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Abstract. By the interval function of a finite connected graph we mean the interval func-
tion in the sense of H.M. Mulder. This function is very important for studying properties
of a finite connected graph which depend on the distance between vertices. The interval
function of a finite connected graph was characterized by the present author.
The interval function of an infinite connected graph can be defined similarly to that of a

finite one. In the present paper we give a characterization of the interval function of each
connected graph.
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The letters f–n will be reserved for denoting integers here. By a graph we will

mean an undirected graph without loops or multiple edges. A graph will be referred
to as finite or infinite if its vertex set is finite or infinite, respectively.

Let G be a connected graph with a vertex set V (G) and an edge set E(G), and

let dG(u, v) denote the distance between u and v in G, where u, v ∈ V (G). By the
interval function IG of G we mean the mapping of V (G)× V (G) into the power set

of V (G) defined as follows:

IG(x, y) = {w ∈ V (G); d(x, y) = d(x, w) + d(w, y)}

for all x, y ∈ V (G).

This function is very important for studying properties of a connected graph which

depend on the distance between vertices. The interval functions of finite connected
graphs were widely studied by Mulder [3].

The following notion will be important for us.
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Let W be a nonempty set. We will say that J is a geometric function on W if J

is a mapping of W ×W into the power set of W such that the following statements
are fulfilled for all u, v, x, y ∈ W :

if v ∈ J(u, x) and y ∈ J(v, x), then v ∈ J(u, y) and y ∈ J(u, x);

x ∈ J(u, x);
J(u, u) = {u};
J(u, x) = J(x, u).

Our term geometric function was inspired by the terminology of Bandelt, van de

Vel and Verheul [2] and Bandelt and Chepoi [1], namely by their term geometric
interval space: if J is a geometric function on a nonempty set W in our sense, then

J together with W form a geometric interval space in the sense of [1] and [2]. Note
that every geometric function on a finite nonempty set is a transit function in the

sense of Mulder [4].
Let G be a graph, and let J be a geometric function on a nonempty set W . We

will say that J is associated with G if W = V (G) and

E(G) = {{u, v}; u, v ∈ V (G) such that u �= v and J(u, v) = {u, v}}.

It is easy to show that if G is a connected graph, then IG is a geometric function

associated with G.
The following lemma will be presented without proof. Its proof is easy.

Lemma 1. Let G be a finite graph, and let J be a geometric function associated

with G. Then G is connected and J satisfies the following Axiom (Z):

if u �= x, then there exists v ∈ J(u, x) such that {u, v} ∈ E(G)(Z)

(for all u, x ∈ V (G)).

The following theorem was proved by the present author in [5]. (A different proof

of a slight modification of this theorem was given in [6]). Using the terminology of [1]
and [2], we may say that this theorem gives a necesary and sufficient condition for a

finite geometric interval space to be graphic.

Theorem 0. Let G be a finite connected graph, and let J be a geometric function
associated with G. Then J is the interval function of G if and only if J satisfies the

following Axioms (X) and (Y):

if {u, x}, {v, y} ∈ E(G), u, v ∈ J(x, y) and x ∈ J(u, v), then y ∈ J(u, v)(X)

(for all u, v, x, y ∈ V (G));

if {u, x), {v, y} ∈ E(G) and x ∈ J(u, v), then either v ∈ J(x, y)(Y)

or x ∈ J(u, y) or y ∈ J(u, v) (for all u, v, x, y ∈ V (G)).
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Let G be a graph, and let J be a geometric function associated with G. Let

u0, . . . , um ∈ V (G), m � 0. We will say that (u0, . . . , um) is a path in J if uj ∈
J(ui, uk) for each 0 � i � j � k � m, and if m � 1, then {u0, u1}, . . . , {um−1, um} ∈
E(G). Obviously, if (u0, u1, . . . , um) is a path in J and m � 1, then both

(um, . . . , u1, u0) and (u1, . . . , um) are paths in J . Since J is a geometric func-
tion associated with G, we see that every path in J is a path in G. Let P (J) denote

the set of all paths in J .

Observation 1. Let J be a geometric interval function associated with a graphG,
let 0 � m � n, let u0, . . . , un, v ∈ V (G) and (u0, . . . , un) ∈ P (J). If un ∈ J(um, v)

and {un, v} ∈ E(G), then (um, . . . , un, v) ∈ P (J). If u0 ∈ J(v, um) and {v, u0} ∈
E(G), then (v, u0, . . . , um) ∈ P (J).

Observation 2. Let J be a geometric interval function associated with a graphG,

let 0 � m � n, let u0, . . . , un ∈ V (G) and

(u0, . . . , um), (um, . . . , un) ∈ P (J).

If um ∈ J(u0, un), then (u0, . . . , um, . . . , un) ∈ P (J).

Let G be a graph and let J be a geometric function associated with G. Consider
y ∈ V (G). By a ∗–y slide in J we will mean an infinite sequence (v0, v1, v2, . . .) of

vertices of G such that

vi+1 ∈ J(vi, y) and {vi, vi+1} ∈ E(G) for each i � 0.

If σ = (v0, v1, v2, . . .) is a ∗–y slide and z = v0, then we say that σ is a z–y slide. By
virtue of the definition of a geometric function, if (v0, v1, v2, . . .) is a ∗–y slide in J

and m � 0, then (v0, . . . , vm) is a path in J .

It follows from Lemma in [5] that if J is a geometric function associated with a
finite connected graph G and y ∈ V (G), then there exists no ∗–y slide in J .

Example. Let G be the graph defined as follows:

V (G) = {. . . , u−2, u−1, u0, u1, u2, . . .}

and

E(G) = {. . . , {u−2, u−1}, {u−1, u0}, {u0, u1}, {u1, u2}, . . .},
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where the vertices . . . , u−2, u−1, u0, u1, u2, . . . are mutually distinct. Then G is infi-

nite and connected. For all f and g, f � g, we put

J(uf , ug) = {uf} if f = g,

J(uf , ug) = {uf , uf+1, . . . , ug} if 0 � f < g or f < g � 0,
J(uf , ug) = {uf , uf−1, uf−2, . . .} ∪ {ug, ug+1, ug+2, . . .} if f < 0 < g

and

J(ug, uf) = J(uf , ug).

It is easy to see that J is a geometric function associated with G. Moreover, we see
that J satisfies Axioms (X) and (Z) but it does not satisfy Axiom (Y). Finally, we

see that if i < 0 < j or j < 0 < i, then
(a) there exists no path from ui to uj in J and

(b) there exists a ui–uj slide in J .

Lemma 2. Let J be a geometric function associated with a graph G, let J satisfy

Axiom (Y), let u0 and x be distinct vertices of G, and let (u0, u1, u2, . . .) be a ∗–x
slide in J . Assume that y is a vertex of G adjacent to x. Then there exist at most

two distinct j � 0 such that uj+1 �∈ J(uj , y).

�����. Suppose, to the contrary, that there exist f , g and h, 0 � f < g < h,
such that uf+1 �∈ J(uf , y), ug+1 �∈ J(ug, y) and uh+1 �∈ J(uh, y).

First, let y ∈ J(ug, x). Recall that J is a geometric function. Since

uf+1 ∈ J(uf , x), . . . , ug ∈ J(ug−1, x),

we get

uf+1 ∈ J(uf , y), . . . , ug ∈ J(ug−1, y);

a contradiction.

Now, let y �∈ J(ug, x). By virtue of (Y), x ∈ J(ug+1, y). Since

ug+2 ∈ J(ug+1, x), . . . , uh+1 ∈ J(uh, x),

we get

ug+2 ∈ J(ug+1, y), . . . , uh+1 ∈ J(uh, y);

a contradiction. �
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Corollary 1. Let J be a geometric function associated with a graph G, let J

satisfy Axiom (Y), let x and y be adjacent vertices of G, and let (u0, u1, u2, . . .) be
a (∗–x) slide in J . Then there exists k � 0 such that (uk, uk+1, uk+2, . . .) is a (∗–y)
slide in J .

Theorem 1. Let J be a geometric function associated with a graph G, let J

satisfy Axiom (Y), and let u and x be vertices of G. If there exists a path from u

to x in G, then there exists no u–x slide in J .

�����. Let there exist a path from u to x in G. Suppose, to the contrary, that
there exists a u–x slide in J , say a u–x slide (u0, u1, u2, . . .). By virtue of Corollary 1,

there exists m � 0 such that (um, um+1, um+2, . . .) is a ∗–u slide in J . Hence um+1 ∈
J(um, u). Since (u0, u1, u2, . . .) is a ∗–x slide, we see that (u0, . . . , um, um+1) is a

path in J . Since u = u0, we get um ∈ J(u, um+1). This implies that um = um+1.
The vertices um and um+1 are not adjacent in G, which contradicts the definition of

a slide. �

Corollary 2. Let J be a geometric interval function associated with a connected

graph G, and let J satisfy Axioms (Y) and (Z). Then there exists a path from u to v

in J for each ordered pair of vertices u and v of G.

Lemma 3. Let G be a connected graph, let J1 and J2 be geometric functions

associated with G, and let u, x ∈ V (G). Assume that J1 satisfies Axioms (Y) and

(Z) and that J1(u, x) − J2(u, x) �= ∅. Then there exists a path α from u to x in J1
such that α �∈ P (J2).

�����. Obviously, there exists v ∈ J1(u, x) − J2(u, x). Since v �∈ J2(u, x), we

get u �= v �= x. Corollary 2 implies that there exist u0, . . . , uk, v0, . . . , vm ∈ V (G)
such that k � 1, m � 1, u0 = u, uk = v = v0, vm = x, and

(u0, . . . , uk), (v0, . . . , vm) ∈ P (J1).

Since v ∈ J1(u0, vm), it follows from Observation 2 that

(u0, . . . , uk = v0, . . . , vm) ∈ P (J1).

Since v �∈ J2(u, x), we get

(u0, . . . , uk = v0, . . . , vm) �∈ P (J2).

�
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Let G be the graph defined in Example. Then G − u0 is not connected. It is easy

to find a geometric function associated with G− u0 which satisfies Axioms (X), (Y)
and (Z).
Clearly, if G is a connected graph, then P (IG) is the set of all geodesics (i.e.

shortest paths) in G.
The next theorem gives a characterization of the interval function of a (finite or

infinite) connected graph.

Theorem 2. Let J be a geometric function associated with a connected graph G.

Then J is the interval function of G if and only if J satisfies Axioms (X), (Y) and

(Z).

�����. Put V = V (G), I = IG and d = dG. Let J = I. It is obvious that J

satisfies (Z). Moreover, it is easy to show that J satisfies (X) and (Y); cf. [5].

Conversely, let J satisfy (X), (Y) and (Z). We will prove that J = I. Suppose,
to the contrary, that J �= I. Then there exist n � 0 and u, x ∈ V (G) such that

d(u, x) = n, J(u, x) �= I(u, x),

J(v, y) = I(v, y) for all v, y ∈ V such that d(v, y) < n(1)

and

if I(u, x) ⊆ J(u, x), then I(w, z) ⊆ J(w, z)(2)

for all w, z ∈ V such that d(w, z) = n.

Since J is a geometric function associated with G, we have n � 2. We distinguish
two cases.
Case 1. Assume that I(u, x) ⊆ J(u, x). Then J(u, x) − I(u, x) �= ∅. Recall

that P (I) is the set of all geodesics in G. By virtue of Lemma 3, there exist
x0, . . . , xm+n ∈ V (where m > n) such that x0 = u = xm+n, xm = x,

(x0, x1, . . . , xm) ∈ P (J)− P (I) and (xm, xm+1, . . . , xm+n) ∈ P (I).

Put

αf = (xf , xf+1, . . . , xf+m), βf = (xf+m, xf+m+1, . . . , xf+m+n)(3)

for each f, 0 � f � n, where xn+m+1 = x1, xn+n+2 = x2, . . . , xm+2n = xn.

Let αn ∈ P (J). Then xn+1 ∈ J(xn, xn+m). Since m > n, xm+n = x0 and

α0 ∈ P (J), we have xn ∈ J(xn+1, xn+m). This implies that xn+1 ∈ J(xn, xn) and
thus xn = xn+1, which is a contradiction. We get αn �∈ P (J).
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Recall that β0 ∈ P (I) and I(u, x) ⊆ J(u, x). Combining these facts with (1), we

get β0 ∈ P (J). There exists h, 0 � h < n, such that αh, βh ∈ P (J) and

(4) αh+1 �∈ P (J) or βh+1 �∈ P (J).

Put

(5) r = xh, s = xh+1, y = xh+m and z = xh+m+1.

Let βh+1 ∈ P (J). Then r ∈ J(s, z). Since αh, βh ∈ P (J), we have s, z ∈ J(r, y).

By (X), y ∈ J(s, z). Since αh ∈ P (J), Observation 1 implies that αh+1 ∈ P (J),
which contradicts (4). Thus βh+1 �∈ P (J).

Clearly, d(s, z) � n. Assume that d(s, z) = n. Then βh+1 ∈ P (I). By (2),

I(s, z) ⊆ J(s, z). Combining this fact with (1), we get βh+1 ∈ P (J); a contradiction.
Thus d(s, z) < n.

Since αh ∈ P (J), we have (xh+1, . . . , xh+m) ∈ P (J). If d(s, y) < n, then (1)
implies that (xh+1, . . . , xh+m) ∈ P (I) and thus m − 1 < n; a contradiction. Thus

d(s, y) � n.

We get d(s, y) = n and d(s, z) = n − 1. Hence z ∈ I(s, y). By (2), z ∈ J(s, y).
Since s ∈ J(r, y), we have s ∈ J(r, z). Obviously, d(r, z) < n. By (1), s ∈ I(r, z).

Therefore, d(s, z) < n− 1; a contradiction.
Case 2. Assume that I(u, x)− J(u, x) �= ∅. There exist x0, . . . , xm+n ∈ V (where

m � n) such that x0 = u = xm+n, xm = x,

(x0, x1, . . . , xm) ∈ P (J) and (xm, xm+1, . . . , xm+n) ∈ P (I)− P (J).

Let us use notation (3). Since β0 �∈ P (J), we get αn �∈ P (J). There exists h,
0 � h < n, such that αh ∈ P (J), βh �∈ P (J) and

(6) αh+1 �∈ P (J) or βh+1 ∈ P (J).

Now let us use also notation (5).

Recall that αh ∈ P (J). Let d(r, y) < n; by virtue of (1), αh ∈ P (I); this means

that m � n − 1; a contradiction. Thus d(r, y) = n. We get βh ∈ P (I). Since
d(r, z) = n− 1, (1) implies that (xh+m+1, . . . , xh+m+n) ∈ P (J). Since βh �∈ P (J), it

follows from Observation 1 that z �∈ J(r, y).

Let αh+1 ∈ P (J). By (6), βh+1 ∈ P (J). Thus r, y ∈ J(s, z). Since αh ∈ P (J),

we get s ∈ J(r, y). By (X), z ∈ J(r, y); a contradiction. Hence αh+1 �∈ P (J). Since
αh ∈ P (J), we get y �∈ J(s, z).
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Recall that s ∈ J(r, y), y �∈ J(s, z) and z �∈ J(r, y). According to (Y), s ∈ J(r, z).

By (1), s ∈ I(r, z). Hence d(s, z) = n− 2. Since d(r, y) = n, we have d(s, y) = n− 1.
Therefore, z ∈ I(s, y). By (1), z ∈ J(s, y). Since s ∈ J(r, y), we get z ∈ J(r, y); a
contradiction.

Hence J = I. �

Combining Theorem 2 with Lemma 1, we get Theorem 0. This new proof of
Theorem 0 is simpler than the proof of Theorem 0 given in [5] and than the proof of

a modification of Theorem 0 given in [6].
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