A characterization of the family of secant or external lines of an ovoid of PG(3,q)

Nicola Durante
Domenico Olanda

Abstract

In this paper we characterize the family of secant lines of an ovoid of $\mathrm{PG}(3, q)$ and the family of external lines to an ovoid of $\mathrm{PG}(3, q)$.

1 Introduction

In the paper " A characterization of the family of secant lines of an elliptic quadric in $P G(3, q), q$ odd ${ }^{\prime}$ [2] O. Ferri and G. Tallini characterize the family of secant lines of an ovoid of $\operatorname{PG}(3, q), q$ odd. The same result is obtained for q even $(q>2)$ by M.J. de Resmini in the paper " A characterization of the secants of an ovaloid in $P G(3, q), q$ even, $q>2$ [1]. They got the following results.

Theorem 1.1 (Ferri-Tallini). Let \mathcal{F} be a family of lines of $P G(3, q), q$ odd, satisfying the following properties.

I Through every point of $\operatorname{PG}(3, q)$ there are either q^{2} or $\frac{q^{2}-q}{2}$ lines of \mathcal{F}.
II In every plane of $P G(3, q)$ there are either $\frac{q^{2}+q}{2}$ or zero lines of \mathcal{F}.
III Let p be a point on some line of \mathcal{F}. In every pencil with center p there are $\frac{q-1}{2}, \frac{q+1}{2}$ or q lines of \mathcal{F}.

IV Let π be a plane of $\operatorname{PG}(3, q)$ containing at least one line of \mathcal{F}. Through every point of π there is at least one line of \mathcal{F} contained in π.

Then \mathcal{F} is the family of secant lines to an elliptic quadric of $P G(3, q)$.

[^0]Theorem 1.2 (de Resmini). Let \mathcal{F} be a family of lines of $\operatorname{PG}(3, q), q$ even and $q>2$, satisfying the following properties.

I' Through every point of $\operatorname{PG}(3, q)$ there are either q^{2} or n lines of \mathcal{F}, where $0<n<q^{2}$.

II' Let p be a point on some line of \mathcal{F}. In every pencil with center p there are either $\frac{q}{2}$ or q lines of \mathcal{F}.

Then $n=\frac{q^{2}-q}{2}$ and \mathcal{F} is the family of secant lines to an ovoid of $P G(3, q)$.
In this paper we show that by using only properties I and II it is possible to prove both results. The theorem we will prove is the following.

Theorem 1.3. A family \mathcal{F} of lines of $P G(3, q), q>2$, satisfying properties I and II is the family of secant lines to an ovoid of $\operatorname{PG}(3, q)$.

As an application to Theorem 1.3 we also get the following result.
Theorem 1.4. Let \mathcal{F} be a family of lines of $P G(3, q), q>2$, satisfying the following properties.
\mathbf{I}^{*} In every plane of $P G(3, q)$ there are either $\frac{q^{2}-q}{2}$ or q^{2} lines of \mathcal{F}.
II* Through every point of $\operatorname{PG}(3, q)$ there are either $\frac{q^{2}+q}{2}$ or zero lines of \mathcal{F}.
Then \mathcal{F} is the family of external lines to an ovoid of $P G(3, q)$.

2 The characterization theorem

In this section \mathcal{F} will be a family of lines of $\operatorname{PG}(3, q), q>2$, satisfying Properties I and II. In order to simplify the exposition we will call black a point of $\mathrm{PG}(3, q)$ on q^{2} lines of \mathcal{F}. Let Ω be the set of black points of $\mathrm{PG}(3, q)$. A plane containing no lines of \mathcal{F} will be called a tangent plane, while a secant plane is a plane containing $\frac{q^{2}+q}{2}$ lines of \mathcal{F}. Next propositions will show that there are exactly $q^{2}+1$ black points, that Ω is an ovoid of $\operatorname{PG}(3, q)$ and that \mathcal{F} is the family of secant lines to Ω.

Proposition 2.1. On every line of \mathcal{F} there are exactly two black points.
Proof : Let ℓ be a line of \mathcal{F}. Let a be the number of black points on ℓ and let μ_{ℓ} be the number of lines of \mathcal{F}, different from ℓ, meeting ℓ. Since every plane through ℓ is a secant plane and as in those planes there are the lines of \mathcal{F} meeting ℓ we get

$$
\begin{equation*}
\mu_{\ell}=(q+1)\left(\frac{q^{2}+q}{2}-1\right)=a\left(q^{2}-1\right)+(q+1-a)\left(\frac{q^{2}-q}{2}-1\right) . \tag{1}
\end{equation*}
$$

Hence $a=2$ and the assertion follows.

From the previous proposition, counting $|\Omega|$ by considering the lines of \mathcal{F} through a black point p we have,

$$
\begin{equation*}
|\Omega| \geq q^{2}+1 \tag{2}
\end{equation*}
$$

We can now prove the following
Proposition 2.2. A line containing two black points is a line of \mathcal{F}.
Proof : Let p and p^{\prime} be two different black points and let ℓ be the line $p p^{\prime}$. Suppose, by way of contradiction, that ℓ is not in \mathcal{F}. Denote again by a the number of black points on ℓ and by μ_{ℓ} the number of lines of \mathcal{F} meeting ℓ. Let π be a secant plane through ℓ. Denote by ρ_{π} the number of lines of \mathcal{F} contained in π and containing the point p. Since $\ell \notin \mathcal{F}$ then we have $\rho_{\pi} \leq q$. If π_{1}, \ldots, π_{m} are the secant planes through ℓ, then we have

$$
q^{2}=\sum_{i} \rho_{\pi_{i}} \leq m q
$$

and hence there are at least q secant planes through ℓ.
If $m=q$, then

$$
\mu_{\ell}=q \frac{q^{2}+q}{2}=a q^{2}+(q+1-a) \frac{q^{2}-q}{2}
$$

and hence $a=1$, while $a \geq 2$.
Hence $m=q+1$ and

$$
\mu_{\ell}=(q+1) \frac{q^{2}+q}{2}=a q^{2}+(q+1-a) \frac{q^{2}-q}{2} .
$$

Therefore $a=2$. If follows that Ω is a cap, hence, since $q>2$, it $|\Omega| \leq q^{2}+1$ [3]. Count $|\Omega|$ by considering all lines through p. We obtain $|\Omega| \geq q^{2}+2$ and this is a contradiction. It follows that $\ell \in \mathcal{F}$ and hence the assertion.

From propositions 2.1 and 2.2 it follows that the set Ω of black points is a cap and hence $|\Omega| \leq q^{2}+1 \quad$ [3]. From Equation (2) $|\Omega|=q^{2}+1$ and hence Ω is an ovoid, and propositions 2.1 e 2.2 show that \mathcal{F} is the family of secant lines to Ω.

3 Applications: Theorem 1.4

It is well known that the points of the dual space $\mathrm{PG}^{*}(3, q)$ of $\mathrm{PG}(3, q)$ are the planes of $\mathrm{PG}(3, q)$ and the lines are the pencils of planes with axis a line of $\operatorname{PG}(3, q)$. By identifying a pencil of planes with axis the line t, with the line t itself, the planes and the lines of $\mathrm{PG}(3, q)$ can be seen as the points and the lines of $\mathrm{PG}^{*}(3, q)$.

With such an identification a "point" π is on a line t if the point π contains t. If Ω is an ovoid of $\mathrm{PG}(3, q)$, the $q^{2}+1$ tangent planes to Ω are, in the dual space, the points of an ovoid Ω^{*} and the secant lines to Ω are the external lines to Ω^{*}, while the external lines to Ω are the secant lines to Ω^{*}. Moreover if Ω^{\prime} is an ovoid of $\mathrm{PG}^{*}(3, q)$ there is an ovoid Ω of $\mathrm{PG}(3, q)$ such that $\Omega^{*}=\Omega^{\prime}$. We can now prove Theorem 1.4. Let \mathcal{F} be a family of lines of $\mathrm{PG}(3, q)$ satisfying properties I^{*} and $I I^{*}$. In the dual space the family \mathcal{F} satisfies properties I and $I I$ and hence by Theorem 1.3 it is the family of secant lines to an ovoid Ω^{\prime} of $\mathrm{PG}^{*}(3, q)$. Let Ω be the ovoid of $\mathrm{PG}(3, q)$ such that $\Omega^{*}=\Omega^{\prime}$. Then it follows that \mathcal{F} is the family of external lines to Ω.

References

[1] M. J. de Resmini: A characterization of the secants of an ovaloid in $\operatorname{PG}(3, q), q$ even, $q>2$. Ars Combin. 16 (1983) B 33-49
[2] O. Ferri, G. Tallini: A characterization of the family of secant lines of an elliptic quadric in $P G(3, q), q$ odd. Proceedings of the conference on combinatorial and incidence geometry: principles and applications (La Mendola, 1982) 297-305.
[3] B. Qvist: Some remarks concerning curves of the second degree in a finite plane. Ann. Acad. Sci. Fennicae. Ser. A. I. Math.-Phys. (1952). no. 134, 1-27

Dipartimento di Matematica e appl., Università di Napoli "Federico II"
Complesso di Monte S. Angelo - Ed. T via Cintia, I-80126 Napoli, Italy.
e-mails: ndurante@unina.it, olanda@unina.it

[^0]: Received by the editors January 2003.
 Communicated by J. Thas.

