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Abstract. Walczak posed a problem on the characterization of the mean curvature

functions of codimension-one foliations. An affirmative answer to this problem is given

here. As an application, we get a simpler proof of the topological characterization, due

to the author, of codimension-one foliations consisting of constant mean curvature

hypersurfaces.

1. Introduction. Let F be a transversely oriented codimension-one foliation of

a closed connected manifold M. If we choose a Riemannian metric g on M, then we

have a smooth function H on M, where H(x) is the mean curvature at x of the leaf Lx

of F through x with respect to the unit vector field N which is orthogonal to F and

whose direction coincides with the given transverse orientation. We call H the mean

curvature function of F with respect to g. In the previous papers [5], [6], the author

studied the following question posed by Walczak [8]: Which smooth function on M

can be written as the mean curvature function with respect to some Riemannian metric

on Ml Such a smooth function on M is said to be admissible. Some characterizations

of such functions are given in [5], [6]. However, it is not so easy to check whether the

given function is admissible or not by the characterizations given there.

On the other hand, Walczak also posed the following problem on the charac-

terization of admissible functions (see Langevin [3]):

PROBLEM. Show that f is admissible if and only iff(x)>0 somewhere in any Nmax

andf(y)<0 somewhere in any Nmin, where Nmax means a maximal Novikov component

and Nmin means a minimal Novikov component.

In this paper we study this problem. After reformulating the problem, we give an

affirmative answer to this problem in §3. As an application, we give in §4 a simpler

proof of the topological characterization in Oshikiri [6] of codimension-one foliations

consisting of constant mean curvature hypersurfaces.
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2. Preliminaries and the result. In this paper, we work in the C00-category. In

what follows, we always assume that foliations are of codimension-one and transverse-

ly oriented, and that the ambient manifolds are closed, connected, oriented, and of

dimension n+1 > 3 , unless otherwise stated.

First we fix a transversely oriented codimension-one foliation F on M. Let g be a

Riemannian metric on M. Then there is a unique unit vector field orthogonal to F

whose direction coincides with the given transverse orientation. We denote this vector

field by N. We give an orientation to F a s follows: Let {El9...9 En} be an oriented local

orthonormal frame for TF. The orientation of M given by {TV, Eu . . . , En} coincides

with the given one of M.

We denote by H(x) the mean curvature of the leaf L at x with respect to N, that

is,

i
ι = l

where <,> means #(,), V is the Riemannian connection of (M, #), {Et} is a local

orthonormal frame for TF and dim F=n. We call H the mean curvature function of F

with respect to g. We also define an «-form χF on M by

XF(Vl,...,Vn) = det((Ei,VJ)XJ=1_n for VjβTM,

where {Eί9..., En} is an oriented local orthonormal frame for TF. The restriction χF \L

is the volume element of (L, g |L) for LeF.

PROPOSITION R (Rummler [7]). dχF = -HdV(M,g) = divg(N)dV(M,g), where

dV(M, g) is the volume element of(M, g) and di\g{N) is the divergence ofN with respect

to g, i.e.,

divg(N)=i(VEίN,Eiy.
i=ί

Let / be a smooth function on M. We say / to be admissible if there is a Riemannian

metric g on M so that —/ coincides with the mean curvature function of F with respect

to g. We set

Ca d(F) = {fe σ°(M): / is admissible} .

Let D be a compact saturated domain of M. We call D SL ( + )-foliated compact

domain ((+ )-fcd, for short) if the transverse orientation of F is outward everywhere on

dD, and we call D a (-)-foliated compact domain (( —)-fcd, for short) if the transverse

orientation of F is inward everywhere on 3D. Note that for a foliated compact domain

D, Int D is a maximal Novikov component (resp. minimal Novikov component) if and

only if D is a minimal ( + )-fcd (resp. a minimal ( —)-fcd). Here minimal is in the usual

set-theoretical sense. For the notion of the Novikov component, see the original paper
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of Novikov [4]. We do not give the definition of the Novikov component, because we
use only the notions of ( + )-fcd's and ( —)-fcd's.

In this setting, we reformulate Walczak's problem as follows:

PROBLEM. Assume that F contains at least one ( + )-fcd. f is admissible if and only
iff(x)>0 somewhere in any minimal ( + )-fcd and f(y)<0 somewhere in any minimal
(-)-fcd.

In the next section we give an affirmative answer to this problem, that is, we prove
the following theorem:

THEOREM. Let F be a transversely oriented codimension-one foliation of a closed
connected oriented manifold M. Assume that F contains at least one (+ )-fcd. fis admissible
if and only iff(x)>0 somewhere in any minimal ( + )-fcd andf(y)<0 somewhere in any
minimal (—)-fcd.

3. Proof of the theorem. To prove the theorem, we need the following result in
Oshikiri [6]:

THEOREM Ol. For any /eC°°(M), the following conditions are equivalent.
(1) /eCad(F).
(2) There is an oriented volume form dV on M so that

( i ) lMfdV=0,(md
(ii) JD fdV> 0 for any (+ )-fcd D.

If/ is admissible, then by the condition (2), (ii) in Theorem Ol, we have f(x)>0
somewhere on each ( + )-fcd. If D is a (—)-fcd, then M-In tD is a ( + )-fcd and, by
Theorem 01, (2), we have $DfdV<0. Thus f(y)<0 somewhere on D.

In order to show the converse, we need some preparation. Let / be the unit closed
interval [0, 1] and L a compact leaf of F. A foliated trivial /-bundle over L is the
manifold L x /with a codimension-one foliation whose leaves are transverse everywhere
to the fibers {/?} x /, for any peL. It is known that if F has an infinite number of
compact leaves, then all but a finite number of compact leaves are contained in a foliated
trivial /-bundle over some compact leaves (cf. Hector-Hirsch [2]). With this fact in
mind, define a finite number of foliated compact domains {A }?=o satisfying the
following:

(ii) (Int Dt) n (Int Dj) = 0 if
(iii) Dt is either a minimal ( + )-fcd, a minimal (-)-fcd, a maximal foliated trivial

/-bundle over a compact leaf of F, or other ones that do not contain any compact
leaves which divide the foliated compact domain Dt into two components.

For later use, we fix a minimal ( + )-fcd and denote it by Do. First choose all
minimal ( + )-fcd's and minimal (—)-fcdJs; DO,DU ...,Z)S. Next choose all maximal
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foliated trivial /-bundles; Ds+l9...,Dt. Finally set Mx to be the closure of M-

Do— - — Dt in M. Note that dM1 consists of a finite number of compact leaves,

and lntMί contains only a finite number of compact leaves. Take Ct+ι, . . . , Ck to be

the connected components of Mι — {compact leaves in IntA/^} and set Di=Ci for

i=t+l,...,k9 where the closure Ci of Ci is taken in Mv Then it is easy to see that the

resulting set {Do, Dγ, . . . , Dk) is the desired one.

Let P={G1, G2,..., Gι} be a mutually distinct ordered set with Gje{Di) (j=

1,...,/). We say P to be a positive path from GίtoGι if Gt c\Gi+ί contains a compact

leaf L with the unit vector field N being outward on L<^Gi and inward on L<^Gi + 1

for any /= 1, . . . , /— 1. In this case, we say that P is a positive path from Gt to Gh and

write S(P) = G1 and T(P) = Gt.

For each minimal ( + )-fcd Du, set

^M = #{minimal ( —)-fcd's connected by a positive path P with

and for each minimal ( —)-fcd Dv, set

Bv = # {minimal ( + )-fcd's connected by a positive path P with T(P) = DV}

where #{W} denotes the cardinality of the set W.

LEMMA 1. For each minimal (H-)-fcd Du, there exists a minimal ( —)-fcd Dv

connected by a positive path P with S(P) = DU and T(P) = DV. For each minimal ( —)-fcd

Dv, there exists a minimal (-j-)-fcd Du connected by a positive path P with S(P) = DU and

T(P) = DV. Thus, in particular, Au> 1 and Bv>\ for each u and v.

PROOF. Let D be a minimal ( + )-fcd. Set Y to be the union of all D/s which

appear in some positive path from D. It follows that Y=M or that Y is a ( —)-fcd;

Indeed, if Y is not a ( —)-fcd and different from M, then we can find a new positive

path from D which contains some Dj, which is not contained in Y. By a standard

set-theoretical argument, every (— )-fcd contains a minimal (— )-fcd. Thus D is connected

to a minimal ( —)-fcd by a positive path.

By the same argument, we can show that for a minimal ( —)-fcd there is a positive

path from a minimal ( + )-fcd to the minimal ( —)-fcd. This completes the proof.

LEMMA 2. Let D be a ( + )-fcd and L a compact leaf of F with LaD. Then there

is a positive path P such that S(P) is a minimal (-h)-fcd contained in Z>, and T(P) is a

minimal ( —)-fcd contained in M—(IntD).

PROOF. Assume that Dje{Di] contains L, and that Dj is contained in D. Set Yx

to be the union of all Z>,'s which appear in some positive path P with T(P) = Dj9 and

Y2 the union of all D/s which appear in some positive path P with S(P) = Dj. Since D

is a ( + )-fcd, we have YιaD and Y2^M—(IntZ>). By the same argument as in the

proof of Lemma 1, Yt is a ( + )-fcd and Y2 is a ( —)-fcd. Thus Y1 contains a minimal

( + )-fcd, and Y2 contains a minimal (-)-fcd. This completes the proof.
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We now return to the proof of the Theorem. To show the converse, assume that

/ satisfies the condition /(x)>0 somewhere in any minimal ( + )-fcd and f(y)<0

somewhere in any minimal ( —)-fcd. We show that there is a volume form dV on M

satisfying the condition (2) in Theorem Ol. Choose a Riemannian metric g on M such

that

f 1
\f\dV(M,g)< for ι = 0, 1,..., k .

JDi 2(k+l)

Set C=ΣiφU,JDifdV(M, g), where the summation is taken over all D/s except minimal

( + )-fcd's Du and minimal ( —)-fcd's Dv. We denote this summation by ΣΪΦU V

By assumption, we have

\C\<(k+l)x l = — .
1 V ; 2(k + l) 2

Now deform the volume element dV(M, g) into dV so that

fdV=Ao-C>\-^->0,
Do 2

fdV=Au for each minimal ( + )-fcd Du,

fdV= —Bv for each minimal (—)-fcd Dv.L
Note that the Do is the previously chosen minimal ( + )-fcd.

We can easily find such a dV with dV=dV(M, g) near the boundaries of Du and

Dv, because / is positive somewhere on each Du and negative somewhere on each Dv.

Here Du is one of the minimal ( + )-fcd's and Dv is one of the minimal (-)-fcd's. On

other Z>t's, we set dV=dV(M,g). We show that this dV satisfies the condition (2) in

Theorem Ol.

First note that YJU^u — YJV

βv = ̂ ^ because if a minimal ( + )-fcd is connected to a

minimal ( —)-fcd by a positive path, then the minimal ( —)-fcd is connected to the

minimal ( + )-fcd by the same positive path. Here the summation ]Γu is taken over all

minimal (-h)-fcd's, and the summation Σvιs t a k e n o v e r a 1 1 minimal (-)-fcd's.
From this observation, we have

M ί =

The summation convection is the same as above. This shows that the condition (i) in

(2) is satisfied.

Let D be an arbitrary ( + )-fcd. To show that the condition (ii) in (2) is satisfied,
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we have only to show that \DfdV>0. Set U to be the subset of indices {0, 1, ...,&}

such that ue U implies Du is a minimal ( + )-fcd and is contained in D. Set also V to

be the subset of indices {0, 1, . . . ,£} such that υeV implies Dv is a minimal (-)-fcd

and is contained in D. Note that ΣueuAu-ΣvevBv^U Indeed, if a minimal (-)-fcd

in D is connected by a positive path to a minimal ( + )-fcd, then the minimal ( + )-fcd

must be in D since D is a (-h)-fcd. By Lemma 2, at least one ( + )-fcd in D is connected

by a positive path to a minimal (—)-fcd outside of D. This means Σueu^-u — Σ «;e F ̂ > — *

By this observation, if Z)o is contained in Z>, then we have

ί. Σ Λ - Σ Bv-2C>l-2x~
ueU veV 2

If Do is not contained in D, then we have

fdv> Σ A U - Σ fi.{
D ueU veV λ

This completes the proof of the Theorem.

4. Foliations of constant mean curvature. Let (Λf, F, g) be a codimension-one

foliation of a Riemannian manifold. We call F a foliation of constant mean curvature

if the mean curvature function H of the foliation is constant on each leaf of F. We say

a codimension-one foliation tense, if we can find a Riemannian metric so that the

foliation is of constant mean curvature with respect to this metric. In this section, we

give a simpler proof of the topological characterization in Oshikiri [6] of tense folia-

tions.

We say that a compact leaf Lo is contained in a continuous family if there is a

compact saturated set D which contains Lo and is diffeomorphic to Lo x [0, 1] so that

the foliation induced on D by F corresponds to Lo x {t}, te [0, 1]. Denote by C{F) the

union of all compact leaves which are contained in continuous families.

The characterization of tense foliations given in Oshikiri [6] is the following:

THEOREM O2. Let (Λf, F) be a transversely oriented codimension-one foliation of

a connected, closed, and oriented manifold M with dim M > 3. Then F is tense if and only

if each connected component of M—C(F) does not contain a (-f)-fcd and a (-)-fcd

simultaneously.

PROOF. The first half of the proof is the same as the one in [6]. However, for the

sake of convenience, we repeat it here.

If F is tense, then there is a Riemannian metric g on Λf so that each leaf L of F

is a hypersurface of constant mean curvature. We denote the mean curvature of F by

H. Since the set {x e M \ dHx Φ 0} consists of compact leaves of F(QΪ. Barbosa-Kenmotsu-

Oshikiri [1]), the mean curvature function H is constant on each connected component

of M— C(F). If a connected component X of M— C(F) contains both (-f)-fcd C+ and



MEAN CURVATURE FUNCTIONS OF CODIMENSION-ONE FOLIATIONS 563

( —)-fcd C_, then by assumption and Proposition R,

- f HdvΛ dχF=\ χF = Yol(dC+)>0.
Jc+ Jc+ Jec +

On the other hand, by the same argument, we have

HdV=-Yol(dC_)<0.
C-

Since H has the same constant value on both C+ and C_, this is impossible.
Now we show the converse. This part is fairly simplified. We have only to construct

an admissible function / which is constant on each leaf L of F. To do so, first define
/ on each connected component XonM— C{F) by / = 1 if X contains a ( + )-fcd, / = — 1
if A" contains a (-)-fcd, and / = 0 if X contains neither ( + )-fcd's nor (-)-fcd's. On the
closed unti interval [0, 1], there is a smooth function h with /i = αon [0, 1/4) and h = b
on (3/4, 1]. Here a and b are arbitrary real numbers. On each L x [0, 1], where L is a
compact leaf of d(C(F)\ define /(x, t) = h(t) for (x, t)eLx [0, 1] with suitable a and
b in order to get a smooth function / on M. By construction, it is clear that / is constant
on each leaf of F, and that / satisfies the condition in the Theorem. Thus / is admissible.
This completes the proof.
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