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A CHARACTERIZATION OF THE EXPONENTIAL
FUNCTION BY PRODUCT

By SHIGERU KIMURA

1. Introduction and statement of results.
Let f(z) be an entire function and set
m(r, f)=min| f(2)],
M(r, f)zrgrzlgflf(Z)].

The relation between m(r, f) and M(r, f) has been very thoroughly explored
for functions whose orders lie strictly between 0 and 1. Hayman [7] proved
the following resuit.

THEOREM A. If f(z) is an entire function such that
(1.1) mr, [)M@r, fy=00), as r—oo,

then f(z)=Ae??, where A, B are constants, or else

im 108 Jvi(r, i

He was unable to decide whether (1.1) can hold for functions of order one and
of maximal type.

In this connection we prove the following results in this paper.

THEOREM 1.  Suppose that f(z) is an entive function of positive integral order
P, and that f(z) has no zeros in a sector {z;|argz|<m—=m/2p-+n} (>0) and
00, f)=1. If there exists a Jordan curve I joining z=0 to z=co such that

(L.2) f@) flwz) - flo?'2)=0(1)  (z&1)

where w=exp (ni/p), then f(z2)=eF®, where P(z) is a polynomial of degree p, or
else

(1.3
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We show that there exists an entire function satisfying the hypotheses of

Theorem 1 and (1.3).
As an immediate consequence of Theorem 1,

COROLLARY 1. Suppose that f(z) is an entire function of order one, and that
f(2z) has no zeros in a sector {z; |arg z| <=/2-+n} (n>0) and 50, f)=1. If there
exists a Jordan curve [ joining z=0 to z=oo such that

(1.4) f@)-f(—2a)=00) (z€D),
then f(z)=Ae?, where A, B are constants, or else

fim O8I

70 v

(L.5)

We show that there exists an entire function satisfying the hypotheses of
Corollary 1 and (1.5). Observing the function cos z, we note that we can remove
neither the condition on the defect nor the condition on the location of zeros in

Corollary 1.
To prove Theorem 2, we need the following Lemma.

LEMMA 1. Suppose that g(z)=e%*g.(2) is an entire function of finile order
having only negative zeros, where Q(2) is a polynomial and g.(z) is a canonical
product. Then the sign of log|g(r)| is definite for r=r, where v, is a positive
number, unless

(1.6) deg (ReQ(r))=0 and g,(z)=1.

THEOREM 2. Suppose that f(z) is an entire function of order ¢=2p-+1 hav-
ing only negative zeros and 8(0, f)=1. Further seiting ¢(z®)=f(2)- f(—2), gla)=
&(—2)/d0) we asswme that there is an arbitrarily small B>0 such that

(L7 [log Ig<rei"9>g(re'iﬁ)' ~2<cos [324 ) log{g(r)| ‘

Ze(r)|loglgr)i|

for all sufficiently large r where 0=Ze(r)=0(1/r"), &,>0 unless g(z) is in case
(1.6). Then f(z)=eF® where P(z) is a polynomial of degree q, or else
(1.8) lim 108N,
r-00 7

We show that there exists an entire function satisfying the hypotheses of
Theorem 2 and (1.8).

We can remove the condition d(0, f)=1 in Theorem 2, by giving some con-
ditions which are stronger than (1.7) and have a variant of Theorem 2.
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THEOREM 3. Suppose that f(z) is an entire function of order ¢g=2p+1 hav-
ing only negative zeros. Setting ¢(z25)y=f(z) f(—=2), gl2)=¢(—2)/P(0), we assume
that g(z) is a canonical product. Further we assume that there is an arbitrarily
small B such that if \g(r)| =1,

(1.9) log | g(rei#)| <(cos Bg/2) log|g(r)|
Sfor all sufficiently large v and if |g(r)| =1,
(1.10) log|g(rei?)| =(cos Bq/2) log|g(r)]

Jor all sufficiently large v. Then f(z)=e"® where P(z) is a polynomial of degree
q, or else

Hm,lggﬁﬂ%ﬁ oo

o0 r

(1.11)

We are unable to decide whether there exist functions satisfying the hypo-
theses of Theorem 3 and (1.11).
Arguing as in the proof of Theorem 3, we have the following.

THEOREM 4. If f(z) is an entire function of order one having only negative
zeros such that

(1.12) J)-f(=n)=0(1)  (r—c0),

then f(z)=Ae??, where A, B are constants, or else

(1.13) lim liglj(rf— Defeo

We show that there exists an entire function satisfying the hypotheses of
Theorem 4 and (1.13).

Finally we can see the following result which is obtained under some conditions
on the value distribution.

THEOREM 5. Suppose that f(z) is an entire function having only negative
zeros and that ¢(2)=f(2)- f(—=z) is real for real z. Further assume that ¢(z)=w
for any real number w has either only veal voots or only non-real roots. Then
f(@)=(Az+B)e"® or else f(z)=AeP® f,(z), where A, B are real or pure imaginary
constants, P(z) is an odd function and f,(z) is a canonical product of genus one
such that n(r, 0, f)~Cr, with a constant C.

2. Proof of Theorem 1. We need two known results.

LEMMA A [5]. Let f(z)=explaez?+a,z? 714 - +05p)fI1E(EZ—, p) be an entire
function of order p and 6(0, f)=1. Then for any ¢>0 we have
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2.1 log|f(z)|—Re c;z?<delc,|r? (G=70e)),
for z=ret? =1 and
(2.2) log|f(z)|—Re c,z?>—de|c;ir?  (jz7ule)),
for z=ret* e I;—E; where Cj:a°+|a,§aja;p (a=exp (1/(p+1), [={z; a?< |zl <

a’*% and E; is an exceptional set which is confined in a finite numbeyr of disks,
the sum of whose radii is at most deda’*?® with an arbitrary small 6>0.

LemMA B [8]. If ¢(z) is a non-constant entire function such that
(2.3) log m(r, ¢)<cos zd log M(r, $)+0O(1)
as r—co, where 0<A<1, then

(2.4) lim 108 M 9)_ g

T=00 s

where 0< = 4o,

Let f(z) be an entire function satisfying the hypotheses in Theorem 1. We
suppose that (1.3) is false, i.e.,

(2.5) timing O8O g oo

Tooo ¥

At first, we show that the genus of the canonical product of ;(z) is not greater
than p—1. Since the order of f(z) is equal to p, we can write

(2.6) fley=emrsen 1 B(Z).

a,
Hence
=act 2, ja;p:ao_{—al—p"*— cetasP

1 isa

Case (1). pisodd. Setting a,=]|a,lexp (i(z+0.)) (p|0.]<z/2—50 1e=07),
we have
Re (¢c#?)=rP(Re ay—|a;| P cos pf,— - —la,,i"? cos pb.)

<r?Re ay—r?(|a,| P+ - + layj[‘p) Cos (7/2—10) .
Using (2.1), we see
log| f(M)|=<rPRe ay—r?(la,| 7+ -+ 4| a,,]i"’) cos (z/2—z)—4delc;lr.
Therefore we have
(la,[77+ - +la,,|77) cos (x/2—70)—Re ay

—de([ao] @] o +la,, )= —(log] FA /o
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Hence (2.5) yields
il la,| 7 < 400

Thus the genus of the canonical product of f(z) is not greater than p--1 and
we can rewrite (2.6) as follows

2.7 f@)=exp (aez?+ - +a,) fi(2),

where the genus of f,(z) is at most p—1. By the well known estimation [6,
p. 297

log M(r, fi)=0(r?).
Now, it is easy to see that
(2.8) $(z)=/1(2) [1lwz) - [@*7'2),  (w=exp (xi/p)),

is a function of z%?. Hence setting

PO =¢(*")=f(2) [ (wz) -+ [(w*?2),
we have log M(r*?, ¢)=<2p log M(r, f1)=0(r?). 'Therefore it follows that

(2.9) im 108 Mo, 9) (o=1C1=1z]*P).

On the other hand, by the assumption (1.2) we have
m(p, Py=K<+co,

and it follows that ¢ satisfies hypothesis (2.3) in Lemma B with 4=1/2 or else

(2.10) ¢(z)=IK'=constant.

Hence, if ¢(z) is not constant, we have
lim log][\fl(/f, ¢):‘3, 0<p=+ce,
Py

which contradicts (2.9).

Now we deal with case (2.10). Suppose first that K'=0. Then (2.8) shows
that f;(z)=0 for every z, and so we have f(z)=0 for every z from (2.7). This
contradicts the hypothesis of Theorem 1 that f(z) is an entire function of posi-
tive integral order. Thus K’+#0. Then (2.8) shows that f(z) does not take the
value 0. From this and (2.10) we have f(z)=e"®, where P(z) is a polynomial
of degree p.

Case (2). p is even. Similarly we can prove the conclusions of Theorem 1
using (2.2) instead of (2.1). In fact, for any d,>0, setting 6=(4ea®)~'sind, we
have 4eda’**=a’ sind, and so in view of E,CI,={z; a/<|z| <a/*¥?%}, E; is con-
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fined in {z; largz|=n/2} (F=7e)).

ExAaMPLES. We show two examples satisfying the hypotheses of Corollary

1 and (1.5), and we show an example satisfying the hypotheses of Theorem 1
and (1.3).

(). f()=1/l"(z)), where I'(z) is the Gamma function. Since it is well
known [11, p. 1517 that,

(2.11) log I'(z)=(z—1/2) log z—z+1/2 log 2x+0(1/2),
(—r+dZarg z=x—9)

we have

(2.12) log f(2)=—(2+1/2) log z+2z—1/2 log 2= +0(1/z).

Now it is also well known [3, p. 21] that,

expllog I'(z)} =exp{log =—log (sin xz)—log I'(1—2)}

and so we have

(2.13) exp{—log I'(—z)} =exp{—log z-+log (—sinzz)+log I'(1—2)}.
From (2.11) and (2.13), it follows that

exp{—log I'(—z)} =exp{—log z-Flog (—sinzz)+(z+1/2) log (z+1)
—z—1+1/2exp 2x+0(1/2)}, (—r+oZarg z<7—3).

Therefore we obtain in {z; —z+d=<argz=x—0},

(2.14) exp{log f(—z)} =exp{log (—sinzz)+(z+1/2) log (z-+1)
—z—log z—log m—1+1/2 log 2z +iz+0O(1/2)}.
Combining (2.12) and (2.14) we have

(2.15) f) f(=r)—>0  w—oo).

This is a stronger condition than (1.4). Condition (1.5) follows from (2.12).
2). If we set g(z)=f(z/m—1/2) where f(z)=1/(zI(z)), then g(z) g(—z)=

w~'cosz. Hence g(z) satisfies (1.4) and (1.5). However g(z) does not satisfy
(2.15).

(3). Let

fer= B DewfE 1)

where a,=—((2v—1)z/2)"/?. Then, setting p,=(2v—1)x/2 we obtain
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6:(9= @) f@2) ~ flora=TT(1- 2.

v=1 (Z,Z,p

2

= ﬁ(l—%)zcos C.

v

Thus ¢,(r)=0(1) (r—c0). Hence f(z) is an entire function satisfying the hypo-
theses of Theorem 1 and (1.3).

3. Proof of Lemma 1. Denoting the genus of g,(z) by &, we have

w n(x) xcos(k-+1)0-+rcos kd

dx
o xk*1 12+ 42x7 cos

G log{gl(rg“’)i:(__l)krkﬂg

If % is odd, then (3.1) yields

©n(x) dx 1 0 nx)
o xFH x 2?Tkgowdx'

—log!g:(r) | =r*+

Thus we have

dx —> + (r——+-co).

—logigu] IST n(x)

EE e
If & is even, then (3.1) yields similarly (log|g.(r)])/r*—-+oc0 as r—-co. Hence,
if k=zl=deg (Re Q(r)), then the sign of log|g(r)| coincides with the one of
log|g«(r)] for all sufficiently large ».
On the other hand, if 2</, then the sign of log|{g(»)| coincides, with the
one of Re Q(r) for all sufficiently large ». In fact, from (3.1) we have
wnln)  dx

[1log[g:(r)] I:r"“gogk;’r“x;?

rn(x) = n(x)
k k+1 /. -
=r SO xk+fdx o Sr xEte dx,

and so |log|g,(r)|| =0(Re Q(r)). Thus the sign of log|g(r)| is definite for »=r,,
with the exception of case (1.6).

To prove Theorem 2, we shall make use of the following Baernstein's result

[2].

LEmma C. Let B(t) be a nondecreasing convex function of logt on (0, co)
with BO)=B0+)=0. Let {(§) be a bounded and measurable function on (0, ).
Let b(z) be the function which is bounded and harmonic in the half disk {z;|z| <R,
Im z>0}, and which has the following boundary values:

bRe*HY=1(0), b(r)=0, b(—r)=B@) O<r<R).
Let 0, 1), a=(0, 1). Suppose 0<r<s=aR. Then
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(3.2) [ b"(—t)—ifff mbol) 4
> K, bigr) —Kla, U)Mﬂl_.’

where K, is a positive constant depending only on o, Kla, o) is a positive constant
depending only on « and o, and M,= s%p 11(6)].
0<h<

4. Proof of Theorem 2. Let f(z) be an entire function satisfying the
hypotheses in Theorem 2. We suppose that (1.8) is false. Proceeding as in §3
we obtain

4.1) f@)y=e® - fi(2),

where P(z) is a polynomial of degree at most ¢ and the genus of f(z) is not
greater than ¢—1=2p. If we set

P®)=[(2)- f[(—2)=eF? [1(2)- [1{—2),
then the degree of R(z) is not greater than 2p=¢—1. Hence we have
log M(r?, $)=Kr*?421log M(r, f1)=00%.

Since glz)=¢(—z)/¢(0), we obtain

4.2) ﬁm.ﬂéiﬁggz -0
v

Now we can write
(4.3 glz)=e . g,(2),

where Q(z) is a polynomial of degree at most p and the genus of the canonical

product g,(z) is not greater than p.
We can easily deal with case (1.6). Since g(z) has only negative zeros, it
follows from (4.3) and (1.6) that

g@)=¢(—2)/$(0)=exp {i(ap 2" -+ - +a,2)},

where «, (=0, ---, &’) are all real. Hence by (4.1) we deduce f(z)=exp (P(2))
where P(z) is a polynomial of degree ¢, which is the desired result.
Now we consider the other cases than (1.6).

Case (1). loglg(M|=0 and log|glre'?)glre=t?)|—~2(cos Bq/2)loglglr)| =
e(r) log|g()| for all sufficiently large ».
We set
Q@)y=apz¥+ - +az, degReQr))=! (Zk)
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and

arga;=0; (=1, -, k).
Let B be a sufficiently small positive number. We define in D={z;0<]z| <R,
O<arg z< §},

H(rei‘g):S:log lgre?)|de

4 7
=[" Re@uesndg+2| Toglgire)1dp,
Then we have

4.4) H(re”)z%lallrlsinlﬁ cos G, -

2] a7 sin 6 cos 6,+ ZSjlog | girei) | d .

Since g(z) has only negative zeros, we can show that H(r¢*?) is harmonic in D
by arguments similar to those in the proof of Theorem 1 in [1].
Furthermore we consider the subcases.

Case (1-1). k=l. In this case the sign of log|g(r)] coincides with the one
of log|g(r)| for all sufficiently large ».
Setting I,=[0, z/2)\)(3%/2, 2z], {,=(xn/2, 3n/2) we define

(4.5) H@reth)= ?.—lajlrf sin 76 cos 0,4 Hy(re'?),

0581,

H,(ret?)= 02 % la,|r?sinjé cos G,

= 8

where
) @ .
Hyret)=2{ loggi(re®)| dg.

Then we have Hre'?)=H,(ret?)+H,(re*?).

At first we show that H,(re*f) is a nondecreasing convex function of logr
on (0, o0) with H,(0)=H,(0+)=0, for all sufficiently small positive numbers 5.
Since it is trivial from (4.5) that H,(re'f)—Hy(re*f) is a nondecreasing convex
function of logr on (0, co) with H,(0)—H,(0)=0, it is sufficient to show that
Hy(retf) is so.

We can see that log|g;(re??)] is monotone decreasing for 0=<60=<2x/(g-+1).
In fact, setting

tcos (k+1)0+-cos k8
t*+2t cos 6+1

Gk(t, 6):

we have from (3.1),
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6 2 oglgrenyy={ 2 0y,
where
0G, _ tsin (k+1)8 T,(t, 0)+sinkd T,..(t, 0)
00 (£*+2t cos 0+1)*
and

T, 6)=(j--D)*+2jt cos 6+ j—1.

Since T,{t, 8)>0 for 0=0=<(1-1/2/)= [13], observing 2z/(¢+1)==n/(k-+1), we
easily deduce that

Tut, 0)>0, Trnlt, O)>0  for 0=0<=2x/(g+1).

Thus log|gi(ret?)| is monotone decreasing for 0<0=<2x/(g+1).
Hence we have

and therefore we have

8°H, /H, | 1 6H,
=G

ollog r)® ort

from the harmonicity of H(re'’). Hence H;(re*f) is a convex function of logr
on (0, ). On the other hand, Hi(re'f) is a nondecreasing function of log# on
(0, o) from the fact that log|g,(re’f)| is positive and (3.1). Thus H,(re*f) is a
nondecreasing convex function of log» on (0, oo) with H,(0)=H,(0--)=0.

Next we show that H(re'f) is an increasing convex function of logr for all
sufficiently large » for all sufficiently small positive numbers p. Since log|g,(re’?)|
is a decreasing function of ¢ (0=¢=p), we have from (3.1)

. B . .
Hyret?)=2| l0g|g,(re*)| 228 log| g,(re?)]

—oporm(= n(x) xcos (k-+1)B+rcos kB
=2 So xk x4 2rx cos B dx

> 5r* cos <k+1)ﬁgr~’i(,§j%dx>o.

0 X

Hence Hy(re'#)/r*—-+o0, as ¥—+4oo and H{re'®) is unbounded. From (4.6) we
have

< n(x) xsin(k+1)0 TF+rsinkd T%,
0 xktt (x242rx cos 0-+72)?

where TF=(k+1)x%*+2krx cos 8-+(k—1)r2. Hence we have

dx

o | gulret®) =+
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T n{x) e

(log|gi(re’)|)=—rk sink0 rk“SO s —(x_!_rj;dx

0
30
<—£sink0r’“§r~fvdx
= 16 0 X
for all sufficiently small positive numbers #. Hence (6°H/30%),-; is negative and
(0*H/(0 log r)%)g-5 is positive for all sufficlently large ». Thus H{re'#) is an
increasing convex function of log » for all sufficiently large r.
Let y=f/x. Now we can define a function B*(t) satisfying the hypotheses
on B{#) of Lemma C such that B*{#)zH(t"e'®) on (0, o). In fact, choosing a
sufficiently large r,, we define

Bx@vny=H,(te'?): 0<t<r,
t

=H,(re'®)+r Hi(re'?) log -
t

nEtsr

—=t==12
=Hte'f): t=vr,,

where H(r.e'®)=H,(r,e*?)+r H{(re'?) log r./7..
Fix R>r, Let H*(z) be the bounded harmonic function in D={z; 0<|z| <R,
0<arg z<f}, which has the following boundary values:

H*(r)=0, H¥{(ret8y= B*(y1/7) (0=r<R),
H*(Re*)=H(Re'Y).
We define b(z) in D'={z;0<|z|<RY", O0<arg z<zm} by b(z)=H*"). Then

b(z) is the function considered in Lemma C, with B(t)=B*(), the R there replaced
by RY" and

UO)=b(RYT 'Y= H*(Re¥ %) =H(Re'?%) :giio log|g(Re*)|d¢ .
Let s=2"'°R and r,<r<s. Using (3.2) with o=y¢/2 (=8¢/2x<Bg+1)/2x<1)
and a=27Y% (1), we obtain

bo(rt')

@7 di> Ky~

Ssllr bo(—1)—(cos wo)by(t)

17 Z‘1+0

B*(Zuerl/T)-}—Zﬁ log M(R, g)

g4/2 ’

—K,

where K, K, depend only on 8 and g. Now byt)=yHFE"), be(—t)=yH}{ e*3).
Changing variables in (4.7) and using B*(2V¥RY")=H*(2V:Re!#)=H(2se!%)=

Sﬂ log | g(2se*) | d$=28 log M(2s, g), we obtain

rHEr) 48 log M(2s, g)
K, .

ya/2 s/

s H¥(te'?) —(cos Bg/2)HE®)
S : z1+q/2ﬁ T K,

r
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Since H}(te'®)<Hy(te'f)=log|g(te'*)glte %) and HF(t)=H,(t)=2 log|gt)| (t=ry),
Hi(te!?)—(cos Bg/2)H}(t)<e(t) log | g@)| from (1.7). Hence we have

log M(2s, g)

e 2 (25)2/2 ’

tirare

(4.8) SSMI)I dt=C, 19&’ g@i

r

where C,, C, depend only on 8 and ¢. From (4.2) we find a sequence of »= {r,}
tending to infinity with » such that

loglg()! log M(2s, g) _ ., loglg(r)| (s dt
Co =g (e ”’""<2$>q7z"'§c e S*

y/2 - fiteo

log|g(")|
=C '7,q/2+'so ’
where C’, C are positive constants which do not depend on ». For each fixed r,
if s tends to oo, then we arrive at an impossible inequality from ¢,>0.

Case (1-2). [>k. In this case, since Re (Q(r)) is positive for all sufficiently
large », 6, lies in [,=[0, =/2]\J(3x/2, 2x].

Firstly we assume that £ is even. In this case, we use the functions H, H,,
H, and H, defined by (4.5). H,(re‘®)is a nondecreasing convex function of log»
on (0, ) with H,(0)=H,(0-+)=0. Since the degree of H,(re'’)—H(re'?) is
higher than one of H,(re*f), H(re'?) is a nondecreasing convex function of logr
for all sufficiently large ». Hence arguments similar to those in case (1-1) lead
to a contradiction.

Secondly we assume that % is odd. In this case we define

H@reth= X -?.—Iajlrjsinjﬁ cos 6,
1

0,1

Hyreth= X % la,|r?sinjé cos ,+H,(re'?),

0,1y

where
9 .
Hg(re“’):2g log | g:(re®#)| dg.
0

Then we have Hre'')=H (re*®)+ H,(re*?).

It is trivial that H,(re’f) is a nondecreasing convex function of log r on
(0, o0) with H,(0)=H(0+)=0.

Now we show that H(re*#) is a nondecreasing convex function of logr for
all sufficiently large » for all sufficiently small positive numbers [. Since
log|g.(re'?)| is an increasing function of 4 (0=<0=<p), we have from (3.1)
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0§—H3(reiﬁ):—25510g lgi(re'®) | dg=—28log|g.(r)|
=2 [T DX <o 2 s B dem ot

(r—oo).

Hence | Hy(re*#)| /r'—0 as r—-+oco and H(re'f) is unbounded.
Proceeding as in case (1-1), we have

(8/80)(10g|g1(1'e“7)[) S n(x) xsin(k4-18 T¥+rsinkd T¥, J
pEol o xktl (x%42rx cos 0+r2)? ~

dx

<S°° n(x) xlk+1)0x+r)P+(k-+2r(x-+r)*
—Jo xk+t (cos ) x+7r)*

dx —> 0 (r—ooo)

~ k2 1 alx) k42 (" n(x)
~ cos*d r So x kL dxt cos*d Sr x k2

for all sufficiently small positive 4.

Hence (0°H/00%-p is negative and (0*H/(0 log »)*)s_p is positive for all suf-
ficiently large ». Thus H(re*f) is a nondecreasing convex function of log» for
all sufficiently large ». Thus arguments similar to those in case (1-1) lead to a
contradiction.

Case (2). loglg(r)|<0 and log|g(re*®)g(re )| —2(cos Bq/2) log|g(r)|=
e(r) log|g(»)| for all sufficiently large r.

Set Q*z)=—Q%), g¥z)=g.(z)" and g*(z)=e¥®g¥(z). Then (1.7) is equi-
valent to

llog|g*(re*?)g*(re=*?)|—2(cos Bq/2) log|g*(r)| | Se(r)|log|g*(r)|| .

Thus our case is handled in a fashion almost similar to case (1).
We only show how to handle the inequality corresponding to (4.8). Proceed-
ing as in case (1-1), we have

s (1) log | g*(®)| log | g*(r)| log Ms(2s, g*)
(49) S ———Wz dtécl 7,-(1/277 _CZ“—(éQSWZ——_ ;

where M;s(2s, g*)= sup |g*(2se!?)|. In this inequality we must show that
0<101< 3

IOg Mﬁ(?’, g*)

ya/2

lim =0.

00

Since log My(r,g")= sup Re(Q*(re'?))+log Ms(r,g%) and lim{ sup Re(Q*(re*?))}
0<101< 8 rooo 008

/ri?=0, it is sufficient to show that
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log Mg(r, gT)

ya/2

(4.10) lim

7co

=0
in the case that the genus of g¥(z) is not smaller than degree of Re (Q(»)). In
this case we have from (3.1),

i < n(rt) tcos (k+1)0+cos ko
log|g(re 0)1250 phe 242t cos 0+1

Hence there exists a #, for some d,>0 such that

dt.

1 e ,
mailr, @)= | ‘log*|gtre)|do

1 (% *( il o Od0y (= n(rt) _dt
T 2z So log|gitre)idb = 2r S ZECER R

Since (4.2) implies lim {log M(r, g} /r¥?*=0, we have meg,(r, g%)/rv*—0 as r-—oo
and so we have

loglgt)l _ 1,&“‘ n(r) _dt

ra/2 Toput o gkt oy

—> 0 (r—-+too).

Since log|g¥(re’?)| is monotone decreasing for 0<0=2z/(¢-+1), we have

log Ms(r, g¥)=log|g¥(r)| for 0<B=2x/(g+1). Therefore we proved (4.10).
Proceeding as in case (1), we have a contradiction from (4.9) and (4.10).
An example. Let

= fii= ool et M N e

n=1 (2 q

where a,=—n"% Since

s st B 2o Z 1 1)
we have
g2 =d(— (l—b—>exp{b2n+~-+%<;—n>p},

where b,=—n%?% Now n(r, 0: g)~r%? and hence we have in {z; jarg z| <z —0d}
(0<d<x) the asympotic expansion [9, p. 232],

loglg(ret?)| =(—1)Prr?+2 cos {0 (p+1/2)} +O@P+log¥).
Therefore

|log | g(re*?)| —(cos B(p+1/2)) loglg(r)||=e(r) loglg(r)!,

where ¢()=0(1/r%) (¢,>0). Thus f(z) satisfies the hypotheses of Theorem 2
and (1.8).
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5. Proof of Theorem 3. Let f(z) be an entire function satisfying the
hypotheses in Theorem 3. We suppose that (1.11) is false, i.e.,

lim inf lqg—f‘f—fr’ D o

Since ¢(z9)=[(2) f(—z), g(z2)=¢(—2)/¢(0) and log M(? ¢)<2log M(r, f), there
exists a sequence {r,}=r which tends to infinity, such that

pai2

Arguing as in §3, we see that the sign of log|g(r)| is definite for all sufficiently
large », with the exception of case (1.6) in which case we have the required
function f(z)=e"®, deg P(z)=q.

If the sign of log|g(r)| is positive, (5.1) vields
log|g(r)|

ya/2

(5.2 lim inf <+oo,

700

If the sign of log|g(»)| is negative, then arguments similar to those in case (2)
of §4 yields lim inf (—log|g(»)|)/r¥?<+4co. Thus in the sequel we may assume

that the sign of log|g(r)| is positive for all sufficiently large r, because the
remaining case is similarly dealt with.

Fix R>0. Wedefine in D={z; 0<]z| <R, 0<arg z<§} a harmonic function
H(z) as follows

0 )
H(re“’):SO loglg(re'®)|dg.
Let y=p/z and define b(z) by b(z)=H(z") in {z; 0<|z|<RY", O0<argz<=z}. Then
b(z) is the function considered in Lemma 4, with B@#)=H({#"¢*f), the R there
replaced by RY7" and
i1 .
Z(ﬁ)zb(Rl”'e“’):So log|g(Re'?) dg .

It is easily verified that B(t) satisfies the hypotheses of Lemma C. Now bs(t)=
7 loglg®], be(—1t)=7y log|g(te*#)|. Hence arguing as in §4, we have

s 18y —
(5.3) S log|g(te’)] ifg;ﬁa/% loglg®!
loglg(n)| log | g(2s)]
PO G T e (0<r<s <o)
Case (1).

:+OO
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From (5.2) we can find arbitrarily large values of » and s, with r<s, such that
the righthand side of (5.3) is positive. Thus it follows that the inequality

log | g(te®)|—(cos Bq/2) log| gt} >0
holds for some ¢>» and this constradicts with our assumption (1.9).

Case (2). B=0. In any case, we have (loglg(r)])/r¥*>0 for »>0. For
each fixed » the right-hand side of (5.3) is positive for sufficiently large s, and
again we have a contradiction.

Case (3). 0<B<+co, Using the identity [2]:
bolr)=| o0+ bs~0000r, Dat,
where Q(r, )=2rx %r*—i%)"*log v, we have
(5.4 log | g(r7)] éS:(log |g(#)| +log| g(t"e'®)NQ(r, Dt .

Dividing g by a large positive constant, if necessary, we can assume that (1.9)
holds for all 1>0. Putting (1.9) in (5.4), we obtain
log ] (1) = 1+-cos 89/2) log] g -Q(r, Dt

Proceeding as in §4 of [8], with 7¢/2 in place of 1, we arrive at

7
lim 08120DL_ g

pias2 -

7o

Hence, by Valiron’s Tauberian Theorem [12], we have
n(r, 0, g)wgr‘”?,

and
n(r, 0, f)w/‘%r‘l.

Therefore we have 6(0, f)=1. Proceeding as in the proof of Theorem 2, we
have B=0, which is impossible.

6. Proof of Theorem 4. Put ¢(z%)=f(2)f(—2) and g(z)=¢(—2)/¢(0), then
g(—r) is bounded i.e., |g(—r)|<C. If C>1, then h(z)=g(2)/C satisfies the as-
sumption of Theorem 3, that is,

log | h(re'?)| =(cos 8q/2)|log h(r)]
with 8=z and ¢=L1



32 SHIGERU KIMURA
Now we have the following fundamental inequality which corresponds to
(5.3),

dt>C, loglh(rillljz—log[CI

Ss log | h(—1)|

R

log M(2s)+log|C|

. -1/2__ «~1/2
(25172 2log|C|(r sTEy

—C,

We note that if C<1, then we use (5.3) with ¢=1, again. Proceeding as in the
proof of Theorem 3, we have the desired result.

7. Proof of Theorem 5. Let /A be the set of real numbers w for which
¢(z)=w has only real roots.
We consider three cases.

Case (1). A consists of one element. In this case we have ¢(z)=K (=con-
stant). Suppose first that K=0, then ¢(z)=f(z)- f(—z) shows that f(z) or f(—=z)
is zero for every z, so that f(z)=0. Suppose next that K0, then we have
f(2)#0 and f(z)=Aexp (P(z)) where P(z) is an odd function.

Case (2). A is unbounded. We need the following result [4].

LEMMA D. Let ¢(z) be an entire function. Assume thal there exists an un-
bounded sequence {w,} such that all the roots of the equations ¢(z)=w, (n=1, ---)
are veal. Then ¢(z) is a polynomial of degree not greater than two.

Since ¢(z)=f(z)f(—z) is a polynomial of degree not greater than two by
Lemma D and f(z) has only negative zeros, it follows that ¢(z)=K(z—a)(z+a),
where K and « are real numbers. Hence f(z)=A(z—a)exp (P(z)) where P(z) is
an odd function.

Case 3. i consists of at least two elements and is bounded. In this case,
we shall make use of the following result [107].

LEmMMA E. Let ¢(z) be a transcendental entire function, real for real z.
Assume that ¢(z)=w has either only non-real voots or only real roots for all real
numbers w. Then ¢(z)=A cos (Bz+C)+D with real constants A, B, C, D, AB+0.

Since ¢(z)=f(2)f(—z) and since f(z) has only negative zeros, Lemma E
yvields n(»)~|B|r/z, which is the desired result.
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