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All tensors of contravariant rank two which are divergence-free on one index, concomitants of a spinor 

field (Tux together with its first two partial derivatives, and scalars under spin transformations are 

constructed. The Einstein and metric tensors are the only candidates. 

1. INTRODUCTION 

It is usually assumed that the field equations govern

ing the interaction of the gravitational field with any 

other field (the latter having associated with it an 

energy-momentum tensor Tii) are of the form 

(1. 1) 

where A/j are the components of a type (2,0) tensor 

which is constructed only from those field variables 

characterizing the gravitational field. Furthermore, 

it is customary to demand that the choice of Ali be re

stricted by the identity 

AiJ,j=O, (1.2) 

in order that, as a consequence of (1. 1), we have 

TIJIj = O. 

Typically, if it is assumed that 

(i) the gravitational field is characterized by a sym

metric metric tensor gab' and 

(ii) the quantities Ali are constructed from gab and its 

first two partial derivatives, i. e. , 

then it is known that, 1 in a four-dimensional space, 

(1. 2) and (1. 3) imply that 

Ail =aGiJ + bgii , 

(1. 3) 

(1.4) 

where a, b are constants, and Gli is the Einstein tensor. 

In this case (1.4) and (1. 1) give rise to the usual 

Einstein field equations, where Tli now satisfy 

Tij=Tii. (1. 5) 

However, it has been claimed by some, 2,3 that TiJ 

should be nonsymmetric, in which case, as has been 

pointed out by Ehlers, 4 in order to accommodate this 

possibility, the assumptions (i) and (iil would have to 

be changed. The purpose of this note is to discuss the 

consequence of adopting one possible alternative to (i) 

and (ii). 

It is known that the gravitational field can be charac

terized in terms of a spinor field ajAX' or a tetrad field 

h (a=I, ... ,4), these two characterizations being 
(",)1 
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equivalent by virtue of the relations 

the a",AX' being the conventional Pauli spin matrices. 

These quantities are related to the metric by 

gjl = ajAX,aJBy,EABEX'Y' = ajAX,aJAX' (1.6) 

Guided by these observations, and (1. 3), we shall 

therefore seek all tensors Ali satisfying (1. 2) and for 

which 

(1. 7) 

where Aji are also assumed to be invariant under arbi

trary (unimodular) spin transformations. 

This problem is equivalent to finding all tensors Ali 

satisfying (1. 2) and 

A lJ = A ji ( h ; h ; h ) , 
(""a (a"a.b (""a,bc 

(1. 8) 

where Ai} are scalars under arbitrary proper Lorentz 

transformations. Skew-symmetric tensors satisfying 

(1. 2) and (1. 8) are known;5 however they are not scalars 

under arbitrary proper Lorentz transformations. 

It is clear from (1.6) that every spin-tensor which 

is a concomitant of gjj and its partial derivatives is 

always a concomitant of ajAX' and its partial derivatives. 

If the converse to this were valid, then the above prob

lem, viz. (1.2) and (1. 7) would immediately reduce to 

(1.2) and (1.3), and so, without further calculation (1.4) 

would follow. Unfortunately a proof of the converse does 

not seem to exist in the literature. 

The spinor notation which we adopt here is essentially 

that of Pirani. 6 From (1.6) it can be shown that the 

following is an identity (Schmutzer 7
): 

r:;aA Y' ab BY' creBX' = t(g"bacA X ' + gbC(j'AX' 

_ g"caMx' + iE"bcaa/x'). 

If we define S"b
A 

B and S"b x' Y'by 

sabA B = (j' AX' abBX' - ab AX' (j'BXI , 

then repeated application of (1.9) gives rise to 

Copyright © 1976 American Institute of Physics 

(1. 9) 

(1.10) 

(1. 11) 
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(1.12) 

,2. CHARACTERIZATION OF Ars 

Because the Ali are assumed to satisfy (1. 7) and to 

be the components of a type (2,0) tensor under arbitrary 

coordinate transformations, certain invariance identi

tiess must be satisfied, one of which is 

Ars;.AX· .be + Ars;cAX' .ab + Ars;bAX' ,00 = 0, (2.1) 

where Ars;aAX',be== ilArs! a aaAX' ,be is a spin-tensor sym

metric in be. 

The invariance of Ali under spinor transformations 

also gives rise to invariance identities,8 two of which 

are 

(2.2) 

and 

(2.3) 

If we define the spin-tensor ATs;.b.ed by 

(2.4) 

then (2. 1) gives rise to 

(2.5) 

If we multiply (2. 2) by S·b A B, (2. 3) by SOb X' Y' and add 

the resulting equations we find, by virtue of (1.12), 

(2.6) 

From (2.5) and (2.6) it is easily seen that 

(2.7) 

Up to the present, no use has been made of (1. 2), 

which in view of (1.7) can be expressed in the form 

(2.8) 

Differentiation of (2. 8) with respect to aaAx' ,cds thus 

yields 

ATs;aAX' ,cd + Ard; aAX' ,se + ATe;aAX' ,ds = 0, 

which, by (2.4), is equivalent to 

(2.9) 

If we define ATs;ab,ed;1j .~, by 

(2.10) 

and note (2.4), we see that 

(2.11) 

Elsewhere! it has been shown that, in a four-dimen
sional space, if Ars;.b.ed;!J ,k' is any quantity which has 

the properties (2.5), (2.6), (2.7), (2.9), and (2.11) then 

(2.12) 

[An alternative proof of (2.12), which readily suggests 

generalizations to higher dimensional spaces, is 

presented in the Appendix. ] 

A comparison of (2.12) and (2.10) establishes that 

A/i'ab,ed is independent of alllY',kl' which, in turn, im

plies that A/Nab,cd is also independent of a lBy• ,k' 9 i. e. , 
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(2.13) 

Where g'abed is a spin-tensor with the same symmetry 

properties as Ns;ab,ed, viz. (2.5), (2.6), (2.7), and 

(2.9). 

From (2.4) and (2.13) we thus find 

which, upon integration, yields 

(2.14) 

From (1. 6) we see that 

AX' + AX' + 0 ( ) 
g'b,ed = a.AX• ,edab aa °bAx' ,cd .bed °IAX' ;oux·.J . 

When this is taken together with (2.14), it gives rise to 

which can be reexpressed10 in the form 

Ars = tgsabedRoobd + gS(oaAX' ;aaAX' .b) 

where gs is now a spin-tensor, which is therefore 

independent of aaAx' .b' i. e. , 

(2.15) 

All spin-tensors gs:= gS(aaAx') have been constructed9 

the result being 

gs = bffs, (2.16) 

where b is a real constant. 

Consequently, the problem of determining ATS has re

duced to the evaluation of the spin-tensor gsabcd where 

Esabed = ESabcd( alA X') and where Esabcd satisfies (2. 5), 

(2.6), (2.7), and (2.9). To do this we proceed somewhat 

indirectly, as follows. 

It is easily seen that, because of the symmetry prop

erties of Eoabed, 

gt.lei BSbd _ 2(Fsabed + FOOde. + EdaSeb) to - , 

from which we obtain 

g taleJ BSbd + g tbicJ Bsad + Eta/d} o'be + g tbldJ osae - 12gsabed 
tli IlJ tl} tl} - • 

If we define 

(fa I c= - b,EtI}lgtalei, 

and recall that 

B~~1:= - ESbdlEtlJ I' 

we see that (2. 17) reads 

(2.17) 

(2.18) 

gs.bed == Esbdl {fa, e + E'aal {fbi e + ES bel {fa I d + Esael {3"b, d • (2. 19) 

Consequently a knowledge of ~a,c determines gsabed. 

From (2.18) we note that 

and 

{3"a,e= - j3'e
l
a 

{3"'11 =0. 

We now define 

I.M. Anderson and D. Lovelock 

(2.20) 

(2.21) 

(2.22) 
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{3ABCDX' y, Z, W' = O'rAX' O'aBY' O'cCZ' al DW,fJ"a Ie, (2.23) 

in which case (2. 21) and (2. 22) imply 

f3ABCDX'Y'Z'W' = -f3ACBDX'Z'Y'W" (2.24) 

and 

(2.25) 

respectively. From arguments similar to those 

presented in Lemma A3 of Ref. 9, we find by virtue of 

(2.24) and (2.25) 

f3ABCDX'Y'Z'W' =ic[EBc€AD(Ex'Y'Ez'w' + Ex'z'€y'w') 

-EY'Z,Ex'w·(EABECD +EACEBD )], 

where C is a real constant. The latter is substituted in 

(2.23) which is then solved for fJ"a1c, (1.9) being used 

repeatedly in the process, this giving rise to 

(2.26) 

where a is a real constant. Equations (2.16), (2.19), 

and (2.26) are now substituted in (2.15) to yield 

Ars = aG"s + bg"s. 

We thus have the following theorem. 

Theorem: If ATs=Ars(O'aAX':O'aAX',b:O'aAX',bc) is a spin

tensor and 

then 

ATS = aG"S + bg"s 

where a, b are constants. 

Consequently, we see that, even in this case, the 

symmetry of NS [and hence of rrs by (1.1)] is again an 

inevitable consequence. 

APPENDIX 

The purpose of this appendix is to outline an alterna

tive derivation of Eq. (2.12) which explicitly exhibits 

the role played by the dimensionality of the space. We 

begin by introducing quantities !lab and f31J which are both 

assumed to be symmetric in their indices but are other

wise arbitrary, and consider the expression 

Arll;ai ,cI 3;!l4,hi so
s b d j h tv '" '" (.) 

2 11121314i5"b-cal-'ljl-'hk' 
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By expanding the Kronecker delta and by repeatedly 
invoking the symmetries of Ars;ab.cdHJ,hk, viz. (2.5), 

(2.6), (2.7), and (2.9), as well as the symmetries in

duced by the expression (lab!lcd f3 IJ!3"k a lengthy, but 
nevertheless straightforward calculation, shows that 

= t[4Ars;ab,cd;lJ,hk +ATs;ab,iJ;cd,lk] !lab!lcaf3/Jf3hk' (AI) 

This equation holds irrespective of the dimension of 

the underlying space. However, for n=4, the left-hand 

side of (Al) vanishes identically in which case it is 

easily seen, on account of the arbitrary nature of the 

!lab and f3 IJ , that 

By successively interchanging the pairs (cd), (ij), and 

(hk) in (A2), it thus follows that 

as required. 
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