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Abstract 
 
This paper discusses a characterization of the members of a subfamily of power series distributions when 
their probability generating functions  f s  satisfy the functional equation      a bs f s cf s   where a, b 
and c are constants and f   is the derivative of f. 
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Distributions 

1. Introduction 
 
Let a population behave like a Galton-Watson process 

 with a known offspring distribution 

0k k
. Suppose that the generation size 

 0; 0, 1nX n X 
 p




 nX k  is 
observed and n, the age in generations, is to be estimated. 
Such a problem arises in many situations. For example, 
one might be interested in the length of existence of a 
certain species in its present form or how long ago a mu-
tation took place, etc. (See Stigler [1]).  

When the generation size  nX k  is observed and 
the offspring distribution is known, the likelihood func-
tion is given by  
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where  nf s  is the nth functional iteration of the off-
spring probability generating function (p.g.f.)  
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  s 1 with 0 s   and  k
nf  is the kth de- 

rivative of  nf s

 n

 with respect to s. The maximum like-
lihood estimator of n can be obtained by the method of 
calculus if f s

n

 has a closed form expression. When 
the offspring distribution is binomial, Poisson or nega-
tive binomial,  f s  does not have a closed form ex-
pression. Ades et al. [2] have obtained a recurrence for-
mula to compute  when the 
offspring p.g.f. satisfies the functional equation  

  , 1, 2,3,nP X k k  

    a bs f s cf s 

where a, b and c are constants and f' is the derivative of f. 
We derive a characterization result using this differential 
equation. 
 
2. Characterization 
 
We establish the following theorem. 

Theorem: Let X be a non-negative integer valued ran-
dom variable with   ,  0,1,kP X k p k     and pk > 0  

at least for 0,1k  . If the p.g.f.  
0
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,  

0 s  , satisfies (1.1), then the distribution of X is 
Poisson, binomial, or negative binomial. 

Proof: It is straight forward to verify that  
1) when X has a Poisson distribution with mean  , 

(1.1) holds with 1,  0 and a b c    . 
2) when X has a binomial (N,p)-distribution, (1.1) 

holds with ,  a q b p   and  with c Np 1q p  . 
3) when X has a negative binomial (α,p)-distribution, 

(1.1) holds with 1,  a b q    and c q  where 
1q p  . 

Now let us have a close look at the possible values of 
the constants in (1.1). 

1) If 0c  , then (1.1) reduces to     0a bs f s   
 0,s  1 . In particular, for , this becomes 0s 

 af s 0 . Since   10f p 0  , 0a   . But then (1.1) 
turns out to be    0,  0f s   ,s 1  which implies 

0b   and then (1.1) has no meaning. Thus 0c  .  
2) Let 0c  . If 0a  , (1.1) reduces to  
   cf sbsf s ,  0,s  1 . Then for , we get 0s             (1.1) 
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 0 0cf   and hence  which is a contradiction. 
Therefore . 

0c 


0a 
0,c 3) Let . Suppose, if possible,  0a 0b  . 

Then (1.1) becomes ,  af s   cf s  0,1s  . Iden-
tifying this as a linear differential equation and solving, 
we get  

    1log ,f s c a s k 

1

 

where k1 is an arbitrary constant. Since  1f   and 

1k c a

 

  , the above solution reduces to 

 exp 1 , [0,1].
c

s s
a
      

f s  

Note that c a  cannot be negative because if 0c a  , 
then  which is impossible. Thus  0f 1 0c a   and 
 f s  is the p.g.f. of a Poisson distribution with mean 

c a .  
4) Let  and 0,  c  0a  0b  . Then  
 
 
'f s c

f s a b


 s
. Solving this differential equation, we get  

   
c

bf s k a bs  , where k is a constant. Since  

 1 1f  ,  
c

bk a b
  . Hence 

  .

c

ba bs
f s

a b

    
             (2.1) 

Note that if , then 0a b   f s  in (2.1) does not 
define a p.g.f. 

Also, (2.1) can be expressed as 

   * * ,
c

bf s a b s             (2.2) 

where * a
a

a b



, * b

b
a b




, and .  * * 1a b 

Since and hence    *
00 0 1,  0f p a   

1 ,a b 
1

0*0 b . This also implies that . Thus, case (4)  

reduces to 0,  0c a   and .  0b 
4a) Let . Then 0c  0c b  . Suppose that c Nb  

where N is a positive integer. Then  f s  in (2.2) is the  
p.g.f. of a binomial  *,N b -distribution.  

4b) Let 0c  . Then 0c b  b. Suppose that c N  . 
Then,  f s  in (2.2) is the p.g.f. of a negative binomial 

 *,N b -distribution.  
Now it remains to verify whether c b  can be a frac-

tion with 0c  . Note that (2.2) can be rewritten as 

   
*

*
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            (2.3) 

The expansion of the RHS of (2.3) is a power series in 
s with some coefficients being negative if c b  is a frac-
tion, which is not permitted because the coefficients pk in  
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  s , being probabilities, are non-negative.  

Now the proof of the theorem is complete. 
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