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A Characterization of Superlinear Convergence and Its
Application to Quasi-Newton Methods*

By J. E. Dennis, Jr. and Jorge J. Moré

Abstract. Let F be a mapping from real «-dimensional Euclidean space into itself. Most
practical algorithms for finding a zero of F are of the form

xk+x = xk - Bk^Fxk,

where {Bk\ is a sequence of nonsingular matrices. The main result of this paper is a
characterization theorem for the superlinear convergence to a zero of F of sequences of the
above form. This result is then used to give a unified treatment of the results on the super-
linear convergence of the Davidon-Fletcher-Powell method obtained by Powell for the case
in which exact line searches are used, and by Broyden, Dennis, and Moré for the case
without line searches. As a by-product, several results on the asymptotic behavior of the
sequence \Bk) are obtained.

An interesting aspect of these results is that superlinear convergence is obtained without
any consistency conditions; i.e., without requiring that the sequence \Bk\ converge to the
Jacobian matrix of F at the zero. In fact, a modification of an example due to Powell shows
that most of the known quasi-Newton methods are not, in general, consistent. Finally, it is
pointed out that the above-mentioned characterization theorem applies to other single and
double rank quasi-Newton methods, and that the results of this paper can be used to obtain
their superlinear convergence.

1. Introduction.   This paper will be concerned with iterations of the form

(1.1) xk+x = xk — BklFxk,       k = 0, 1, ••• ,

for the solution of Fx = 0, where F: Rn —* Rn is a mapping of Euclidean «-space Rn
into itself. Each nonsingular matrix Bk is directly or indirectly (as in various quasi-
Newton methods) intended to approximate F'ixk), the Jacobian matrix of F at xk.
Virtually all practical methods for generating a sequence \xk\ of approximate zeros
of F have the basic form (1.1) although they are often implemented in their damped
version,

(1.2) xk+x = xk — \kBk1Fxk,       k «■ 0, 1, • • • ,

where \k is a scalar chosen to prevent divergence of the sequence {xk}. Even in this
case, the hope is always that \k = 1 will suffice near x*, a zero of F.

No matter which of (1.1) or (1.2) is used to generate \xk}, the utility of the method
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is in large part dependent on the speed with which \xk\ converges to x*. In order
to be practical, a method should be at least ß-linear (for material on rates of con-
vergence see [7, Chapter 9]) when F satisfies reasonable hypotheses and {xk} converges
to x*; i.e., for some r £ (0, 1), \\xk+x - x*\\ ^ r \\xk - x*\\, k = 0, 1, • • • . Further-
more, if the method is to be competitive then it should in fact be ß-superlinear, i.e.,
{||xjfc+1 — **ll/ll** — x*\\\ converges to zero with *. Higher orders of convergence
are desirable when obtainable without unreasonable additional computations al-
though for general problems, orders higher than two are of minimal importance.

The standard technique for proving that a method is ß-superlinear has always
been to show that as \xk] converges to x*, {Bk\ converges to F'ix*). It is well known
that this consistency condition is sufficient but not necessary. (See Voigt [11] for a
compendium of interesting theorems and examples.) Since, until recently, all the
practical methods for which there were published proofs of ß-superlinearity satisfied
this property, it seemed to be effectively necessary.

Recently, M. J. D. Powell [8] proved that the Davidon-Fletcher-Powell method
is ß-superlinear when implemented in the form (1.2) with \k chosen by the standard
line minimization criterion. On the other hand, Broyden, Dennis and Moré [2]
showed that many of the most important quasi-Newton methods are ß-superlinear
when implemented in the form (1.1). Powell [9] has also furnished an example which
shows that the celebrated Davidon-Fletcher-Powell method is indeed a practical
ß-superlinear method which does not have the property that \Bk\ converges to
F'ix*). When properly modified, this example shows that most of the known quasi-
Newton methods are not, in general, consistent. In this paper, a quasi-Newton
method refers to an algorithm of the form (1.1) or (1.2) where Bk+X is obtained by
adding a matrix of rank at most two to Bk. For example, all the algorithms in the
Huang [5] class are quasi-Newton methods, but the Goldstein-Price [4] algorithm
is not a quasi-Newton method.

Although the Powell and Broyden, Dennis, Moré convergence proofs are quite
distinct, the parts of both papers which deal with ß-superlinearity turn out to be
based on the same principle. The main purpose of this paper is to enunciate that
principle and some of its consequences.

In the next section, we prove a characterization theorem for ß-superlinear con-
vergence to a zero of F which applies to sequences generated by either (1.1) or (1.2).
We also obtain a simple, but apparently new, justification for using \\xk+x — xk\\
as an estimate for \\xk — x*\\.

In Section 3, we apply our results to the Davidon-Fletcher-Powell method and
show how the superlinear results of Powell and those of Broyden, Dennis and Moré
can be obtained, while in Section 4 we indicate how these results can be applied to
other quasi-Newton methods and we give Powell's example. We conclude with
some general remarks. In particular, we compare our results to those obtained by
McCormick and Ritter [6], and Ritter [10].

2. Characterization of Superlinear Convergence. Let |||| denote an arbi-
trary vector norm in R" or the operator norm it induces in LiR")—the space of real
matrices of order n. Now recall [7, Chapter 9] that if {xk} C Rn converges to x*,
then {xk\ converges ß-superlinearly to x* if and only if either xk = x* for all suffi-
ciently large * or xk 9± x* for k 7z kQ and
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lim  ||jft+1 -x*||/||** - **|| = 0.

In this paper, when we assume that {xk} converges to x*, we will also make the un-
stated assumption that xk ^ x* for all sufficiently large k. In the context of (1.1),
this simply means xk¥X ̂  xk for any * ^ 0 and is thus quite reasonable.

With these preliminaries out of the way, it is possible to proceed with the stated
purpose of this section, the development of a characterization theorem for methods
of the form (1.1) which are ß-superlinearly convergent. We begin with a result that
gives a necessary condition for an arbitrary sequence.

Lemma 2.1.   Let \xh) C Rn converge Q-superlinearly to x*. Then

(2.1) lim 11**+, - Xk\\/\\xk - x*\\ = 1.

Proof.   Just note that

\Xk + x       xk\ I _  I \xk       x   I l**+l

The converse does not hold. For example, if x2k-x = (*!)_1 and x2k = 2x2*_i
for * ^ 1, then this sequence satisfies (2.1) with x* = 0, but does not converge Q-
superlinearly to zero.

Lemma 2.1 justifies the very commonly used computational technique of esti-
mating llx* — x*\\ with \\xk+x — xk\\, if the underlying method is ß-superlinear.

To obtain a characterization of ß-superlinear convergence for (1.1), we will
assume that F is defined and (Gateaux) differentiable in an open, convex set D;
that is, its Jacobian matrix F'ix) satisfies

,.     Fjx + th) - Fjx)hm- = F''x)h
(-.0 t

for each x in D and h in 7?". See, for example, [7, Chapter 3]. This facilitates the
proofs but the existence of F'ix) is all that is really needed.

Theorem 2.2. Let F: R" —> Rn be differentiable in the open, convex set D in R",
and assume that for some x* in D F' is continuous at x* and F'ix*) is nonsingular.
Let {Bk} in L{R") be a sequence of nonsingular matrices and suppose that for some x0
in D the sequence {xk} where

(2.2) xk+x = xk — Bk Fxk

remains in D and converges to x*. Then \xk\ converges Q-superlinearly to x* and
Fx* = 0 if and only if

(2.3) lim  l|[fll~ f'(**)](**+' -*»>H = o.
*-+oo 11** + ! Xk\\

Proof.   Assume first that (2.3) holds. Since

(2 4) lB" ~ F'(**)X**+i - *») - -«ft'- ^'(**X**+i - Xk)

= Fxk+X — Fxk — F'ix*)ixk+X — xk) — Fxk+X,

the continuity of F' at x* and (2.3) imply that

(2.5) lim \\Fxk+x\\/\\xk+x - xk\\ - 0.
Jfc-t+oo
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Hence, Fx* = 0, and since F\x*) is nonsingular, there is a ß > 0 such that

Unbill = II»!»*! - F**\\ ̂ 0||*»+i - **H,
and, therefore,

I IF*»*, 11      ^ ß\\xM-x*\\ _        Pk
\\xk + x  - Xk\\   =   ||**+1   - X*\\  +  \\Xk - x*\\ Pl  + pk

where pk = ||xi+1 — jc*||/||jc* — x*\\. Thus, (2.5) implies that p*/(l + pk) converges
to zero and hence {pk} also converges to zero as desired.

Conversely, assume that {x*} converges ß-superlinearly to x* and Fx* = 0.
Since

||F*»+.||      _  \\Fxk+l - Fx*\\    \\xk - x*\\
||*»+i — **|| \\Xk - **||        ||**+i — *»|| '

Lemma 2.1 and the hypotheses on F' imply that (2.5) holds. It then follows from
(2.4) that condition (2.3) is satisfied.

In some cases, it is very easy to verify that (2.3) holds. For example, in a Newton
or discretized Newton method, {Bk\ converges to F'(x*) and hence (2.3) holds.
We will later show that (2.3) also holds for many quasi-Newton methods, even though
in this case {Bk} does not necessarily converge to F'(x*) (see Section 4).

The Newton, discretized Newton, and quasi-Newton methods are sometimes
implemented in the form (1.2) where the sequence {X*| is chosen so as to enlarge
the domain of convergence. The next result shows that this sequence will still be
ß-superlinear if and only if {X*j converges to unity.

Corollary 2.3. Let F: R" —» R" satisfy the hypotheses of Theorem 2.2 on the
set D. Let {Bk\ be a sequence of nonsingular matrices, and suppose that for some x0
in D the sequence \xk\ generated by (1.2) remains in D and converges to x*. If (2.3)
holds, then {xk\ converges Q-superlinearly to x* where Fx* = 0 if and only if {\k\
converges to unity.

Proof. Assume that \xk) converges ß-superlinearly to x* and Fx* = 0. By
Theorem 2.2, we must have

(2.6) lim HE*'**- F'(**>K*»+' -*»>N « o,
*-•+■» ||**+i       xk\ |

and therefore (2.3) implies that

um no:1 - i)Bkixk+x - **)! 1/11*^1 - *»ii - o.
Jfc-7+tO

But Bkixk+X — xk) = — \kFxk, so that

lim |¡(A* - l)F*»||/||*»+l -*»|| - 0.
*-7+CO

Now F'(x*) is nonsingular, and thus there is a ß > 0 such that ||Fx*|| ^ ß\\xk — x*\\.
Therefore, Lemma 2.1 implies that j X*} must converge to unity.

Conversely, if {X*} converges to unity, it is clear from (2.3) that (2.6) holds.
Hence, Theorem 2.2 guarantees that the sequence given by (1.2) converges ß-super-
linearly to x* where Fx* = 0.

If (2.3) holds, Corollary 2.3 explains why techniques for finding { X*} must even-
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tually produce values close to unity if there is to be ß-superlinear convergence to
a zero of F. For example, in the often-quoted technique of Goldstein and Price [4]
for discretized Newton methods, X* = 1 for all large k. Corollary 2.3 then explains
why they were able to obtain ß-superlinear convergence. Later on, we will prove
that a number of quasi-Newton methods also satisfy (2.3) so that the above remarks
also apply to these methods.

Finally, note that the results of this section can be used to prove that certain
methods of the form (2.2) are not ß-superlinearly convergent to a zero of F. For
example, in the "reset" methods, one sets Bki = B for some fixed nonsingular matrix,
and some subsequence {fc,}. If {xk} converges ß-superlinearly to a zero of F, then
Theorem 2.2 implies that (2.3) holds, and thus Bs = F'(x*)s for some vector s with
||s|| = 1. In particular, 1 is an eigenvalue of B~1F'(x*). This indicates that unless B
is chosen with great care, resetting will prevent ß-superlinear convergence to a zero
ofF.

3. Superlinear Convergence of the Davidon-Fletcher-Powell Method. For a
mapping F: Rn —» R", the Davidon-Fletcher-Powell method is defined by

(3.1) xk+x = xk      \kHkFxk

where

(3.2) Hk+X = Hk + sksTk/sTkyk — HkykyTkHk/yTkHkyk,

and

(3.3) sk = xk+x — xk,        yk =  Fxk+X — Fxk.

There are two results which guarantee that the Davidon-Fletcher-Powell method
is ß-superlinearly convergent. The first result is due to Powell [8]; he assumes that
(a) F is the gradient of a uniformly convex functional /: R" —► R1, (b) X* is chosen
so that

fixk — \kpk) = minf/fo — \pk): X j£ 0}

where pk = HkVfixk), and (c) F is a continuously differentiable mapping on Rn
which satisfies the one-sided Lipschitz condition

\\F'ix)- F'ix*)\\ g £||*-**||

in the level set {x: jix) ^ /(xo)i- Here, x* is the unique solution of Fx = 0. Under
these hypotheses, Powell proved that for any x0 in R" and any symmetric, positive
definite H0, the Davidon-Fletcher-Powell method is ß-superlinearly convergent to x*.

On the other hand, Broyden, Dennis, and Moré [2] assumed that (a) F: R" —> Rn
is differentiable in an open convex neighborhood D of a point x* for which Fx* = 0
and F\x*) is symmetric and positive definite, and that (b) F' satisfies the one-sided
Lipschitz condition

(3.4) ||F'(*) - F'(**)|| g  K\\x - x*\\p

for some p > 0 and all x in D. With these hypotheses, they proved that if (x0, Ha)
is sufficiently close to (x*, F'ix*)'1), then the Davidon-Fletcher-Powell method with
X* = 1 for all * is ß-superlinearly convergent to x*.
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These two convergence results are really more complementary than comparable
and their proofs are quite distinct. We will show now that the results of Section 2
not only give a unified treatment of both rate of convergence proofs, but lead to the
conclusion that Powell's minimizing j X*} converges to 1.

It is well known that if Hk+i is defined from 77*, 5* and yk by (3.2) and if 77* ~ ' = Bk
exists, then, as long as ykTsk 9e 0, Hki.x~l is defined by

„ _    ,   (j>* — Bksk)yk + ykjyk - Bkskf
¡>k+X   —   tik   T r

(3.5) '-*
_ sTkJyk — Bksk)ykyTk

iylskf
Note that {Bk\ is defined provided the sequences [yk] and {sk} satisfy ykTsk j¿ 0.
We assume that \yk\ and \sk\ are generated by (3.3), but, for the moment, we will
leave \xk\ unspecified.

We now plan to investigate the behavior of the sequence \Bk\ generated by (3.5).
For this, first recall that for A G I\\Rn) the Frobenius norm is defined by

\\a\\\= Y k,l2.
We also need the following special case of a result of Broyden, Dennis, and Moré [2].

Lemma 3.1.   Let M G L(Rn) be a nonsingular symmetric matrix such that

(3.6) \\My - M~ls\\ g ß\\M'ls\\

for some ß G [0, |] and vectors y and s in R" with s ^ 0. Then yTs > 0 and thus B G
L(Rn) can be defined by

(y - Bs)yT + yjy - Bsf      sTiy - Bs)yyTB = B +
y s iy s)

where B G L{Rn) is symmetric. Moreover, if \\-\\M is the matrix norm defined by

(3.7) HßlU =  \\MQM\\F,
then there are positive constants a, ax and a2 idepending only on M and n) such that,
for any symmetric A G LiRn),

\\B - A\\M Z HI - ad2)1'2 + ax\\My - àT^U/WËT^W] \\B - A\\M
+ a2\\y -  ¿iH/HAf-'jII

where a G (0, 1], and

6 =  \\M[B - A]s\\/i\\B - A\\M \\M-ls\\),    for B * A,

with 6 = 0 otherwise.
In [2] a more general result was given, but only for the case when 11 • 11 was the

¡2 norm and B ^ A. Those restrictions are unnecessary in the present case. Note
that this lemma needs only a way of choosing M in order to be applicable to {Bk}.
In the following lemma, we show that if F'ix*) is symmetric and positive definite,
then M can be taken to be the symmetric, positive definite, square root of F'ix*)'1,
i.e., F'ix*)'1/2. It is interesting to note that we do not assume {xk} is generated by
(3.1) or that {Hk} exists or even that Fix*) = 0.
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Lemma 3.2. Let F: R" —» Rn be differentiable in an open, convex neighborhood
D of a point x* for which F\x*) is symmetric and positive definite, and suppose that
F satisfies the Lipschitz condition (3.4) in a neighborhood of x*. If for some sequence
{xk} C D which converges to x*, we define \sk) and {yk} by (3.3), then ykTsk > Ofor
k ^ k0. Moreover, for any symmetric Bko G L{Rn) the sequence \Bk\ is well defined
by (3.5) for k ^ k0, and there are positive constants a, a3, and a, such that

(3.8) \\Bk+x - F'ix*)\\M g [(1 - adt)l/2 + a3trk] \\Bk - F'(x*)\\„ + a4er*,

where <sk = maxj||x*+i — x*\\v, \\xk — x*||"}. Here a G (0, 1], ||-|U is defined by
(3.7) with M = F'ix*Tl/2, and

e_HMfA - F'jx*)]sk\\
6k~ \\Bk- F'ix*)\\M\\M-\\\>    1°rB**Ftx">>

and 0* = 0 otherwise.
Proof. For M = F'(x*)'1/2, we have \\Myk - M_15*|| ^ \\M\\ \\yk - F'(x*)sk\\,

and it is not difficult (e.g. Lemma 3.1 in [2]) to verify that if (3.4) holds then

|b* - F'(**)5*|| ^  Kmax{\\xk+X - x*\\\ \\xk - x*\n\\sk\\.

Hence, (3.6) is satisfied if k0 is taken so that K\\M\\ \\xk — x*\\p ^ \ for k ^ k0.
The result now follows from Lemma 3.1.

Our next task is to deduce properties of \Bk\ from (3.8). The following result is
applicable if we assume that

oo

(3.9) En**-**ir<+»■
k-X

Lemma 3.3.   Let {<pk\ and [bk\ be sequences of nonnegative numbers such that

(3.10) <t>k+x g (1 + c5*>p* + 5*

and
co

(3.11) Y Sk < +°°.*-i
Then {<pk} converges.

Proof.   We first show that {<pk} is bounded (above). Let

» - n o + so.¿-i
Then pk ^ 1» and (3.11) implies that pk ^ p. for some constant p. But (3.10) yields

<P*+i/m*+i  ^ 4>k/Hk + Sk/p-k + x ^ <t>k/p-k + ok,

and therefore
m

«kn+iAu + i ^ 4>i/Mi +  Y Sk,
k-X

which in view of (3.11) and the boundedness of {p,k} implies that {<t>k\ is bounded.
Since {e£*} is bounded, it certainly has at least one limit point. Suppose there are

subsequences {<pkn\, {<t>km} which converge respectively to limit points <p' and <t>".
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We will show that 4>' g <p" and by symmetry <p" i£ <p'. Thus <p" = <p' and consequently
{<pk\ converges.

Let <t> bound  \<pk\. It follows from (3.10) that if ka ^ km then <pk% — <pkm g
(1 + <t>) Y%km Si. Thus, by the choice of {kj,

<t>' - </>*„ á (1 + <p) Y Si
i-km

and by the choice of {km\, </>' — <p" g 0. This completes the proof.
Theorem 3.4.   Assume that F: R" —► R" satisfies the hypotheses of Lemma 3.2

on the set D and let \xk] be a sequence in D which satisfies (3.9). Then there is a positive
integer k0 such that for any symmetric i?*„ G ¡AR") the sequences {sk},  \yk)  and
\Bk) are well defined for k ^ k0 by (3.3) and (3.5). Furthermore,

(i) linw \\F'ix*yU2BkF'ix*)'U2 - I\\F exists, and
(ii) linw(||[5* - F'(x*)]s*||/|!s*||) = 0.
Proof. Statement (i) follows directly from Lemmas 3.2 and 3.3. To prove state-

ment (ii), note that since (1 — adk2)l/2 g 1 — (a/2)ö*2, Eq. (3.8) can be written as

ia$2k/2) \\Bk - F'ix*)\\M ^  \\Bk- F'ix*)\\M - \\Bk+x - F'ix*)\\M

+ <r*[a3 \\Bk - F'ix*)\\M + a.],

and therefore summing both sides,
co

(a/2) Y ti \\Bk - F'ix*)\\M < +00.
*»i

If some subsequence of {\\Bk — F'(x*)\\M\ converges to zero, then (i) implies that
the whole sequence converges to zero and thus (ii) is trivially satisfied. Otherwise,
{\\Bk — F'(x*)||,„J is bounded away from zero, and the last equation implies that
{6k} converges to zero. Statement (ii) follows.

Note that Theorem 3.4 holds regardless of how the sequence {xk\ is generated
provided (3.9) is satisfied. For example, suppose the sequence is generated by xk+x =
xk — \kBk~1Fxk where {X*} is any sequence with |X* — 1| ^ X < 1 for k ^ 0 and
{Bk\ is generated by (3.5). Then, using the techniques of [2] and inequality (3.8),
it is not difficult to show that if Fx* = 0 then there is a constant r G (0, 1) with

\\xk+x - x*\\ g r\\xk - x*\\

provided (x0, B0) is close enough to (x*, F'ix*)). Hence, (3.9) is satisfied and if
{ X*J converges to unity, (ii) above implies that

lim i\\(\:lBk - F'(oí*)]it||/||í4||) = 0.
*-.+ =

Thus, Lemma 2.2 implies that {xk} is ß-superlinearly convergent. For X* = 1, this
reduces to a result of Broyden, Dennis, and Moré [2].

We now would like to show that Theorem 3.4 also yields the superlinear con-
vergence of the version of the Davidon-Fletcher-Powell algorithm considered by
Powell [8]. As mentioned at the beginning of this section, Powell chooses X* via
exact line minimization so that

Vfixk+x)Tsk = 0.
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Theorem 3.5. Let F: Rn —* Rn be differentiable in the open, convex set D in Rn,
and assume that for some x* in D, F'ix*) is nonsingular, and F' is continuous at x*.
Let the sequence [xk] be defined by

xk+x = xk      X*7J*  Fxk,

where the nonsingular matrix Bk and scalar X* are such that Fxk+xTsk = 0, and suppose
that {xk\ lies in D and converges to x*. If

lim  11[73* - F'ix*)]sk\\/\\sk\\ = 0,
Jfe-»+a>

then {X*} converges to unity, Fx* = 0 and jx*( converges Q-superlinearly to x*.
Proof.   Define, for v, w G R",

(v, w) = (F'ix*ylvfw

so that by the mean value theorem

0 = (FXfc+i, sk) = (Fxk, sk) + (F'ixk + tksk)sk, i*)

where \tk\ < 1. Hence,

(F'ixk + tksk)sk, sk) = —(Fxh, sk) = X*"'(5*s*, s*).

Therefore,

(X* - 1) (F'ix*ysk, sk) = \k([F'ix*) - F'ixk + tksk)]sk,sk)

+ ([Bk - F'ix*)]sk, sk).

Using the definition of ( • , • ), the above equation can be written as

(3.12) X* - 1 = X*a* + ßk

where

1**1 =  WF'ix*) - F'ixk + tksk)\\ HF'Oc*)-1!!,
and

i^i^l|[gt~/;^"-iiF(x*)-ii.
11**11

It follows that {a*} and \ßk] converge to zero, and thus (3.12) implies that {X*}
converges to unity as desired. The ß-superlinear convergence of [xk] to x* where
Fx* = 0 follows from Corollary 2.3.

Theorems 3.4 and 3.5 guarantee the ß-superlinear convergence of the Davidon-
Fletcher-Powell method to a local minimum if X* is chosen by an exact line search,
and the sequence {xk} converges to x* in such a way that (3.9) is satisfied. For ex-
ample, under the conditions on F mentioned at the beginning of this section, Powell
[8, Theorem 2] proved that there is a p < 1 such that \\xk — x*\\ ^ ypk for some
constant rj > 0 and all k. Hence, (3.9) holds, and we obtain an independent proof
of Powell's result of ß-superlinear convergence.

Note, however, that ß-superlinear convergence to a zero of F is also assured if
{X*} is any sequence which converges to unity and makes (3.9) hold. Therefore,
a good choice of {X*J would give us (3.9) while minimizing function evaluations;
exact line minimization is an expensive way to do this.
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4. Extensions. The results of the previous section do not hold only for the
Davidon-Fletcher-Powell method. In particular, the all-important (ii) of Theorem
3.4 holds for the following updates:

l> _    D    _L  (J'*   -   BkSk)s¡
t>k+X   —    "k   "I-f 7

SkSk

d      -  d   _l ly* ~ Bksk)yk
Ok + X   —   *>k   "1 f .

ykSk

d      -  d   _l (>* ~ BjSttâ + skjyk — Bkskf
"k+X   —   ¡Sk   i-J,

SkSk

_ s\jyk — Bksk)sksk

isTkSk)2

Only in the third update is it necessary to take B0 symmetric. To verify that these
updates satisfy (ii) of Theorem 3.4, we only need to show that they satisfy a relation-
ship like (3.8), and this is done in Lemmas 4.2 and 5.2 of [2]. The assumptions are
as in Theorem 3.4, but for the first and third updates M is the identity matrix, so
that F'ix*) need only be symmetric in the third update, while existence is all that is
required in the first update. Conclusion (i) of Theorem 3.4 also holds but for the
first and third updates it should be modified to read

lim \\Bk — F'ix*)\\F exists.
fc-7+OO

For more information on these methods and their properties see [2].
As we mentioned in the introduction, results on ß-superlinearity are usually

proved by assuming {73*} converges to F'ix*). Nothing, so far, in our results says
that this approach cannot be applied to the quasi-Newton methods, but consider
the following class of examples. Define F: Rn —> R" such that f2, ■ ■ ■ , fn are inde-
pendent of X! and /i(x) = xx. Let x0 have a zero in its first coordinate and B0 zeros
in its first row and column except for possibly the (1, 1) element. If {x*} and \Bk\
are generated by the Davidon-Fletcher-Powell or any of the above three methods,
then the first row and column of Bk will remain unchanged while the rest of Bk will
be the matrix generated by the corresponding method when applied to ]2, ■ ■ ■ , /„ as
a function of the n — 1 variables (x2, • • • , x„). In particular, the sequence {Bk} does
not converge to F'ix) for any x in R". Of course, it is always possible for the iteration
to terminate or to break down because of a division by zero, but by choosing f 2, ■ • • , /„
appropriately, convergence will be assured. Also note that the above example applies
to the "damped" method

•**+i = Xk      X*Z?* Fxk,       X* ?¿ 0,

and in fact to any quasi-Newton method such that Bk+1 is obtained from Bk by
adding a linear combination of matrices pkqkT where/?* and qk can be any of the vectors
sk, Bksk, BkTsk, yk, Bkyk, or Bkyk. In particular, this holds for the Huang class [5].

The first person to produce an example of this type was Powell [9]. He pointed
out that if the Davidon-Fletcher-Powell method with exact line minimization is
used to minimize the function j{xx, ■ ■ ■ , xn) = Xi2 + g(x2, • • • , xn), then the above
behavior occurs from initial points of the type specified above.
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The previous results also apply to the so-called complementary or Fletcher-dual
methods [3]. For example, the complementary Davidon-Fletcher-Powell method
is given by

Xt+i — xk — HkFxk

where

„      _  „    ,   fa — Hkyk)sk + skjsk — Hkyk)T
"k + X   —   "k   "1-f.-

ykSk

_ y\(Sk — Hkyk)SkSk

O tí*)2

The Fletcher-dual is therefore obtained by replacing B's by H's and interchanging
yk and s*. For this method, (i) and (ii) of Theorem 3.4 now read

(i) linw. ||F'(x*)I/277*F'(x*)1/2 - /||p exists,
(ii) lmw(||[/r* - FíxT^II/IIj;*!!) = 0,

where we are now assuming that yk j¿ 0 for k ^ 0. Similar observations apply to
the dual of the three methods defined in this section.

ß-superlinear convergence to a zero of F also follows from (ii) above if we assume
that {||7Y*_1||j is uniformly bounded. In this case,

(Hk - F'ix*)'1^ = HkFxk+x - F'ix*yl[yk - F'ix*)sk],

and, if F satisfies the assumption of Theorem 2.2, then there is a y > 0 such that

Ibtll =  ||F**+i - F**|| è 7ll*t+i - **||.
All together,

lim (||Fx*+,||/||**+i -*»||) = 0.

This is just (2.5), so from (2.4) we see that {x*} must converge ß-superlinearly to
x* and Fx* = 0.

For the complementary Davidon-Fletcher-Powell method the matrices Bk = 7//*"1
are generated by

(4.1) Bk+1 = Bk + ykyTk/yTksk — B*s*í*a*/s*B*í*.

In this case it is possible to prove, with the technique that Powell used in Theorem 3
of [8], that under the assumptions of Theorem 3.4 there is a positive integer k0
such that, for any symmetric Bkt G L(Rn), the sequences {s*}, {yk} and \Bk\ are
well defined for k ^ k0 by (3.3) and (4.1), and, moreover, {||.S*||} is uniformly
bounded. Hence, the results of Section 3 apply to the complementary Davidon-
Fletcher-Powell method without explicitly assuming that {||77*_1||} is uniformly
bounded.

5. Concluding Remarks. It is interesting to compare our results with those
of McCormick and Ritter [6], and Ritter [10]. These authors prove, under more
restrictive hypotheses than those of Theorem 2.2, that {x*} is ß-superlinearly con-
vergent if
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i;m  ||[g* - F'ix*)]jxk+X -xk)\\lim    -rrz—7.-    = 0.
*-+» l|FAt*||

They fail to note that this condition is also sufficient (and hence, equivalent to
(2.3)), and moreover, they do not prove that any of the single- or double-rank methods
satisfy their hypotheses. They do make the interesting point that if

(5.1) \\[Bk - F'ix*)]ixk+X - **)||/||F;c*|| =  0(||F**.,||)

for some v, 0 g v á «> then

||**+1 - x*\\/\\xt - **|| = Gi\\xk-, - x*\\).

In this case, it follows that the R-oxder of (2.2) is at least r where r is the unique
positive root of t" + 1 — t" — 1 = 0. See, for example, [7, p. 291]. It would be very
interesting to prove that some quasi-Newton method satisfies (5.1) or some similar
relationship that would guarantee an order greater than one.

We note that the techniques of this paper can also be used to establish ß-super-
linear convergence of algorithms that use the quasi-Newton philosophy. For example,
K. Brown and J. E. Dennis, in an unpublished work, have proven ß-superlinearity
of the nonlinear least squares method given in [1].

Finally, readers familiar with the majorant approach to the convergence theory
of nonlinear iterative methods will perhaps agree with us that (2.3) is a sort of direc-
tional-norm analogue of consistency, i.e., norm convergence of ¡73*} to F'ix*).
It would be interesting to find a reasonable sufficient condition for local convergence
of (1.1) based on such a directional norm approach.
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