)

Proof. When Ri is separable, T ∗ (Ri) = G (Ri) and B∗ (Ri) = B (Ri) and (1) and

(2) hold. To prove the converse, suppose (1) and (2). Then for all x ∈ A and all

X ⊆ A\x,

[X ∪ x] Pi X ⇔ x Pi ∅ ;

X Pi [X ∪ x] ⇔ ∅ Pi x ,

which is evidently equivalent to separability.

Proposition 5. For all rules in Family Φ∗ without any dummy or vetoer, if the

rule is strategy-proof over a rich domain, then the domain is a subdomain of the

separable domain.

Proof. Let D be a rich domain. Let ϕ : D → 2A be a rule in Family Φ∗, associated

with (Cx)x∈A. Suppose that ϕ does not have any vetoer or dummy and that ϕ is

strategy-proof. Let i ∈ N and Ri ∈ Di. Let x ∈ A and Y ⊆ A\x. Note that since

agent i is not a dummy, there exist minimal pair (C1, C2) in Cx with i ∈ C1 and

maximal pair (C0
1 , C

0
2) in C

∗\Cx with i ∈ C0
2 . Also since i is not a vetoer, for all

y ∈ A, (N\i, i) ∈ Cy and (i, N\i) 6∈ Cy.
26

We first show (1) in Fact 1. Suppose x ∈ T ∗ (Ri) . For each j 6= i, let Rj be

such that

T ∗ (Rj) = Y ∪ x and B∗ (Rj) = A\ (Y ∪ x) , if j ∈ C1;

T ∗ (Rj) = Y and B∗ (Rj) = A\Y , if j ∈ C2;

T ∗ (Rj) = Y and B∗ (Rj) = A\ (Y ∪ x) , if j /∈ C1 ∪ C2.

Note that
(

NT ∗

x (R) , NB∗

x (R)
)

= (C1, C2) ; for all y ∈ Y, NT ∗

y (R) ⊇ N\i and

NB∗

y (R) ⊆ i; for all y ∈ A\ (Y ∪ x) , NT ∗

y (R) ⊆ i and NB∗

y (R) ⊇ N\i. Since

(N\i, i) ∈ Cy for all y ∈ A, then Y ⊆ ϕ (R) . Since (i, N\i) /∈ Cy for all y ∈ A,

then ϕ (R) ∩ (A\ (Y ∪ x)) = ∅. Hence ϕ (R) = Y ∪ x or Y. Since (C1, C2) ∈ Cx,

Sonnenschein, and Zhou (1991, p.606). In the linear domain, the two notions coincide with

each other.
26Since there is no vetoer, then for all y ∈ A, both Cy and C∗\Cy are nonempty. So by

P-monotonicity, (N\i, i) ∈ Cy and (i,N\i) /∈ Cy, for all i ∈ N.
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ϕ (R) = Y ∪ x. Now let R′
i be such that x /∈ T ∗ (R′

i) . Then NT ∗

x (R′
i, R−i) = C1\i

and NB∗

x (R′
i, R−i) ⊇ NB∗

x (R) = C2. Since (C1, C2) is minimal, x /∈ ϕ (R′
i, R−i)

and so ϕ (R′
i, R−i) = Y. By strategy-proofness, [Y ∪ x] Ri Y. By Assumption D,

[Y ∪ x] Pi Y.

To prove the converse of (1), suppose x /∈ T ∗ (Ri) . Then NT ∗

x (R) = C1\i

and NB∗

x (R) = C2 or C2 ∪ i. Since (C1, C2) minimal, x /∈ ϕ (R) and ϕ (R) = Y.

Now let R′′
i be such that x ∈ T ∗ (R′′

i ) . Then ϕ (R′′
i , R−i) = Y ∪ x. Therefore, by

strategy-proofness, Y Ri [Y ∪ x] .

Next we show (2) in Fact 1. Suppose x ∈ B∗ (Ri) . For each j 6= i, let Rj be

such that

T ∗ (Rj) = Y ∪ x and B∗ (Rj) = A\ (Y ∪ x) , if j ∈ C0
1 ;

T ∗ (Rj) = Y and B∗ (Rj) = A\Y , if j ∈ C0
2 ;

T ∗ (Rj) = Y and B∗ (Rj) = A\ (Y ∪ x) , if j /∈ C0
1 ∪ C0

2 .

Note that
(

NT ∗

x (R) , NB∗

x (R)
)

= (C0
1 , C

0
2) ; for all y ∈ Y, NT ∗

y (R) ⊇ N\i and

NB∗

y (R) ⊆ i; for all y ∈ A\ (Y ∪ x) , NT ∗

y (R) ⊆ i and NB∗

y (R) ⊇ N\i. Then for

the same reason as above, ϕ (R) = Y ∪ x or Y. Since (C0
1 , C

0
2) /∈ Cx, ϕ (R) = Y.

Now let R#
i be such that x /∈ B∗(R#

i ). Then NT ∗

x (R#
i , R−i) ⊇ C0

1 and NB∗

x (R#
i , R−i) =

C0
2\i. Since (C0

1 , C
0
2) is maximal in C

∗\Cx, x ∈ ϕ(R#
i , R−i). Hence ϕ(R#

i , R−i) =

Y ∪ x. By strategy-proofness, Y Ri [Y ∪ x] . By Assumption D, Y Pi [Y ∪ x] .

To prove the converse of (2), suppose x /∈ B∗ (Ri) . Then (i) NT ∗

x (R) = C1 or

C1 ∪ i and (ii) NB∗

x (R) = C2\i. Since (C1, C2) maximal, x ∈ ϕ (R) and ϕ (R) =

Y ∪x. Now let R##
i be such that x ∈ B∗(R##

i ). Then ϕ(R##
i , R−i) = Y. Therefore,

by strategy-proofness, [Y ∪ x] Ri Y.

It follows from Theorem 1 and Proposition 5 that:

Theorem 3. The separable domain is the unique maximal domain, within rich

domains, over which every rule in Family Φ∗, without any vetoer or dummy, is

strategy-proof.

5 Concluding remarks

Our impossibility result, Theorem 2, relies on domain properties, Property P or

Property Q. There are various restricted subdomains that do not satisfy these

properties. Examples are the trichotomous domain SN
Tri and the dichotomous do-

main SN
Di defined in Example ??. Characterizations of strategy-proof and efficient

rules over these subdomains are established by Ju (2002c).
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Voting rules can be efficient at least over some subdomains, although not over

the entire separable domain. Since there are finite numbers of objects and agents,

every voting rule have possibly multiple maximal subdomains over which it is

efficient. It would be interesting to identify these maximal domains, particularly

for some standard rules such as “plurality rule” and “unanimity rule”.

Over the linear separable domain, it is shown by Barberà, Sonnenschein,

and Zhou (1991) that strategy-proofness and a slightly stronger version of voter

sovereignty imply “tops-only” property, which corresponds to votes-only property

in our preference domain. However, when non-linear preferences are admissible

also, this implication no longer holds. The following example shows this.

Example 9. Let ϕ be defined as follows. Fix a, b ∈ A. For all R ∈ D, if a P1 b,

then ϕ (R) ≡ A\B (R1) ; otherwise, ϕ (R) ≡ G (R1) . It is easy to show that

ϕ satisfies strategy-proofness and the notion of “voter sovereignty” in Barberà,

Sonnenschein, and Zhou (1991). Clearly, ϕ violates votes-only property since it

relies on the ordering between a and b. ¤

The above rule is dictatorial. However, using the similar idea in its definition,

we can also define non-dictatorial rules violating votes-only property.

Strategy-proofness pertains to the strategic misrepresentation of preferences

by a single agent. When agents can form coalitions and manipulate the out-

come jointly misrepresenting their preferences, we need a stronger requirement

to prevent such manipulation.

Coalitional strategy-proofness. For all R ∈ SN , all N ′ ⊆ N, and all R′
N ′ ∈

SN ′

, if ϕ(R′
N ′ , R−N ′) Pi ϕ(R) for some i ∈ N ′, then ϕ(R) Pj ϕ (R′

N ′ , R−N ′), for

some j ∈ N ′.

We refer readers to Moulin (1993) for a survey of literature on coalitional

strategy-proofness. When a rule in Family Φ∗ satisfies this requirement and the

full-range condition, coalitional strategy-proofness, applied to the grand coali-

tion N , implies efficiency. Thus, by Theorem 2, this rule is serially dictatorial.

However, serial dictatorship violates coalitional strategy-proofness. To prove this,

consider the serially dictatorial rule associated with permutation π. Let R be the

profile in which all objects other than a are null for all agents, a is a null for agent

π (1), a is a good for agent π (2) , and a is a bad for π (3) . Then a will be chosen

for R. But if π (1) and π (3) make a coalition and report jointly (R′
1, R3) such

that all objects except a are nulls for R′
1 and a is a bad for R′

1, then a will not be

chosen making π (3) better off, without making π (1) worse off. Therefore, there

is no coalitionally strategy-proof rule satisfying the full-range condition within
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Family Φ∗. Since any rule in Family Φ∗, satisfying voter sovereignty, satisfies the

full-range condition, we have the following result.

Corollary 4. If there are at least three agents, then there exists no voting rule

that satisfies coalitional strategy-proofness, null-independence, and voter sovereignty.

When there are only two agents, serially dictatorial rules in Family Φ∗ satisfy

all the three requirements. In the two agents case, since the grand coalition is

the only non-singleton coalition, it can be easily shown that the combination of

coalitional strategy-proofness and voter sovereignty is equivalent to the combina-

tion of strategy-proofness and efficiency. When there are at least three agents,

dropping voter sovereignty, we are left with only a small subfamily of Family Φ∗,

containing only the rules that either always select or never select each object,

possibly except, at most, one object (see Ju, 2002b, for more details).

A Proofs

Throughout this section, let D ∈ {SN ,SN
add}.

To prove Proposition 1, we show that the combination of monotonicity and

independence is equivalent to the following property. A rule ϕ is objectwise

monotonic if for all x ∈ A and all R, R′ ∈ D with NG
x (R) ⊆ NG

x (R′) and

NB
x (R) ⊇ NB

x (R′) , x ∈ ϕ(R) ⇒ x ∈ ϕ(R′) .27 We need the following lemma.

Lemma 1. For all R,R′ ∈ D and all x ∈ A, if NG
x (R) ⊆ NG

x (R′) and NB
x (R) ⊇

NB
x (R′), then there exists R̄ ∈ D such that R̄|{{x},?} ≡ R′|{{x},?} and for all i ∈ N,

G(R̄i) ⊇ G(Ri) and B(R̄i) ⊆ B(Ri).

Proof. Let R, R′ ∈ D and x ∈ A be such that NG
x (R) ⊆ NG

x (R′), NB
x (R) ⊇

NB
x (R′). Since NG

x (R) ⊆ NG
x (R′) and NB

x (R) ⊇ NB
x (R′), then N is partitioned

into the following five subsets, NG
x (R), NG

x (R′)\NG
x (R), NB

x (R′), NB
x (R)\(NB

x (R′)∪

NG
x (R′)), and N\(NG

x (R′) ∪ NB
x (R)).

For all i ∈ NG
x (R) ∪ NB

x (R′) ∪
[

N\(NG
x (R′) ∪ NB

x (R))
]

, let R̄i = Ri. By A2,

for all i ∈ NG
x (R′)\NG

x (R), there exists R̄i ∈ Di such that G(R̄i) ⊇ G(Ri) ∪ {x}

and B(R̄i) ⊆ B(Ri)\{x}. By A3, for all i ∈ NB
x (R)\(NB

x (R′) ∪ NG
x (R′)), there

exists R̄i ∈ Di such that G(R̄i) ⊇ G(Ri), B(R̄i) ⊆ B(Ri), and x /∈ G(R̄i)∪B(R̄i).

27Objectwise monotonicity is similar to “monotonicity” or “non-negative responsiveness” in

the classical voting model. See the “monotonicity” in Murakami (1966), the condition of “pos-

itive association” in Arrow (1964), and the “monotonicity” in Blau (1957). See also Aizerman

and Aleskerov (1986) and Aleskerov and Duggan (1993).
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Then clearly, for all i ∈ N, G(R̄i) ⊇ G(Ri), B(R̄i) ⊆ B(Ri), and R̄i|{{x},?} ≡

R′
i|{{x},?}.

Lemma 2. A rule satisfies monotonicity and independence if and only if it

satisfies objectwise monotonicity.

Proof. We only prove that both monotonicity and independence imply objectwise

monotonicity. We omit the remaining part.

Let ϕ : D → 2A satisfy monotonicity and independence. Let x ∈ A and

R,R′ ∈ D be such that NG
x (R) ⊆ NG

x (R′), NB
x (R) ⊇ NB

x (R′), and x ∈ ϕ(R).

By Lemma 1, there exists R̄ such that R̄|{{x},?} ≡ R′|{{x},?} and for all i ∈ N,

G(R̄i) ⊇ G(Ri) and B(R̄i) ⊆ B(Ri). Therefore by monotonicity, x ∈ ϕ(R) implies

x ∈ ϕ(R̄). Since R̄i|{{x},?} = R′
i|{{x},?}, then by independence, x ∈ ϕ(R′).

We next show that rules in Family Φ∗ are the only rules satisfying monotonic-

ity and independence.

Proof of Proposition 1. Clearly, every rule in Family Φ∗ satisfies monotonicity

and independence. Let ϕ satisfy the monotonicity and independence. Then by

Lemma 2, ϕ also satisfies objectwise monotonicity.

Let x ∈ A. Let Cx be defined as follows: (C1, C2) ∈ Cx if and only if C1∩C2 =

∅ and there exists R ∈ D such that NG
x (R) ⊆ C1, NB

x (R) ⊇ C2, and x ∈ ϕ(R).

Then by objectwise monotonicity, for each x ∈ A, Cx satisfies P-monotonicity.

Let ϕ̂ be the rule in Family Φ∗, associated with (Cx)x∈A. We only have to show

that ϕ = ϕ̂. Let R ∈ D. If x ∈ ϕ(R), then (NG
x (R), NB

x (R)) ∈ Cx. Therefore

x ∈ ϕ̂(R). Hence ϕ(R) ⊆ ϕ̂(R). Let x ∈ ϕ̂(R). Then (NG
x (R), NB

x (R)) ∈ Cx.

Therefore there exists R′ ∈ D such that NG
x (R′) ⊆ NG

x (R), NB
x (R′) ⊇ NB

x (R),

and x ∈ ϕ(R′). By objectwise monotonicity, x ∈ ϕ(R). Hence ϕ(R) ⊇ ϕ̂(R).

In order to prove Propositions 2 and 3, we use a sequence of lemmas similar

to those in the proof of Arrow’s Impossibility Theorem.28 Thus the following

notions of “decisiveness” are needed. Let ϕ be a rule. Let M ⊆ N and x ∈ A. A

group S ⊆ N\M is positively M -posterior -decisive for x, or simply, positively

M-decisive for x if for all R ∈ D with M ⊆ N\
(

NG
x (R) ∪ NB

x (R)
)

,

S ⊆ NG
x (R) ⇒ x ∈ ϕ(R) .

When M = ∅, we say S is positively decisive for x. A group S ⊆ N\M

is positively M-decisive if the group is positively L-decisive for all objects.

28Arrow (1964).
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When M = ∅, we say S is positively decisive. A group S ⊆ N\M is nega-

tively M-decisive for x if for all R ∈ D with M ⊆ N\
(

NG
x (R) ∪ NB

x (R)
)

,

S ⊆ NB
x (R) ⇒ x 6∈ ϕ(R) .

When M = ∅, we say S is negatively decisive for x. A group S ⊆ N\M

is negatively M-decisive if the group is negatively M -decisive for all objects.

When M = ∅, we say S is negatively decisive.

Moreover we also need to establish the following previous results, Lemmas 3-8.

We omit the proof of the first one since it is straightforward.

Lemma 3. Let ϕ be objectwise monotonic and x ∈ A. Let M ⊆ N. Assume

that there exists R ∈ D such that M ⊆ N\
(

NG
x (R) ∪ NB

x (R)
)

and NG
x (R) =

(N\M)\NB
x (R).

(i) If x ∈ ϕ(R), then NG
x (R) is positively M-decisive for x.

(ii) If x /∈ ϕ(R), then NB
x (R) is negatively M-decisive for x.

Lemma 4. Let M ⊆ N and N\M 6= ∅. Given an objectwise monotonic and

efficient rule, if a group is positively M-decisive for an object, then the group is

positively M-decisive.

Proof. We use Property P of the domain D. The same proof can be established

using Property Q instead. Let M ⊆ N and N\M 6= ∅. Let ϕ be objectwise

monotonic and efficient. Let S ⊆ N\M and x ∈ A. Assume that S is positively

M -decisive for x. Let y ∈ A\{x}. We only have to show that S is positively

M -decisive for y.

For all i ∈ S, by P1, there exists Ri ∈ Di such that

y Pi x Pi ∅,

for all z ∈ A\{x, y},

∅ Pi z.

For all j ∈ (N\M)\S, by P1, there exists Rj ∈ Dj such that

∅ Pj y Pj x,

for all z ∈ A\{x, y},

∅ Pj z.

For all m ∈ M, by P2, there exists Rm ∈ Dm such that

x Im y Im ∅,
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for all z ∈ A\{x, y},

∅ Pm z.

Then by efficiency, ϕ(R) ⊆ {x, y}. Since S is positively M -decisive for x, then

ϕ(R) = {x} or {x, y}. Since for all j ∈ N\M, {y} Pj {x}, for all m ∈ M,

{y} Im {x}, and N\M 6= ∅, then by efficiency, ϕ(R) = {x, y}. Since M ⊆

N\(NG
y (R) ∪ NB

y (R)), NG
y (R) = S and NB

y (R) = N\S, then, by Lemma 3, S is

positively M -decisive for y.

Lemma 5. Let M ⊆ N and N\M 6= ∅. Given an objectwise monotonic and

efficient rule, if a group containing more than two agents is positively M-decisive,

then the group contains a positively M-decisive proper subgroup.

Proof. We use Property P of the domain D. The same proof can be established

using Property Q instead. Let M ⊆ N and N\M 6= ∅. Let ϕ be objectwise

monotonic and efficient. Let S ⊆ N\M, |S| ≥ 2, and i ∈ S. Assume that S is

positively M -decisive. We show that either S\i or i is positively M -decisive. By

Lemma 4, we only have to show that there exists x ∈ A such that either S\i or i

is positively M -decisive for x ∈ A. Since |A| ≥ 3, there exist three objects, x, y, z,

in A.

By P1, there exists Ri ∈ Di such that:

y Pi {y, z} Pi x Pi ∅ Pi z,

for all w ∈ A\{x, y, z},

∅ Pi w.

For all j ∈ S\{i}, by P1, there exists Rj ∈ Dj such that:

z Pj {y, z} Pj x Pj ∅ Pj y,

for all w ∈ A\{x, y, z},

∅ Pj {w}.

For all h ∈ (N\M)\S, by P1, there exists Rh ∈ Dh such that:

∅ Ph {y},

∅ Ph {z},

∅ Ph {y, z} Pi {x},

for all w ∈ A\{x, y, z},

∅ Ph {w}.
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For all m ∈ M, by P2, there exists Rm ∈ Dm such that

{x} Im {y} Im {z} Im ∅,

for all w ∈ A\{x, y, z},

∅ Pm {w}.

Then by separability and efficiency, ϕ(R) ⊆ {x, y, z}. Since S is positively M -

decisive, then x ∈ ϕ(R). Since for all j ∈ N\M, {y, z} Pj {x}, for all m ∈ M,

{y, z} Im {x}, and N\M 6= ∅, then by efficiency, ϕ(R) ∩ {y, z} 6= ∅. Note

that M ⊆ N\(NG
y (R) ∪ NB

y (R)), NG
y (R) = {i}, NB

y (R) = (N\M)\{i}, M ⊆

N\(NG
z (R)∪NB

z (R)), NG
z (R) = S\{i}, and NB

z (R) = (N\M)\(S\{i}). Therefore

by Lemma 3, if y ∈ ϕ(R), then i is positively M -decisive for y and if z ∈ ϕ(R),

then S\{i} is positively M -decisive for z.

We next state two lemmas on negative decisiveness, corresponding to Lem-

mas 4 and 5. The proofs are similar to the previous proofs.

Lemma 6. Let M ⊆ N and N\M 6= ∅. Given an objectwise monotonic and

efficient rule, if a nonempty group is negatively M-decisive for an object, then the

group is negatively M-decisive.

Lemma 7. Let M ⊆ N and N\M 6= ∅. Given an objectwise monotonic and

efficient rule, if a group containing more than two agents is negatively M-decisive,

then the group contains a negatively M-decisive proper subgroup.

For all Ri ∈ Di and all Y ⊆ A, let G(Ri, Y ) ≡ G(Ri) ∩ Y and B(Ri, Y ) ≡

B(Ri) ∩ Y. We next state a useful property of a separable preference. The proof

is trivial.

Lemma 8. Let X and Y be disjoint subsets of A. Let R0 ∈ S. Then

T ∈ Max{R0, {X ∪ Z : Z ⊆ Y }} ⇔ X ∪ G(R0, Y ) ⊆ T ⊆ X ∪ (Y \B(R0, Y )) .

Lemma 9. If a rule is objectwise monotonic and efficient, then it is serially

dictatorial.

Proof. Let ϕ be objectwise monotonic and efficient.

Step 1. There exists a permutation π on N such that for all k ∈ {1, · · · , n},

π(k) is {π(1), · · · , π(k − 1)}-decisive.

Let M1 ≡ ∅. We first show that there exists an agent who is both positively

and negatively M1-decisive. By efficiency of ϕ, N is positively M1-decisive. By

Lemma 5, there exists a positively M1-decisive proper subgroup S of N. If S is
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singleton, then we are done. Otherwise we apply Lemma 5 to S. Since there are

finite number of agents, then iterating this argument, we can find an agent i ∈ N

who is positively M1-decisive. Using Lemma 7 and the same argument as above,

we show that there exists a negatively M1-decisive agent j ∈ N . If i 6= j, then

for all R ∈ D with a ∈ G(Ri) and a ∈ B(Rj), we have a ∈ ϕ(R) and a /∈ ϕ(R).

This is a contradiction. Therefore i = j.

Let i1 be M1-decisive. Now let M2 ≡ {i1}. If N\M2 is not empty, then by

efficiency, N\M2 is M2-decisive. Using the same argument as above, we show

that there exists i2 ∈ N\M2 who is M2-decisive. Let M3 ≡ {i1, i2}. Then if

N\M3 is not empty, then by efficiency, N\M3 is M3-decisive. Using the same

argument as above, we show that there exists i3 ∈ N\M3 who is M3-decisive.

Proceeding this way, we find (i1, i2, · · · , in) such that for all k ∈ {1, · · · , n}, ik
is Mk-decisive, where Mk ≡ {i1, · · · , ik−1}. Let π be the permutation on N such

that for all k ∈ N, π(k) ≡ ik. Then π satisfies the desired property.

Step 2. Let Xπ(1) ≡ ∅ and Yπ(1) ≡ A. For all k ∈ {2, · · · , n}, let

Xπ(k) ≡ Xπ(k−1) ∪ G(Rπ(k−1), Yπ(k−1)) and

Yπ(k) ≡ Yπ(k−1)\
[

G(Rπ(k−1), Yπ(k−1)) ∪ B(Rπ(k−1), Yπ(k−1))
]

.

Then for all k ∈ {1, · · · , n − 1}, Mk(R, π) = {Xπ(k+1) ∪ Z : Z ⊆ Yπ(k+1)}

Without loss of generality, we assume that π(1) = 1, · · · , π(n) = n. Clearly by

separability, M1(R, π) ≡ Max{R1, 2
A} = {G(R1, A)∪Z : Z ⊆ A\ [G(R1, A) ∪ B(R1, A)]}.

Therefore the result holds for k = 1. Suppose by induction that the result holds

for k = m, where m ∈ {1, · · · , n−2}. By definition, Mm(R, π) ≡ Max{Rm,Mm−1(R, π)}.

Since by the induction hypothesis, Mm−1(R, π) = {Xm ∪ Z : Z ⊆ Ym}, then by

Lemma 8, Mm(R, π) = {Xm∪G(Rm, Ym)∪Z : Z ⊆ Ym\ [G(Rm, Ym) ∪ B(Rm, Ym)] .

Hence Mm(R, π) = {Xm+1 ∪ Z : Z ⊆ Ym+1}.

Step 3. The rule ϕ is serially dictatorial with respect to π.

Without loss of generality, we assume that π(1) = 1, · · · , π(n) = n. By Step 2

and Lemma 8, we only have to show that for all k ∈ N,

Xk ∪ G(Rk, Yk) ⊆ ϕ(R) ⊆ Xk ∪ (Yk\B(Rk, Yk)). (3)

Since agent 1 is decisive, G(R1) ⊆ ϕ(R) ⊆ A\B(R1). Hence (3) holds for k =

1. Suppose by induction that (3) holds for k ∈ {2, · · · , n − 1}. We first show

Xk+1 ∪ G(Rk+1, Yk+1) ⊆ ϕ(R). Let x ∈ Xk+1 ∪ G(Rk+1, Yk+1). If x ∈ Xk+1,

then x ∈ Xk ∪ G(Rk, Yk) and so by the induction hypothesis, x ∈ ϕ(R). Let

x ∈ G(Rk+1, Yk+1)\Xk+1. Since x ∈ Yk+1, then for all i ≤ k, {x} Ii ∅. Since k + 1

is {1, · · · , k}-decisive, x ∈ ϕ(R). Therefore Xk+1 ∪ G(Rk+1, Yk+1) ⊆ ϕ(R).
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Next we show ϕ(R) ⊆ Xk+1∪(Yk+1\B(Rk+1, Yk+1)). Suppose by contradiction

that x /∈ Xk+1 ∪ (Yk+1\B(Rk+1, Yk+1)). Then x /∈ Xk+1. And x /∈ Yk+1 or x ∈

B(Rk+1, Yk+1). In order to show x /∈ ϕ(R), we divide two cases.

Case 1. x /∈ Xk+1 and x /∈ Yk+1. Since x /∈ Xk+1, then for all i ∈ {1, · · · , k},

x /∈ G(Ri, Yi). Since x /∈ Yk+1, x ∈ ∪k
i=1 [G(Ri, Yi) ∪ B(Ri, Yi)] . Therefore there

exists i∗ ∈ {1, · · · , k} such that x ∈ B(Ri∗ , Yi∗) and for all i < i∗, x /∈ G(Ri, Yi)∪

B(Ri, Yi). Clearly x ∈ Yi∗ . Since Y1 ⊇ Y2 ⊇ · · · ⊇ Yn, then for all i < i∗,

x ∈ Yi. Therefore for all i < i∗, {x} Ii ∅. Since i∗ is {1, · · · , i∗ − 1}-decisive and

x ∈ B(Ri∗ , Yi∗), then x /∈ ϕ(R).

Case 2. x /∈ Xk+1 and x ∈ B(Rk+1, Yk+1). Since x ∈ Yk+1, then for all

i ≤ k, {x} Ii ∅. Since k + 1 is {1, · · · , k}-decisive and x ∈ B(Rk+1, Yk+1), then

x /∈ ϕ(R).

Proof of Proposition 2. By Lemma 2, every monotonic and independent rule is

objectwise monotonic. Therefore it follows directly from Proposition 1 and Lemma 9,

that if a rule satisfies the two axioms and efficiency, then it is a serially dictatorial

rule in Family Φ∗.

Note that the proofs of Lemmas 4-7 are carried out in such a way that when

M ≡ ∅, they are valid replacing efficiency with weak efficiency. Therefore, using

Lemmas 4-7 and the argument in the first part (four paragraphs) of Step 1 in

Proof of Lemma 9, we show that if a rule is objectwise monotonic and weakly

efficient, then there exists a decisive agent.

Lemma 10. If a rule is objectwise monotonic and weakly efficient, then there

exists i ∈ N such that for all R ∈ D, G(Ri) ⊆ ϕ(R) ⊆ A\B(Ri).

Proof of Proposition 3. The proof of Proposition 3 follows directly from Propo-

sition 1 and Lemma 10.

To prove Proposition 4 and therefore Theorems 1 and 2, we need the following

four lemmas.

Lemma 11. Let ϕ be a strategy-proof voting rule. Let R ∈ D, i ∈ N, and

x ∈ A. Then if x ∈ ϕ(R), then for all R′
i ∈ Di with x ∈ G(R′

i), x ∈ ϕ(R′
i, R−i).

29

Proof. Let ϕ satisfy strategy-proofness and votes-only property. Let i ∈ N and

x ∈ A. Let R ∈ D and R′
i ∈ Di be such that x ∈ ϕ(R) and x ∈ G(R′

i). By

R1, there exists R∗
i ∈ Di be such that (G(R∗

i ), B(R∗
i )) ≡ (G(R′

i), B(R′
i)) and for

29Lemmas 11 and 12 are similar to the arguments used by Barberà, Sonnenschein, and

Zhou (1991) in their proof of Lemma 1.
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all X,X ′ ⊆ A\{x}, X ∪ {x} P ∗
i X ′.Then by votes-only property, ϕ(R∗

i , R−i) =

ϕ(R′
i, R−i). By strategy-proofness, x ∈ ϕ(R∗

i , R−i). Therefore x ∈ ϕ(R′
i, R−i).

Lemma 12. Let ϕ be a strategy-proof voting rule. Let R ∈ D, i ∈ N, and

x ∈ A. Then if x 6∈ ϕ(R), then for all R′
i ∈ Di with x ∈ B(R′

i), x 6∈ ϕ(R′
i, R−i).

Proof. Let ϕ satisfy strategy-proofness and votes-only property. Let i ∈ N and

x ∈ A. Let R ∈ D and R′
i ∈ Di be such that x 6∈ ϕ(R) and x ∈ B(R′

i). By R2,

there exists R∗
i ∈ Di be such that (G(R∗

i ), B(R∗
i )) ≡ (G(R′

i), B(R′
i)) and for all

X ⊆ A\{x}, X P ∗
i X∪{x}.Then by votes-only property, ϕ(R∗

i , R−i) = ϕ(R′
i, R−i).

By strategy-proofness, x 6∈ ϕ(R∗
i , R−i). Therefore x 6∈ ϕ(R′

i, R−i).

Using Lemmas 11 and 12, we can establish Lemmas 13 and 14 which are

crucial to prove Proposition 4.

Lemma 13. Every voting rule satisfying strategy-proofness and null-independence

satisfies monotonicity.

Proof. Let ϕ satisfy strategy-proofness, votes-only property, and null-independence.

Let R,R′ ∈ D be such that for all i ∈ N, G(Ri) ⊆ G(R′
i) and B(Ri) ⊇ B(R′

i).

Let x ∈ ϕ(R). Then if x ∈ G(R1), then since x ∈ G(R′
1), by Lemma 11, we

have x ∈ ϕ(R′
1, R−1). If x ∈ B(R1), then by Lemma 12, x ∈ ϕ(R′

1, R−1). If

x /∈ G(R1) ∪ B(R1), then there are two cases: x ∈ G(R′
1) or x /∈ G(R′

1) ∪ B(R′
1).

In the first case, by Lemma 11, x ∈ ϕ(R′
1, R−1). In the second case, by null-

independence, x ∈ ϕ(R′
1, R−1). Therefore, ϕ(R) ⊆ ϕ(R′

1, R−1). Applying the

same argument, successively changing preferences of agents, we can show that

ϕ(R) ⊆ ϕ(R′).

Lemma 14. Every voting rule satisfying strategy-proofness and null-independence

satisfies independence.

Proof. Let ϕ satisfy strategy-proofness, votes-only property, and null-independence.

Let R, R′ ∈ D be such that R|{{x},?} ≡ R′|{{x},?}}. We only have to show that

x ∈ ϕ(R) ⇒ x ∈ ϕ(R′). Let S1 ≡ NG
x (R)(= NG

x (R′)), S2 ≡ NB
x (R)(= NB

x (R′)),

and S3 ≡ N\ (S1 ∪ S2) . For all i ∈ S1, by Lemma 11, x ∈ ϕ(R′
i, R−i). If we apply

the same argument, changing preferences of agents in S1 successively, then we

obtain x ∈ ϕ(R′
S1

, R−S1
). Let R̄ ≡ (R′

S1
, R−S1

). For all i ∈ S2, by Lemma 12,

x ∈ ϕ(R′
i, R̄−i). If we apply the same argument, changing preferences of agents

in S2 successively, then we obtain x ∈ ϕ(R′
S2

, R̄−S2
). Let R̂ ≡ (R′

S2
, R̄−S2

).

For all i ∈ S3, by null-independence, x ∈ ϕ(R′
i, R̂−i). If we apply the same
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argument, changing preferences of agents in S3 successively, then we obtain

x ∈ ϕ(R′
S3

, R̂−S3
). Therefore, since (R′

S3
, R̂−S3

) = R′, x ∈ ϕ(R′).

Proof of Proposition 4. By Lemmas 13 and 14, strategy-proofness and null-independence

imply monotonicity and independence. The converse also holds, since every mono-

tonic and independent rule is in Family Φ∗ and so satisfies strategy-proofness and

null-independence.
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