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Abstract. In this paper, we show that a homogeneous tube domain is symmetric
if and only if its Cayley transform image as well as the dual Cayley transform image
of the dual tube domain is convex. In this case, the parameters of these Cayley
transforms reduce to specific ones, so that they are essentially the usual Cayley
transforms defined in terms of Jordan algebra structure.

1. Introduction

In one complex variable case, the Cayley transform

w �→ w − 1

w + 1
= 1 − 2(w + 1)−1 (1.1)

maps the right half plane to the open unit disc. This is generalized to the case
of symmetric tube domains by introducing a Jordan algebra structure. To define
a Cayley transform for such domains, it suffices to interpret (1.1) in the Jordan
algebra terminology: 1 is the unit element in the Jordan algebra, and (w + 1)−1 is
the Jordan algebra inverse of w +1. Then, the image of the symmetric tube domain
is the open unit ball with respect to a certain norm (see [3, Chapter X] and §4 of this
paper). In particular, the image is a convex set. The situation is further generalized
to non-tube symmetric Siegel domains in [5]. The Cayley transform in that paper
maps the Harish-Chandra realization of non-compact Hermitian symmetric space to
a Siegel domain, and the Harish-Chandra realization is known to be equal to the
open unit ball for a certain norm defined in terms of Jordan triple system structure
just as in the tube case (see [11, Chapter II] or [6, §4], for example). The purpose
of the present paper is to show that this convexity property of Cayley transform
images is characteristic of symmetric domains among homogeneous tube domains.
The case of non-tube Siegel domains will be treated separately in a future paper.

Cayley transforms for general homogeneous Siegel domains have been introduced
by [2], [10], [7] and [9]. These are now included in a single family of Cayley trans-
forms introduced by the second author in [8]. The Cayley transforms in this paper
are precisely this family of Cayley transforms specialized to tube domains. For sym-
metric tube domains, this Cayley transform with a specific parameter essentially
coincides with the above-mentioned Cayley transform defined in terms of Jordan
algebra structure.

In order to write down a precise formula for our Cayley transforms, we need to fix
the notation. Let Ω be a homogeneous convex cone in a finite-dimensional real vector
space V . In this paper, we always assume that Ω is irreducible for simplicity. By [12],
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there exists a split solvable subgroup H in the linear automorphism group G(Ω) of
Ω such that H acts on Ω simply transitively. We fix any reference point E ∈ Ω. Let
h be the Lie algebra of H. Since the infinitesimal orbit map h � T �→ TE ∈ V is a
linear isomorphism, we denote by x �→ Lx its inverse map. Then the ambient vector
space V has an algebra structure by x�y := Lxy with unit element E. This (non-
associative) algebra is called a clan associated with Ω. Let E1, . . . , Er be a complete
system of primitive idempotents in V . Then LE1 , . . . , LEr form a commutative Lie
subalgebra a of h. For s = (s1, . . . , sr) ∈ Rr, we denote by χs the one-dimensional
representation of A := exp a defined by χs(exp

∑
tjLEj

) = exp
∑

sjtj (tj ∈ R).
This χs can be extended canonically to H, and we transfer it to a function ∆s on
the cone Ω through the orbit map: ∆s(hE) := χs(h) for h ∈ H. Suppose that sj > 0
for all j = 1, . . . , r (we simply write s > 0 in this case), and let 〈·|·〉s be the inner
product defined by the admissible linear form E∗

s (see the end of section 2).
Now, for x ∈ Ω, the pseudoinverse Is(x) is defined as

〈Is(x)|y〉s = − d

dt
log ∆−s(x + ty)

∣∣∣
t=0

(y ∈ V ).

The pseudoinverse map Is : x �→ Is(x) gives a bijection of Ω onto Ωs, where Ωs

stands for the dual cone of Ω realized in V by means of 〈·|·〉s:
Ωs := {x ∈ V ; 〈x|y〉s > 0 for any y ∈ Ω \ {0}}.

If Ω is a symmetric cone and if s is a positive number multiple of the parameter
d (see (2.5) for the definition of d), then the pseudoinverse map Is is a positive
constant multiple of the Jordan algebra inverse map. The pseudoinverse map Is
extends to a rational map W → W , and we make Is(x) serve as a denominator.
Thus we define a Cayley transform Cs (s > 0) for Ω + iV by

Cs(w) := E − 2Is(w + E) (w ∈ Ω + iV ).

Starting with the dual cone Ωs, we get a similar map I∗
s . We know that I∗

s

extends to a rational map W → W and that I∗
s = I−1

s . We also need the dual
Cayley transforms C∗

s (s > 0) for Ωs + iV defined by

C∗
s (w) := E − 2I∗

s (w + E) (w ∈ Ωs + iV ).

By [8, Theorem 4.20] the images Cs(Ω + iV ) and C∗
s (Ω

s + iV ) are both bounded
domains.

We are now ready to state our main theorem.

Theorem 1.1. Let Ω+iV be an irreducible homogeneous tube domain and suppose
that s > 0. Then the following are equivalent:

(A) Both Cs(Ω + iV ) and C∗
s (Ω

s + iV ) are convex.
(B) The parameter s is a positive number multiple of d, and Ω+iV is symmetric.

We remark that (A) of Theorem 1.1 implies that Is(Ω + iV ) and I∗
s (Ω

s + iV )
are both convex (see the discussion made just after Lemma 5.3). This means that
Theorem 1.1 gives another proof to our previous result [4, Theorem 1.2] though not
easier at all.
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We organize this paper as follows. In Section 2, we summarize basic facts about
clans associated with homogeneous convex cones. Section 3 is the introduction of the
pseudoinverse maps and the Cayley transforms. We prove (B) ⇒ (A) of Theorem
1.1 in Section 4. In Section 5, proof of (A) ⇒ (B) is given. Our way of proof is
parallel to that of [4].

Both of the present authors are grateful to Richard Penney for conversations
about the contents of this paper.

2. Preliminaries

We summarize here some of basic properties of clan. Our reference is Vinberg’s
classical paper [12] (see also our previous paper [4]). Let V be a finite dimensional
vector space over R. An open convex cone Ω ⊂ V is called a homogeneous convex
cone if the following conditions are satisfied:

(i) Ω is regular. In other words, Ω does not contain any straight line (not
necessarily passing through the origin).

(ii) The linear automorphism group G(Ω) of Ω defined by

G(Ω) := {g ∈ GL(V ) ; g(Ω) = Ω}
acts transitively on Ω.

A homogeneous convex cone Ω is said to be irreducible if it does not split into a
direct sum of non-empty homogeneous convex cones.

Let Ω ⊂ V be an irreducible homogeneous convex cone. By [12, Theorem
1], there exists a split solvable subgroup H of G(Ω) acting simply transitively on
Ω. Fix any point E ∈ Ω. Let h be the Lie algebra of H. Since the orbit map
H � h �→ hE ∈ Ω is a diffeomorphism, differentiation at the unit element of H
gives a linear isomorphism h � T �→ TE ∈ V . The inverse map is denoted as
V � x �→ Lx ∈ h. We introduce a multiplication � on V by the following formula:

x�y := Lxy (x, y ∈ V ).

Then we have

[Lx, Ly] = Lx�y−y�x, (2.1)

Tr Lx�x > 0 for any non-zero x ∈ V , (2.2)

the operator Lx (x ∈ V ) has only real eigenvalues. (2.3)

Thus, having the properties (2.1) ∼ (2.3), the vector space V with the multiplication
� becomes a clan after Vinberg [12]. We know that E is the unit element of V .
Vinberg’s theory [12] tells us that there is a one-to-one correspondence between the
set of isomorphic classes of homogeneous convex cones and the set of isomorphic
classes of clans with unit element.

Now let V be a clan with unit element E, and Ω the homogeneous convex
cone associated to the clan V . Then there exist positive integer r and idempotents
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E1, . . . , Er such that

V =
r∑

i=1

REi ⊕
∑
k>j

Vkj, E = E1 + · · ·+ Er,

where we put for 1 ≤ j < k ≤ r,

Vkj :=
{
x ∈ V ; ∀c =

∑
λiEi, c�x = 1

2
(λj + λk)x, x�c = λjx

}
.

The integer r is called the rank of V . Setting Vkk := REk for k = 1, . . . , r, we have
the following multiplication rule:

Vlk�Vkj ⊂ Vlj,

if k �= i, j, then Vlk�Vij = 0,

Vlk�Vmk ⊂ Vlm or Vml according to l ≥ m or m ≥ l.

(2.4)

Let us define linear forms E∗
i (i = 1, . . . , r) by

〈 r∑
j=1

xjEj +
∑
k>j

Xkj, E
∗
i

〉
:= xi (xj ∈ R, Xkj ∈ Vkj).

For s = (s1, . . . , sr) ∈ Rr, we set E∗
s :=

∑
siE

∗
i . If si > 0 for i = 1, . . . , r, we say

that s is positive, and we write s > 0. A linear form f on V is said to be admissible
if the bilinear form 〈x|y〉f := 〈x�y, f〉 defines a positive definite inner product on

V . We know by [4, Proposition 2.1] that the linear forms E∗
s (s > 0) represent all

the admissible linear forms on V . An example of admissible linear forms is given by
〈x, g〉 := Tr Lx (x ∈ V ) as shown by (2.1) and (2.2). Putting

nkj := dim Vkj (k > j),

di := 1 + 1
2

∑
α>i

nαi + 1
2

∑
β<i

niβ (i = 1, . . . , r), (2.5)

and d := (d1, . . . , dr), we see that 〈x|y〉g = 〈x�y, E∗
d〉. In what follows, we put

〈·|·〉s := 〈·|·〉E∗
s

for simplicity.

3. Family of Cayley transforms

Keeping the notation established in the previous section, we introduce, in this
section, Cayley transforms for the tube domain Ω + iV originally defined in [8] for
general homogeneous Siegel domains. To do so, we need pseudoinverse maps which
serve as the “denominator”. We refer the readers to [4, Section 3] or [8] for details.

Put a :=
∑r

j=1 RLEj
. Then a is a commutative subalgebra of h such that ad a

is a commutative family of diagonalizable operators on h. In fact, setting nkj :=
{Lx ; x ∈ Vkj} (k > j), we see that the spaces nkj are simultaneous eigenspaces of
ad a. Put n :=

∑
k>j nkj . Then n is a nilpotent subalgebra of h and h is written as

a semidirect product h = a � n.
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Let A := exp a and N := exp n. We have H = A�N . For s = (s1, . . . , sr) ∈ Rr,
we define a one-dimensional representation of A by

χs

(
exp

(∑
tjLEj

))
:= exp

(∑
sjtj

)
.

We extend χs to a one-dimensional representation of H by defining χs|N ≡ 1. Re-
calling that H acts on Ω simply transitively, we introduce functions ∆s on Ω by

∆s(hE) := χs(h) (h ∈ H).

Let s > 0. The pseudoinverse Is(x) of x ∈ Ω is given by

〈v|Is(x)〉s = − d

dt
log ∆−s(x + tv)

∣∣∣
t=0

(v ∈ V ).

We call Is : Ω → V the pseudoinverse map. Let Ωs denote the dual cone of Ω
realized in V by means of 〈·|·〉s:

Ωs := {x ∈ V ; 〈x|y〉s > 0, for ∀y ∈ Ω \ {0}}.
By [8, Proposition 3.12], Is is a bijection of Ω onto Ωs. H acts also on V by the
coadjoint action: x �→ sh−1x, where sh stands for the adjoint operator of h relative
to 〈·|·〉s. We see that Is is H-equivariant: Is(hx) = sh−1Is(x) (h ∈ H), and we have
Is(E) = E. Moreover, the action of H on Ωs is also simply transitive.

Put W := V� , the complexification of V . We extend both the multiplication �
and the inner product 〈·|·〉s to W by complex bilinearity. Put Wkj := (Vkj)� (k > j).
Then the properties similar to (2.4) hold:

Wlk�Wkj ⊂ Wlj ,

if k �= i, j, then Wlk�Wij = 0,

Wlk�Wmk ⊂ Wlm or Wml according to l ≥ m or m ≥ l.

(3.1)

We know by [8, Lemma 3.17] that the pseudoinverse map Is can be continued
analytically to a rational map W → W . Let H� be the complexification of the
Lie group H. By analytic continuation, we see easily that Is is H� -equivariant:
Is(hx) = sh−1Is(x) (h ∈ H� ). Let w �→ w be the conjugation in W relative to the

real form V . Clearly we have Is(w) = Is(w).
Starting with the dual cone Ωs, we get a similar map I∗

s : Ωs → V , called the
dual pseudoinverse map. I∗

s gives a bijection of Ωs onto Ω, and is extended to a
rational map W → W which is H� -equivariant: I∗

s (
sh−1x) = hI∗

s (x) (h ∈ H� ). We
have I∗

s (E) = E. Furthermore, it turns out that Is and I∗
s are inverse to each other

by [8, Proposition 3.16]. Thus Is is a birational map with I−1
s = I∗

s . We remark that
Is is holomorphic on Ω + iV , and I∗

s on Ωs + iV . Finally we know that Is(Ω + iV )
is contained in the holomorphic domain of I∗

s , and I∗
s (Ω

s + iV ) in the holomorphic
domain of Is.

Once we have the pseudoinverse maps at hand, our Cayley transforms are defined
as in Introduction. For s > 0, the Cayley transforms Cs are

Cs(w) := E − 2Is(w + E) (w ∈ Ω + iV ).
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It should be noted here that if w ∈ Ω+ iV , then w +E ∈ Ω+ iV , so that Is(w +E)
is well-defined. Similarly we define dual Cayley transforms C∗s by

C∗
s (w) := E − 2I∗

s (w + E) (w ∈ Ωs + iV ).

We emphasize that unlike the pair Is and I∗
s , the pair Cs and C∗

s are no longer inverse
to each other.

4. Proof (B) ⇒ (A) of the main theorem

We assume that (B) of Theorem 1.1 holds. Then Ω is a symmetric cone which
is irreducible. Moreover Theorem 1.2 in [4] tells us that Ω = Ωs. Let ϕ be the
characteristic function of Ω:

ϕ(x) :=

∫
Ω

e−〈x|y〉s dy (x ∈ Ω).

Let Ω � x �→ x∗ ∈ V be Vinberg’s ∗-map defined in a usual way by

〈x∗|y〉s = − d

dt
log ϕ(x + ty)

∣∣∣
t=0

(y ∈ V ).

By [3, Proposition I.3.5], the ∗-map has a unique fixed point e. Then V has a
Euclidean Jordan algebra structure with unit element e, so that W = V� is a complex
semisimple Jordan algebra. By assumption, we have s = pd for some p > 0. In
this situation, Lemma 5.2 in [4] gives x∗ = x−1 for invertible x ∈ V , where x−1

is the Jordan algebra inverse of x. Moreover we know by [4, Subsection 5.2] that
Is(x) = px−1. Hence pE−1 = Is(E) = E, so that (p−1/2E)−1 = p−1/2E. This
together with x∗ = x−1 gives (p−1/2E)∗ = p−1/2E. Since the fixed point of the
∗-map is unique, we get

e = p−1/2E. (4.1)

Let us denote by C the Cayley transform defined in terms of the Jordan algebra
structure:

C(x) := (x − e)(x + e)−1 = e − 2(x + e)−1.

Here we need to introduce the spectral norm on W to describe the image C(Ω+ iV ).
We denote by L(x) the multiplication by x in the Jordan algebra W . For x, y ∈ W ,
let x�y denote the linear operator on W defined by

x�y := L(xy) + [L(x), L(y)].

and set |w| := ‖w�w‖1/2 for w ∈ W , the square root of the operator norm of the
operator w�w. By [3, Proposition X.4.1], | · | is a norm on W , called the spectral
norm. Let B be the open unit ball for the spectral norm | · |. By [3, Theorem X.4.3]
we see easily that C(Ω + iV ) = B, which shows, in particular, that C(Ω + iV ) is
convex. We note here that the tube domains used in [3, Chapter X] are upper half
planes V + iΩ, while ours are right half planes Ω + iV .

On the other hand, (4.1) together with Is(x + E) = p(x + E)−1 gives

Cs(x) = E − 2p(x + E)−1 = p1/2e − 2p1/2(p−1/2x + e)−1 = p1/2C(p−1/2x),

so that Cs(Ω + iV ) = p1/2B. Therefore, Cs(Ω + iV ) is convex.
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Since I∗
s (x) = I−1

s (x) = px−1 = Is(x), we also have C∗
s (Ω

s + iV ) = p1/2B, so
that C∗

s (Ω
s + iV ) is convex. Now the proof of (B) ⇒ (A) is complete. �

5. Proof of (A) ⇒ (B)

Throughout this section, we assume that the integers j, k, l always satisfy j <
k < l, even though we do not mention it explicitly. In addition, we let wkj ∈ Wkj,
wlj ∈ Wlj and wlk ∈ Wlk without any explicit references. In order to simplify the
description, we write 〈·|·〉 instead of 〈·|·〉s and put ν[w] := 〈w|w〉 for w ∈ W . Note
that ν[iw] = −ν[w].

We collect here some formulas needed in this section which hold without any
restrictions on the clan. Given wlj, wkj, we set

Slk := 1
2
(wlj�wkj + wkj�wlj). (5.1)

We have Slk ∈ Wlk by (3.1). The following two propositions will be used to compute
pseudoinverses.

Proposition 5.1 ([4, Proposition 4.2]). Let tj , tk, tl ∈ R. Then one has

exp
(
Lwlj

+ Lwkj

)
exp (Lwlk

) exp (tjHj + tkHk + tlHl)E

=
∑

m�=j,k,l

Em + etj Ej +
(
etk + (2sk)

−1etjν[wkj ]
)
Ek

+
(
etl + (2sl)

−1etkν[wlk] + (2sl)
−1etj ν[wlj]

)
El

+ etj wlj + etjwkj +
(
etjSlk + etkwlk

)
.

Proposition 5.2 ([4, Proposition 4.6]). One has

s
(
exp(Lwlj

+ Lwkj
) exp(Lwlk

) exp (tjHj + tkHk + tlHl)
)−1

E

=
∑

m�=j,k,l

Em +
(
e−tj + (2sj)

−1
(
e−tk + (2sk)

−1e−tlν[wlk]
)
ν[wkj]

+ (2sj)
−1e−tlν[wlj ] − s−1

j e−tl〈Slk|wlk〉
)
Ej

+
(
e−tk + (2sk)

−1e−tlν[wlk]
)
Ek + e−tlEl

+
(
e−tl sLwlj

wlk − (e−tk + (2sk)
−1e−tlν[wlk])wkj

)
+ e−tl

(
sLwkj

wlk − wlj

) − e−tlwlk.

Let vlk ∈ Vlk and vkj ∈ Vkj. Then, by [4, Lemma 4.7], we have the following
norm equality:

‖vlk�vkj‖2 = (2sk)
−1 ‖vlk‖2 ‖vkj‖2 . (5.2)

This leads us to the following lemma (see [4, Lemma 4.8]).

Lemma 5.3. (1) If nkj �= 0, then one has nlj ≥ nlk.
(2) If nlk �= 0, then one has nlj ≥ nkj.



8 CHIFUNE KAI AND TAKAAKI NOMURA

Now, let us begin the proof of (A) ⇒ (B). We assume that (A) of Theorem 1.1
holds. First of all we show that Is(Ω + iV ) and I∗

s (Ω
s + iV ) are convex. Let δ > 0.

Since Ω is a cone, we have

Cs(Ω + iV ) = E − 2Is(Ω + E + iV ) = E − 2δIs(Ω + δE + iV ).

This means that Is(Ω + δE + iV ) is convex for any δ > 0. Let us take two points
Is(z1), Is(z2) in Is(Ω + iV ) with z1, z2 in Ω + iV , and denote by � the line segment
with endpoints Is(z1) and Is(z2). Since Ω is open, we have z1, z2 ∈ Ω + δE + iV
for sufficiently small δ > 0. The convexity of Is(Ω + δE + iV ) just shown implies
� ⊂ Is(Ω+δE+iV ) ⊂ Is(Ω+iV ), so that Is(Ω+iV ) is convex. Similarly, I∗

s (Ω
s+iV )

is convex, too.

5.1. First step. The purpose of this subsection is to show that s1 = · · · = sr.

Lemma 5.4. If nkj �= 0, then sk ≤ sj.

Proof. Take any non-zero vkj ∈ Vkj and set

p := log(1 + (2sk)
−1 ‖vkj‖2). (5.3)

We consider two points z1 := Is(E + ivkj) and z2 := Is(E− ivkj) = z1 in Is(Ω+ iV ).
We know by the proof of [4, Lemma 7.1] that (note that p is written as tk there)

z1 =
∑

m�=j,k,l

Em +
(
1 − (2sj)

−1e−p ‖vkj‖2) Ej + e−pEk + El − ie−pvkj.

Let w := (1 − u)z1 + uz2, where 0 ≤ u ≤ 1, and we require that u satisfies

1 − 2s−1
j e−p ‖vkj‖2 u(1 − u) > 0. (5.4)

Put δ := 4u(1−u) for simplicity. Then 0 ≤ δ ≤ 1, and using (5.3), we see that (5.4)
is equivalent to

δ <
sj

sk

2sk + ‖vkj‖2

‖vkj‖2 . (5.5)

By definition we have

w =
∑

m�=j,k,l

Em +
(
1 − (2sj)

−1e−p ‖vkj‖2)Ej + e−pEk + El + i(2u − 1)e−pvkj.

In Proposition 5.2, we put

tj = − log
(
1 − (2sj)

−1δe−p ‖vkj‖2) , tk = p, tl = 0,

wkj = −i(2u − 1)vkj, wlk = 0, wlj = 0,
(5.6)

and η := exp
(
Lwkj

)
exp (tjHj + tkHk). The condition (5.4) guarantees that tj is

a real number. Then the formula in Proposition 5.2 becomes sη−1E = w. Since
I∗
s (w) = ηI∗

s (E) = ηE, we see by Proposition 5.1 that

Re (I∗
s (w)) =

∑
m�=j,k,l

Em + etjEj +
(
ep − (2sk)

−1(1 − δ)etj ‖vkj‖2)Ek + El. (5.7)
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Since Is(Ω + iV ) is convex, we must have w ∈ Is(Ω + iV ) for any u with 0 ≤ u ≤ 1.
Since I−1

s = I∗
s , it turns out that ReI∗

s (w) must be in Ω. Therefore, under the
condition (5.5), the coefficient of Ek in (5.7) should be positive, that is,

ep − (2sk)
−1(1 − δ)etj ‖vkj‖2 > 0.

By a computation using (5.3) and (5.6), this becomes

2sjsk > δ · (sk − sj) ‖vkj‖2 . (5.8)

Let us assume, contrary to the conclusion, that sk > sj. Then, if ‖vkj‖ is
sufficiently large, we have

sj

sk

2sk + ‖vkj‖2

‖vkj‖2 < 1.

Thus if δ > 0 satisfies (5.5), we have 0 < δ < 1 automatically, so that we can find u
with 0 < u < 1 satisfying (5.4). The requirement that (5.8) is always true for any
δ > 0 satisfying (5.5) forces

sj

sk

2sk + ‖vkj‖2

‖vkj‖2 ≤ 2sjsk

(sk − sj) ‖vkj‖2 .

But, since sj > 0, this is impossible for large ‖vkj‖ as can be seen by the limiting
procedure ‖vkj‖ → ∞. This contradiction shows sk ≤ sj. �

Lemma 5.5. If nkj �= 0, then sk ≥ sj.

Proof. Though the argument is completely parallel to the previous lemma, we write
down the proof for completeness. Take any non-zero vkj ∈ Vkj and put

p := − log(1 + (2sj)
−1 ‖vkj‖2). (5.9)

Consider z1 := I∗
s (E + ivkj) and z2 := I∗

s (E − ivkj) = z1, which are in I∗
s (Ω

s + iV ).
By the proof of [4, Lemma 7.2] we have (note that p is written as tj there)

z1 =
∑

m�=j,k,l

Em + epEj +
(
1 − (2sk)

−1ep ‖vkj‖2)Ek + El − iepvkj.

Let w := (1 − u)z1 + uz2, where 0 ≤ u ≤ 1, and we require that u satisfies

1 − 2s−1
k ep ‖vkj‖2 u(1 − u) > 0. (5.10)

We put δ := 4u(1 − u) as before. Then 0 ≤ δ ≤ 1. By using (5.9), the requirement
(5.10) is seen to be equivalent to

δ <
sk

sj

2sj + ‖vkj‖2

‖vkj‖2 . (5.11)

Now we have by definition

w =
∑

m�=j,k,l

Em + epEj +
(
1 − (2sk)

−1ep ‖vkj‖2)Ek + El + i(2u − 1)epvkj .
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In Proposition 5.1, we put

tj = p, tk = log
(
1 − (2sk)

−1δep ‖vkj‖2) , tl = 0,

wkj = i(2u − 1)vkj, wlj = wlk = 0,
(5.12)

and η := exp
(
Lwkj

)
exp (tjHj + tkHk). The inequality (5.10) assures that tk is

a real number. Then the formula in Proposition 5.1 becomes ηE = w. Since
Is(w) = sη−1Is(E) = sη−1E, we see by Proposition 5.2 that

Re Is(w) =
∑

m�=j,k,l

Em +
(
e−p − (2sj)

−1(1 − δ)e−tk ‖vkj‖2)Ej + e−tkEk + El. (5.13)

As in the previous case, we must have w ∈ I∗
s (Ω

s + iV ). Hence Re Is(w) should
be an element of Ωs. Therefore, under the condition (5.11), the coefficient of Ej in
(5.13) must be positive, that is,

e−p − (2sj)
−1(1 − δ)e−tk ‖vkj‖2 > 0.

Rewriting this by using (5.9) and (5.12), we arrive at

2sjsk > δ · (sj − sk) ‖vkj‖2 . (5.14)

Now we assume sk < sj contrary to the conclusion of the lemma. Then, if ‖vkj‖
is sufficiently large, we have

sk

sj

2sj + ‖vkj‖2

‖vkj‖2 < 1.

Thus, if δ > 0 satisfies (5.11), then we have 0 < δ < 1 automatically, so that we
can find u with 0 < u < 1 satisfying (5.10). With the δ chosen in this manner, the
condition (5.14) compels

sk

sj

2sj + ‖vkj‖2

‖vkj‖2 ≤ 2sjsk

(sj − sk) ‖vkj‖2 ,

which is absurd for large ‖vkj‖. Hence we get sk ≥ sj . �

Lemmas 5.4 and 5.5 give

Proposition 5.6. If nkj �= 0, then sk = sj .

Here we need the following proposition due to Asano:

Proposition 5.7 ([1, Theorem 4]). The homogeneous convex cone Ω is irreducible
if and only if for each pair (j, k) of integers with 1 ≤ j < k ≤ r, there exists a series
j0, . . . , jm of distinct positive integers such that j0 = k, jm = j and njλ−1jλ

�= 0 for
λ = 1, . . . , m, where if jλ−1 < jλ, then one puts njλ−1jλ

:= njλjλ−1
.

Therefore we get by Propositions 5.6 and 5.7

Proposition 5.8. The numbers sm (m = 1, . . . , r) are independent of m.
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5.2. Second step. We shall show here that if nlk �= 0, then nkj ≥ nlj. In view of
Proposition 5.8, we put s := sm from now on.

Lemma 5.9. If nlk �= 0, then nkj ≥ nlj.

Proof. If nlj = 0, then the conclusion of the lemma is obviously true. Hence we
assume nlj �= 0. Take any non-zero vlj ∈ Vlj, vlk ∈ Vlk. We put zkj := − sLvlj

vlk. By
[4, Lemma 4.4] we have zkj ∈ Vkj, because vlj, vlk are real vectors. We set

p := − log
(
1 + (2s)−1 ‖zkj‖2 + (2s)−1 ‖vlj‖2) ,

q := − log
(
1 + (2s)−1 ‖vlk‖2) .

(5.15)

We consider two points

z1 := I∗
s

(
E + i

(
vlk − sLzkj

vlk + vlj

))
, z2 := z1

in I∗
s (Ω

s + iV ). It is shown in the proof of [4, Lemma 7.8] that (note that p, q, zkj

are written as tj , tk, wkj respectively there)

z1 =
∑

m�=j,k,l

Em + epEj +
(
(2s)−1ep‖zkj‖2 + eq

)
Ek − (f − 1)El + epzkj

− i(epvlj + eqvlk + epTlk),

where, for simplicity, we have put

f := (2s)−1(ep ‖vlj‖2 + eq ‖vlk‖2), Tlk := 1
2
(vlj�zkj + zkj�vlj).

Let w := (1−u)z1+uz2 for 0 ≤ u ≤ 1, where we require that u satisfies the inequality
1− 4u(1− u)f > 0. Put δ := 4u(1− u) as before. Then we have 0 ≤ δ ≤ 1, and the
requirement is equivalent to

δ < f−1. (5.16)

By definition we have

w =
∑

m�=j,k,l

Em + epEj +
(
(2s)−1ep ‖zkj‖2 + eq

)
Ek − (f − 1)El + epzkj

+ i(2u − 1)(epvlj + eqvlk + epTlk).

In Proposition 5.1, we set

tj = p, tk = q, tl = log(1 − δf),

wkj = zkj, wlj = i(2u − 1)vlj, wlk = i(2u − 1)vlk,

and put η := exp
(
Lwlj

+ Lwkj

)
exp (Lwlk

) exp (tjHj + tkHk + tlHl). The require-
ment (5.16) assures that tl is a real number. Then the formula in Proposition 5.1
becomes ηE = w (note Slk = i(2u− 1)Tlk in the current situation). Before proceed-
ing, we show
Claim 1. 〈Tlk|vlk〉 = −‖zkj‖2.

Indeed, we have, by definition

〈vlj�zkj|vlk〉 =
〈
zkj| sLvlj

vlk

〉
= −‖zkj‖2 . (5.17)
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On the other hand, since Lvlk
vlj = 0 and L(zkj�vlk) = 0 by (2.4), we have

vlk�(zkj�vlj) = [Lvlk
, Lzkj

]vlj = L(vlk�zkj−zkj�vlk)vlj = (vlk�zkj)�vlj,

where we used (2.1) for the second equality. This gives

〈zkj�vlj|vlk〉 = 〈vlk�(zkj�vlj), E
∗
s 〉 = 〈(vlk�zkj)�vlj, E

∗
s 〉

= 〈vlk�zkj|vlj〉 = 〈zkj| sLvlk
vlj〉 .

Lemma 7.7 in [4] shows that the last term equals
〈
zkj| sLvlj

vlk

〉
, so that we obtain

〈zkj�vlj|vlk〉 = −‖zkj‖2 . (5.18)

Claim 1 follows from (5.17) and (5.18). �
Now, since Is(w) = Is(ηE) = sη−1E, Proposition 5.2 and Claim 1 yield

Re Is(w) =
∑

m�=j,k,l

Em +
(
e−p + (2s)−1

(
e−q − (2s)−1(1 − δ)e−tl ‖vlk‖2) ‖zkj‖2

− (2s)−1(1 − δ)e−tl ‖vlj‖2 − s−1(1 − δ)e−tl ‖zkj‖2
)
Ej

+
(
e−q − (2s)−1(1 − δ)e−tl ‖vlk‖2)Ek + e−tlEl

+
(
(1 − δ)e−tl − e−q + (2s)−1(1 − δ)e−tl ‖vlk‖2) zkj .

(5.19)
Since I∗

s (Ω
s+iV ) is convex, we must have w ∈ I∗

s (Ω
s+iV ), so that Is(w) ∈ Ωs+iV .

Thus, (5.19) belongs to Ωs. In particular, the coefficient of Ej in (5.19) should be
positive, that is, we must have

e−p + (2s)−1
(
e−q − (2s)−1(1 − δ)e−tl ‖vlk‖2) ‖zkj‖2

− (2s)−1(1 − δ)e−tl ‖vlj‖2 − s−1(1 − δ)e−tl ‖zkj‖2 > 0.
(5.20)

Substitution of e−tl = (1 − δf)−1 shows that (5.20) is equivalent to

δ
(
(2s)−2 ‖vlk‖2 ‖zkj‖2 + (2s)−1 ‖vlj‖2 + s−1 ‖zkj‖2 − (e−p + (2s)−1e−q ‖zkj‖2)f

)
> (2s)−2 ‖vlk‖2 ‖zkj‖2 + (2s)−1 ‖vlj‖2 + s−1 ‖zkj‖2 − (

e−p + (2s)−1e−q ‖zkj‖2) .

By (5.15) the right-hand side is equal to −1, and we arrive at

δ
(
(2s)−1(f − 1)

(
(2s)−1 ‖vlk‖2 ‖zkj‖2 + ‖vlj‖2 + 2 ‖zkj‖2) + f

)
< 1. (5.21)

Thus we must have (5.21) for any δ (0 ≤ δ ≤ 1) satisfying (5.16).
Claim 2. We have (2s)−1 ‖vlj‖2 ‖vlk‖2 ≤ ‖zkj‖2.

We shall prove Claim 2 by absurdity, so that we start with the assumption
(2s)−1 ‖vlj‖2 ‖vlk‖2 > ‖zkj‖2. Let x > 0 be arbitrary (for the moment), and replace
vlj, vlk with xvlj , xvlk respectively in the foregoing discussion. Then, by definition,
zkj is replaced by x2zkj. We put

F (x) := (2s)−1
(
ep ‖vlj‖2 + eq ‖vlk‖2)x2,

G(x) := (2s)−1(F (x) − 1)
(
(2s)−1 ‖vlk‖2 ‖zkj‖2 x6 + 2 ‖zkj‖2 x4 + ‖vlj‖2 x2

)
+ F (x),
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where we note by (5.15) that

e−p = 1 + (2s)−1 ‖vlj‖2 x2 + (2s)−1 ‖zkj‖2 x4, e−q = 1 + (2s)−1 ‖vlk‖2 x2,

and the condition (5.16) is replaced by δ < F (x)−1, and (5.21) by δ · G(x) < 1. By
a straightforward computation, we obtain

(F (x) − 1)e−pe−q = (2s)−1
(
(2s)−1 ‖vlj‖2 ‖vlk‖2 − ‖zkj‖2)x4 − 1. (5.22)

In particular, this together with the assumption shows that F (x) > 1 for large x > 0.
We put H(x) := e−pe−qG(x). Since we see by definition of F (x) that F (x)e−pe−q is
a polynomial in x of degree 6, the definition of G(x) and (5.22) show that H(x) is
a polynomial in x of degree 10. The coefficient of x10 is equal to

(2s)−3
(
(2s)−1 ‖vlj‖2 ‖vlk‖2 − ‖zkj‖2) ‖vlk‖2 ‖zkj‖2 .

Thus, if zkj �= 0, then the assumption implies G(x) > 0 for large x > 0. In case
zkj = 0, we have by a straightforward computation

H(x) = (2s)−1
(
1 + (2s)−1 ‖vlj‖2 x2

)2 ‖vlk‖2 x2,

so that G(x) > 0.
Now, fixing a large x > 0 with F (x) > 1 and G(x) > 0, we choose δ > 0

satisfying δ < F (x)−1. Then we have 0 < δ < 1 automatically, and we must
have the inequality δ < G(x)−1 for any such δ. This forces F (x)−1 ≤ G(x)−1, or
G(x) ≤ F (x). But this is a contradiction, because the definition of G(x) together
with F (x) > 1 implies the reverse strict inequality G(x) > F (x) (recall vlj �= 0). �

Since vlj and vlk are non-zero, the conclusion of Claim 2 implies, in particular,
that nkj �= 0. Let {em}nkj

m=1 be an orthonormal basis of Vkj. Then, the equality
sLvlj

vlk = sLvlk
vlj (see [4, Lemma 7.7]) implies

‖zkj‖2 =

nkj∑
m=1

〈
sLvlj

vlk|em

〉2
=

nkj∑
m=1

〈sLvlk
vlj|em〉2 =

nkj∑
m=1

〈vlj|vlk�em〉2 . (5.23)

Therefore the conclusion of Claim 2 is rewritten as

(2s)−1 ‖vlj‖2 ‖vlk‖2 ≤
nkj∑
m=1

〈vlj|vlk�em〉2 .

We make vlj run over an orthonormal basis of Vlj and sum up the resulting formulas.
Then we obtain

(2s)−1nlj ‖vlk‖2 ≤
nkj∑
m=1

‖vlk�em‖2 = (2s)−1nkj ‖vlk‖2 ,

where the last equality follows from (5.2). Hence nlj ≤ nkj. This completes the
proof of Lemma 5.9. �

Lemma 5.9 together with the statement (2) of Lemma 5.3 give

Proposition 5.10. If nlk �= 0, then one has nlj = nkj.
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5.3. Third step. We next show that if nkj �= 0, then it holds that nlk = nlj. To do
so, we set, for given vlj ∈ Vlj and vkj ∈ Vkj,

Ulk := 1
2
(vlj�vkj + vkj�vlj).

We know Ulk ∈ Vlk by (2.4), and by [4, Lemma 4.9], we have

‖Ulk‖2 ≤ (2sk)
−1 ‖vlj‖2 ‖vkj‖2 . (5.24)

Lemma 5.11. ‖Ulk‖2 = (2s)−1 ‖vlj‖2 ‖vkj‖2 .

Proof. In view of (5.24), it is enough to show that the strict inequality

‖Ulk‖2 < (2s)−1 ‖vlj‖2 ‖vkj‖2 (5.25)

for some vlj and vkj causes a contradiction. Note that (5.25) forces that vlj and vkj

are both non-zero. We put

p := log
(
1 + (2s)−1 ‖vkj‖2) ,

q := log
(
1 + (2s)−1 ‖vlj‖2 − (2s)−1e−p ‖Ulk‖2). (5.26)

Observe that (5.25) guarantees that q is a a real number. Consider two points

z1 := Is (E + i(vlj + vkj)) , z2 := z1

in Is(Ω + iV ). We know by the proof of [4, Lemma 7.10] that (note that p, q are
written as tk, tl respectively there and we put zlk := e−pUlk here)

z1 =
∑

m�=j,k,l

Em − (f − 1)Ej +
(
e−p + (2s)−1e−q ‖zlk‖2) Ek + e−qEl − e−qzlk

+ i
(−e−pvkj + e−q

(
sLvlj

zlk − (2s)−1 ‖zlk‖2 vkj + sLvkj
zlk − vlj

))
,

where, for brevity, we have put

f := (2s)−1
(
e−p + (2s)−1e−(2p+q) ‖Ulk‖2) ‖vkj‖2

+ (2s)−1e−q ‖vlj‖2 − s−1e−(p+q) ‖Ulk‖2 .

Using (5.26), we see that

f = e−(p+q)
(
(2s)−1

(
1 + (2s)−1 ‖vlj‖2) ‖vkj‖2 + (2s)−1ep ‖vlj‖2 − s−1 ‖Ulk‖2).

Let w := (1 − u)z1 + uz2 (0 ≤ u ≤ 1), where putting δ := 4u(1 − u) so that
0 ≤ δ ≤ 1, we impose that u satisfies

1 − δf > 0. (5.27)

Now, by definition, we have

w =
∑

m�=j,k,l

Em − (f − 1)Ej +
(
e−p + (2s)−1e−q ‖zlk‖2)Ek + e−qEl − e−qzlk

+ i(1 − 2u)
(−e−pvkj + e−q

(
sLvlj

zlk − (2s)−1 ‖zlk‖2 vkj + sLvkj
zlk − vlj

))
.

In Proposition 5.2, we set

tj := − log(1 − δf), tk := p, tl := q, (5.28)

wlk := e−pUlk(= zlk), wkj := i(1 − 2u)vkj, wlj := i(1 − 2u)vlj,
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and put

η := exp
(
Lwlj

+ Lwkj

)
exp (Lwlk

) exp (tjHj + tkHk + tlHl) .

We remark that (5.27) guarantees that tj is a real number. Then the formula in
Proposition 5.2 becomes sη−1E = w (note Slk = −(1−δ)Ulk in the current situation).
Since I∗

s (w) = ηI∗
s (E) = ηE, Proposition 5.1 yields

Re I∗
s (w) =

∑
m�=j,k,l

Em + etj Ej +
(
ep − (2s)−1(1 − δ)etj ‖vkj‖2) Ek

+
(
eq + (2s)−1e−p ‖Ulk‖2 − (2s)−1(1 − δ)etj ‖vlj‖2) El

+
(
1 − (1 − δ)etj

)
Ulk.

(5.29)

Since Is(Ω + iV ) is convex, we must have w ∈ Is(Ω + iV ), so that I∗
s (w) ∈ Ω + iV .

Hence (5.29) should belong to Ω. Therefore, the coefficient of El in (5.29) should be
positive, that is,

eq + (2s)−1e−p ‖Ulk‖2 − (2s)−1 (1 − δ) etj ‖vlj‖2 > 0.

By a calculation using (5.26) and (5.28), we see that this is equivalent to

δ
(
(2s)−1(f − 1) ‖vlj‖2 + f

)
< 1. (5.30)

Let x > 0 be arbitrary and we replace vlj , vkj with xvlj , xvkj respectively. Then,
by definition, Ulk is replaced by x2Ulk. We put

F (x) := e−(p+q)
(
(2s)−1 ‖vkj‖2 (

1 + (2s)−1 ‖vlj‖2 x2
)
x2

+ (2s)−1ep ‖vlj‖2 x2 − s−1 ‖Ulk‖2 x4
)
, (5.31)

G(x) := (2s)−1(F (x) − 1) ‖vlj‖2 x2 + F (x). (5.32)

We note that (5.26) is replaced by

ep = 1 + (2s)−1 ‖vkj‖2 x2, (5.33)

eq = 1 + (2s)−1 ‖vlj‖2 x2 − (2s)−1e−p ‖Ulk‖2 x4. (5.34)

The condition (5.27) is replaced by δ · F (x) < 1, and (5.30) by δ · G(x) < 1. Since

epeq = ep
(
1 + (2s)−1 ‖vlj‖2 x2

) − (2s)−1 ‖Ulk‖2 x4,

a calculation using (5.33) gives

(F (x) − 1) epeq = (2s)−1 ‖vkj‖2 (
1 + (2s)−1 ‖vlj‖2 x2

)
x2 − (2s)−1 ‖Ulk‖2 x4 − ep

= (2s)−1
(
(2s)−1 ‖vkj‖2 ‖vlj‖2 − ‖Ulk‖2) x4 − 1. (5.35)

Thus our assumption (5.25) says that F (x) > 1 for sufficiently large x > 0.
On the other hand, since F (x)epeq is a polynomial in x of degree at most 4 by

(5.31) and (5.33), we see from (5.32) and (5.35) that G(x)epeq is a polynomial in x
of degree 6. The coefficient of x6 is

(2s)−2 ‖vlj‖2 (
(2s)−1 ‖vlj‖2 ‖vkj‖2 − ‖Ulk‖2) . (5.36)

Therefore, our assumption (5.25) implies that G(x) > 0 for large x > 0.
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Let us fix a large x > 0 so that we have F (x) > 1 and G(x) > 0. Suppose
that δ > 0 satisfies δ < F (x)−1, so that 0 < δ < 1 automatically. Then we must
have δ < G(x)−1 for any such δ. This implies F (x)−1 � G(x)−1, or G(x) � F (x).
But this is impossible, because definition (5.32) and F (x) > 1 give the reverse strict
inequality G(x) > F (x) (note vlj �= 0). �
Proposition 5.12. If nkj �= 0, then one has nlk = nlj .

Proof. If nkj �= 0, then we choose vkj �= 0, so that the linear map Vlj � vlj �→ Ulk ∈
Vlk is injective by virtue of Lemma 5.11. Therefore we have nlj ≤ nlk. The reverse
inequality follows from (1) of Lemma 5.3. �
5.4. Last step. The concluding step is parallel to that of [9, Subsection 5.5].

Lemma 5.13. If at least two of nlk, nlj, nkj are non-zero, they are all equal.

Proof. In view of Propositions 5.10 and 5.12, the proof is completely similar to that
of [9, Lemma 5.15]. �

Now we see that the numbers nkj are independent of j, k (see [9, Proposition
5.16] for the proof). Then the following proposition due to Vinberg tells us that Ω
is a symmetric cone.

Proposition 5.14 ([13, Proposition 3]). The irreducible homogeneous convex cone
Ω is a symmetric cone if and only if the numbers nkj are independent of j, k.

Therefore Ω+iV is symmetric by [3, Theorem X.1.1], which completes the proof
of Theorem 1.1. �
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