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0. By a graph we mean a finite undirected graph with no loop or multiple edge 

(i.e. a graph in the sense of [1] or [2], for example). Throughout the paper we assume, 

that a connected graph G is given. Let V and E denote its vertex set and its edge 

set, respectively. Moreover, we denote by d(u,v) the distance between u and v in G, 

for any u, v G V. Note that d(u,v) is equal to the length of an arbitrary shortest 

u — v path in G, for any a, v £V. Clearly, the vertex set V and the distance function 

d form a finite metric space. (Kay and Ohartrand [2] found a necessary and sufficient 

condition for a finite metric space to be generated by the vertex set and the distance 

function of a connected graph). 

Similarly as in [3], by the interval function I of G we mean the mapping of V x V 

into the set of all subsets of V defined as follows (for every (u,v) G V x V): 

I(u, v) = {x G V\ x belongs to a u — v path of length d(u, v) in G } . 

The interval function of a connected graph, which was defined and intensively studied 

in Mulder [3], is an important tool for the study of metric properties of graphs. 

The definition of the interval function I of G depends on the notion of the distance 

in G (or on the notion of shortest paths in G). We are going to derive an essentially 

different characterization of the interval function. 

1. Denote by J the set of all mappings J of V x V into the set of all subsets of V 

such that J fulfils the following Axioms I-VI (for arbitrary u, v, w, x G V)\ 

I |J (u , v)\ = 2 if and only if {u, v) G E\ 

II u G J(u,v); 

111 if w G J(u,v), then \J(u,rv) D J(w,v)\ = 1; 
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IV ifw E J(u,v), then J(w,v) C J(u,v); 

V if w £ J(u,v) and .r £ J(w,v), then M; £ J(u,x); 

VI J(v,M)= J(u,v). 

Put J — I; it is clear that J fulfils Axiom I; using 1.1.2 from [3] we easily get 

I e J . 

We now make several observations concerning J . 

Using Axioms II and III we obtain J(u,u) = {M} for J £ J and u £ \ \ 

Let J £ J . For M, V £ V we define the set HJ(t/, v) as follows: 

Y,j(u,v) = { (M)} if M = v; 

Ej(u,v) = | ( j r , , . . .,xk, v);k ^ 1,** E J(v, v), 

{xk< v} £ E and (ari, . . . , xk) £ YJJ(M, xk)\ if M ^ v. 

L e m m a . Let J £ J am/ u, v £ V. Assume that u ^ v. 77.OD 

(1) {u,v}CJ(u,v); 

(2) ifw £ J(M,v) - {M}, then J(w,v) C J(//,v) - {u}; 

(3) there exists x £ J(M, v) such thnt {x, v} £ E; 

(4) J(u,v)-{v}= U J{<:*); 
r£j(u,v) 

(5) if (wi, . . ., ivm) £ £J(t / , v), then wlf . . ., wm £ J(M, v) and (wx, . . ., ivm) is a 

u — v path in G (i.e. a M — v path considered as a sequence of vertices); 

( 6 ) E . , ( u , i > ) - - 0 . 

P r o o f . (1) follows from Axioms II and VI. 

Let w £ J(u,v) — {u}. According to Axiom IV, J(w,v) C J(u,v). Suppose 

u £ J(u!, v). Obviously, u ^ i/\ As follows from Axioms IV and VI, J(w,u) = 

J(u,w) C J(v,iv) = J(w,v) C J(M,v). Axiom III implies that |J(tv , v)| = 1, which 

contradicts (1). Thus u (£ J(w, v) and we get (2). 

(3) follows from (1), (2), and Axiom I. 

First, let w £ J(«, v) — {v}. Since w ^ v, (3) implies that there exists x £ J(u\ v) 

such that {x, v} £ E. According to Axiom V, w £ J(u,x). Using (2) and Axiom VI, 

we get (4). 

(5) follows from the definition of ^)j(u, v), (2), and Axiom VI. 

Combining (2), (3) and Axiom VI with the definition of DJ(u , v), we get (6), which 

completes the proof. • 
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2. Let J, J1 G J , let n ^ 0 be an integer. We write F\,(J, J') to express the fact 

that 

J(u, v) C J'(//, v) for each pair of // and v in V7 such that d(u, v) = n. 

\\rc now give a characterization of the interval function of G, which is the main 

result of present paper. 

T h e o r e m . Let J G J . 77ien J = I if mid only if J fulfils the following Axioms 

VII a/if/ VIII (for arbitrary u, v, T, y G V): 

VII if {U,T}, {v,y} G F, x- G J(u, V), y G J(u,v) and u G J(x,y), then v G J(x,y); 

VIII if{u,x}, {v,y} e £\ x G J(u,v), y £ J(u, v) and x £ J(u,y), then v G J(x,y). 

P r o o f . (A) Assume that J = / . We shall prove that J fulfils Axioms VII and 

VIII. Consider arbitrary u, v, x, y G V such that {u, T}, {v,y} G F and T G J(U, V). 

Put ?i = d(u,v). Then <I(x,v) = n — 1. 

(Axiom VII) Assume that y G J(u,v) and t/ G J(x,y). We want to prove that 

v G J(x,y). Since {v ,g} G F1 and ?/ G J(u,v), we have d(u,y) = n — 1. Certainly, 
(l(J',y) ^ 7?- Since 7/ G J(x,y), we gel, d(x,y) = n. Thus v G J(x,y). 

(Axiom VIII) Assume that g (^ J(u,v) and j* ̂  J(u,y). We want to prove that 

7' G J(x,y). Since i/ ^ J(u,v), we have d(u,y) j> /i. Since J: (̂  J(u,y), we have 

d(x,y) j> d(u,y) ^> n. Since r/(j:, v) = ?i — 1 and d(v,y) = 1, we get /; G J(x.y). 

(H) Conversely, let us now assume that J fulfils Axioms VII and VIII. We shall 

prove that P , , ( / ,J ) and P . , (J , / ) for each integer 7i such that 0 <C ?i <j D, where D 

denotes the diameter of (i. We proceed by induction on 7i. It is clear that Vn(I,J) 

and Pn(J , / ) for n = 0 and 1. Therefore, let us assume that 2 <C 7i <C D and 

(7) ! ' . • ( / , •/) and P,( . / , / ) for each k G { ( ) , . . . , n - 1}. 

The rest of the proof will be divided into two steps . 

S t e p 1. We shall prove that P., (I, J). Consider arbitrary u, v G V such that 

d(u,v) = n. We want to prove that I(u.v) C J(u,v). Suppose, to the contrary, 

1(i/, v) — J(u, v) ^ 0. Consider iv G /(</, v) — J(u, v). Since w G I(u, v), there exist, a 

v — u path (//o, . . ., ij„) in G and an integer / such that 0 <C / <C 7/ and w = //,-. (lear ly, 

7/0 = v and //„ = 7/. Since w (̂  J(i/, r ) , we have 0 < / < 7i. (Consider an arbitrary 

j G {I , 7 i - 1}. It follows from (7) that I(v.yj) = J(v,ijj) and I(\fj, u) = J(yj,u). 

If//7 G J(u, v), then Axioms IV and VI imply that I(v,t/j) C J(c/, /') and I(i/j,u) C 

J(u,v), and thus w G J(u,v), which is a contradiction. We conclude that, //i, . . ., 

/ /„_, £ J(u, v). 
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As follows from (6), there exist XQ, ..., xm G V (m ^ 1) such that ( x o , . . . , xm) G 

Ej(u,v). According to (5), (x0,.. .,xm) is a u - v path in G. Thus x0 = u and 

xtn = v. Since 7i = d(u,v), m > 7?. Since (x0,. . . , X(+i) G DJ(x0 , x t + i ) , it follows 

from (5) and Axioms V and VI that 

(8,-) Xi+x G J(xi,v) 

for each i G { 0 , . . . , m — 1}. Since (t/0, • • •, 2/n) is a v — tt path in (7 and y{, . . ., 

yn-i $. J(u, v), we see that 

(9,) (yi,. . .,yn = XQ,. . ., Xi) is a path in G 

for each i G {0, . . ., n}. 

Put x-i = t / n _i . Certainly, the following statements (10,-), ( H i ) and (12t-) hold 

for i = 0: 

(10,-) d(xi,yi) = 7i; 

( H i ) t;G J(x.-,J/,-); 

(12,) x,-_i <£ J(xi,yi). 

Clearly, : r n_i G J(x0,xn). Since un = x0, x n _ i G J(xn,yn). Thus (12n) does not 

hold. This means that there exists ft G { 0 , . . . , n— 1} such that each of the s ta tements 

(10/t), (H/i) and (12/,) holds but at least one of the statements (10/,+i), (H/,+ i) and 

(12/ l + i ) does not. 

Combining (8h) and (11/,) with Axioms IV-VI, we get 

(13) xh+i G J(xh,yh); 

(14) v G J(x/l+],g/l). 

It follows from (9/,) and (10^) that d(xh,yh+i) — n - \. According to (7), 

J(xh,yh+\)- I(xh,yh+\). Obviously, xh-\ G l(xh,yh+\)- Thus xh-\ G J(xh,yh + \). 

If g/l+i G J(xh,yh)j then it follows from Axioms IV and VI that .r/i-i G J(#/,,!//,), 

which contradicts (12/,). Therefore, 

(15) yh+\ i J(xh,yh). 

We now want to show that xh+\ £ J(xh,yh+i)- Suppose, to the contrary, Xh+i G 

J(xh,iJh+i)- Since d(xfl, yh+\) = 7 2 - 1 , it follows from (7) that xh+\ G l(xh,yh + i). 

Thus d(xh+uyh+i) = n - 2. It follows from (10/,) that d(xh+{,yh) = ?i - I and 
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tjh + i E I(xh+i,yh)- According to (7), yh+\ E J(xh + \,yh)- Combining this fact with 

(13) and Axiom IV, we get yh+\ E J(xh,yh), which contradicts (15). Therefore, 

Xh+i £ J(xh,yh+\). 

Since xh+i E J(xh,yh) and yh+\ £ J(xh,yh), Axioms VIII implies that 

(16) xjh G J(xh+\,yh+\). 

Combining (14) and (16) with Axioms IV and VI, we get (1 U + i ) . 

As follows from (9/l + i ) , d(xh+\,yh+\) ^ n. Suppose d(xh+\,yh + \) ^ 7/ - 1. 

According to (7), J(xfl+\,yh+\) = I(xh+] ,yh+i). It follows from (16) that yh E 

I(xh+\,yh + \). This implies that d(xh+\,yh) ^ 7/ - 2. Hence, d(xh,yh) ^ ?i - 1, 

which is a contradiction. Thus vve have (lO/i+i). 

Since (10/t+i) and (11/i+i) hold, it follows from the definition of It that (\2h+\) 

does not hold. Thus we have xh E J(xh+\, yh+\). Combining this fact with (13), 

(16) and Axiom VII, we get yh+\ E J(xh,yh), which contradicts (15). 

Thus I(u,v) C J(u,v) and we have 

(17) P „ ( ! , J ) . 

S t o p 2. We shall prove that P n ( J , / ) . Consider arbitrary u, v E V such that 

d(u,v) = n. We want to prove that J(u,v) C I(u,v). Suppose, to the contrary, 

J(u,v) — I(u,v) z/z 0. It follows form (4) that there exists w E J(u,v) such that 

{u\ v) E E and J(u,w) — I(u, v) ^ 0. Assume that there exists w' E J(u,w) — {u} 

sucli that w' E / (? / ,v ) . Since d(w', v) < n, J(w',v) = I(w',v). According to 

Axioms V and VI, w E J(w',v). Thus iv E [(w',v). Since i// E I(u,v), w E 

I(u,v). This means that d(u, w) = 77 — 1. As follows from (7), J(u, w) = /(?/, iv). 

We get J(u,w) C I(u,v), which is a contradiction. Thus vve have obtained that 

(J(u, iv) — {u}) fl I(u, v) = 0. According to (6), Sj(? / , w) 7- 0. There exist x0, . . ., 

xm-\ E V (m ^ 2) such that (x0,.. . , x m _ i ) E E j ( u , w). Clearly, x*0 = u, j ; m _ i = it;, 

and x.\, . . ., x m _ ! ^ I(u,v). Put x m = v. Certainly, (x0,...,xni) E E J ( u , v ) . 

According to (5), (x0, . . ., xni) is a u — ?; path in G. Since xrn^i £ I(u,v), vve sec 

that ??i > ??. Moreover, vve have (8,) for each i E {0, . . ., m — 1}. 

Since d(u,v) = n, there exist g0, . . ., yn E V7 such that go = v, y,i = ", and 

(go, . . ., gn) is a u — v path of length n in (7. Clearly, go, . . ., gn E /(</, i>). We get 

(9,-) for each ie { ( ) , . . . , ??}. 

Obviously, both (10o) and ( l l o ) hold. Since ??/ > 7;, xn ^ v. Since gn = u, 

(2) implies tha t v (fc J(xn,yn). Thus ( l l n ) does not hold. This means there exists 

h E {0, . . . , w - 1} such that both (10*) and (11/,) hold but at least one of the 

s ta tements ( lO /^ i ) and ( l l / i + i ) does not. 
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Similarly as in Step 1, we have (13) and (11). 

We want to show that d(j'h + \,!Jh) ^ "• Suppose to the contrary J(-r/, + i,///,) <J 

7? - 1. Since d(j:h,yh) = n, d(xh + \,yh) ~ n - \. According to (7), J (./•/.+ i,.'//,) = 

l(j'h+\. llh)- Since v G J(*h+\ , ///,), we have v G I(j-/, + i , ///,). Obviously. d(i\ //,,) = //. 

Thus d(.r/, + i, v) = n - h - 1. According to (7), J(xh + \, 0 = IO'/. + i < r ) - Combining 

(8A: — I) and (7), we see that d(j:k., u) = n - k and J(xk-, r) = I(j*/.. r) for racli int< L;( r 

k such that h-f 1 < k <j ?>. This means that J(.r,t, v) = 0 and therefore in = ?/, which 

is a contradiction. Tims we have r/(.r/. + i, //,t) j> //. 

As follows from (9/, + i) , d(xfl + \, /y/. + i) ^ "• We want to show that (10/, + i) . To 

the contrary, let r/(.r,. + i, })h + \) < n. Since d(xh+\,yh) ^ n, wo have J(.r/, +i ,///,) = // 

and d(xh+] ,!Jh+\) = n - \. Thon ///, + i G IU'/. + i,!//. )• It follows from (17) that 

g/, + i G J(j'h + \,yh)- Combining this fact and (13) with Axioms V and VI, we got 

.r/, + i G J(xh,Uh + \)' Since d(xh,ijh) - n, we see that d(xh.yh + \) - n - \. It 

follows from (7) that u'/, + i G I(j'h, ?//. + .)• Hence J(.r/, + i, ///, + i) = /? — 2, which is a 

contradiction. Thus wo have (lO/, + i) . 

Combining (9/,) and (10/0, vve s e e that ///, + i G I(j'h,!Jh)- As follows from (17), 

g/, + i G J(j'h,yh)- According to (10/, + !) , d(xh + \, /y/, + i) = ?'. Therefore, ./•/, G 

/(*/i+ii2//» + i)- As follows from (17), xh G J(.r/, + i,///, + i) . According to (13), .r,, + i G 

J(j'h,llh)- Since x*/, G J(«r/( + i,/y,, + i) and ///, + , G J(j'h,!/h), Axiom VII implies that 

l)h G J(j'/i+i, yh + i )• Combining this fact, and (14) with Axioms IV and VI. we have 

(11/i + i ) , which contradicts the definition of h. 

Thus ,/(//, v) C I(//, v), hence I\,(J, I ) , which completes the proof of the theorem. 

• 
R e m a r k . There is a connection between t ho interval function of (i and the set 

of all shortest paths in (7. A characterization of the set of all shortest paths in d 

was given by the present author in Theorem 1 of [1]. 
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