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Abstract. If (M,∇) is a manifold with a symmetric linear connection, then T ∗M can
be endowed with the natural Riemann extension g (O.Kowalski and M. Sekizawa (2011),
M. Sekizawa (1987)). Here we continue to study the harmonicity with respect to g initiated
by C. L.Bejan and O.Kowalski (2015). More precisely, we first construct a canonical almost
para-complex structure P on (T ∗M, g) and prove that P is harmonic (in the sense of
E.Garciá-Río, L.Vanhecke and M. E.Vázquez-Abal (1997)) if and only if g reduces to the
classical Riemann extension introduced by E.M. Patterson and A.G.Walker (1952).
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1. Introduction

Harmonicity represents a very interesting topic, not only in differential geometry,

but also in analysis, partial differential equations, theoretical physics and so on.

We recall that a function f : (N, h) → R on a (semi-)Riemannian manifold is

harmonic if f is in the kernel of the Laplacian, i.e. f satisfies the Laplace equation.

More general, a C2-map ϕ : (N, h) → (N, h̄) between (semi-)Riemannian manifolds

is harmonic if its tension field τ(ϕ) vanishes identically, that is ϕ satisfies the Euler-

Lagrange equations. Later, Garciá-Río, Vanhecke and Vázquez-Abal defined the

harmonicity of a (1, 1)-tensor field T on a manifold N .
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More precisely, from [8], a (1, 1)-tensor field T on a (semi-)Riemannian manifold
(N, h) is called harmonic if it is a harmonic map when it is viewed as a map T :

(TN, hc) → (TN, hc) between (semi-)Riemannian manifolds, where c denotes the

complete lift (see Definition 4.3). Moreover, the harmonicity of a (1, 1)-tensor field is

characterized in [8] as being divergence-free, which means that a (1, 1)-tensor field T
is harmonic if and only if δT = 0 (see Proposition 4.2).

Now, we establish the framework of our paper.

Let (Mn,∇) be a manifold endowed with a symmetric linear connection. Then,

on its phase space (which is the total space of the cotangent bundle T ∗M), Patterson

and Walker defined in [13] the (classical) Riemann extension. This notion was gener-

alized by Sekizawa in [16] (see also Kowalski-Sekizawa [11], [12]) to natural Riemann

extension g, which is a semi-Riemannian metric on T ∗M of signature (n, n). The

technique used there is that of lifting structures, which is well known in mathemat-

ical literature (see [19], [18], [15] and [10]). Natural Riemann extension is a special

class of both the modified Riemann extension (see [6] and [9]) and the general Rie-

mann extension. Bejan and Kowalski characterized in [5] some harmonic functions

on (T ∗M, g).

The present paper goes further and characterizes the harmonicity of a canoni-

cal endomorphism field on T ∗M . More precisely, we construct a canonical almost

para-complex structure P on (T ∗M, g) and prove that g is the (classical) Riemann

extension introduced in [13] if and only if P is harmonic.

2. Preliminaries

Let M be a connected smooth n-dimensional manifold, n > 2, and let p :

T ∗M → M be the natural projection from its cotangent bundle T ∗M to M .

Any local chart (U ;x1, . . . , xn) around x ∈ M induces a local chart (p−1(U);

x1, . . . , xn, x1∗, . . . , xn∗) around (x,w) ∈ T ∗M , where for any i = 1, n, we identify

the function xi ◦ p on p−1(U) with xi on U . We denote xi∗ = wi = w((∂/∂xi)x) at

any point (x,w) ∈ p−1(U). We obtain a basis for the tangent space (T ∗M)(x,w) at

each point (x,w) ∈ T ∗M :

{(∂1)(x,w), . . . , (∂n)(x,w), (∂1∗)(x,w), . . . , (∂n∗)(x,w)},

where we put ∂i = ∂/∂xi and ∂i∗ = ∂/∂wi, i = 1, n.

Let W ∈ χ(T ∗M) denote the canonical vertical vector field on T ∗M which is

a global vector field defined in local coordinate systems, by

(2.1) W =

n∑

i=1

wi∂i∗.
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We recall now the construction of the vertical and the complete lifts for which we

refer to ([19], [18], [15] and [10]). If α ∈ Ω1(M) is a differential one-form on M , then

its vertical lift αv is the vector field which is tangent to T ∗M and defined by:

(2.2) αv(Zv) = (α(Z))v , Z ∈ χ(M).

In local coordinates one can write:

(2.3) αv =

n∑

i=1

αi∂i∗,

where α =
n∑

i=1

αi dx
i and we identified fv = f ◦ p ∈ F(T ∗M) with f ∈ F(M). We

note that αv(fv) = 0 for all f ∈ F(M).

The complete lift of a vector field X ∈ χ(M) is defined as the vector field Xc ∈
χ(T ∗M) such that

(2.4) Xc(Zv) = [X,Z]v, Z ∈ χ(M).

In local coordinates, it can be written at each point (x,w) ∈ T ∗M as

Xc
(x,w) =

n∑

i=1

ξi(x)(∂i)(x,w) −
n∑

h,i=1

wh(∂iξ
h)(x)(∂i∗)(x,w),

where X = ξi∂i. We note that X
c(fv) = (Xf)v for all f ∈ F(M).

In general context, this technique is used for lifting structures to bundles, for which

we refer to [10].

3. The natural Riemann extension

This section deals with the main notion used in our paper, which was introduced

in [16] as a generalization of the (classical) Riemann extension defined in [13]:

Definition 3.1. Let (M,∇) be a manifold endowed with a torsion free linear

connection. Then the natural Riemann extension g is defined at each point (x,w) ∈
T ∗M so that

g(x,w)(X
c, Y c) = −aw(∇Xx

Y +∇Yx
X) + bw(Xx)w(Yx),(3.1)

g(x,w)(X
c, αv) = aαx(Xx),

g(x,w)(α
v, βv) = 0

for all vector fields X,Y and all differential one-forms α, β on M , where a, b are

arbitrary constants. We may assume a > 0 without loss of generality.
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We shall see later that the signature of g is (n, n). In particular, when a = 1

and b = 0, it follows that (T ∗M, g) is the classical Riemann extension of (M,∇), for

which we cite [13], [17].

Let us mention here a very useful fact given in [19]:

Proposition 3.1. Let X and Y be two vector fields on T ∗M . If X(Zv) = Y (Zv)

holds for all Z ∈ χ(M), then X = Y .

Later on we use the following conventions and formulas:

Notation 3.1. If T is a (1, 1)-tensor field on a manifold M , then the contracted

vector field C(T ) ∈ χ(T ∗M) is defined at any point (x,w) ∈ T ∗M by its value on

any vertical lift as follows:

C(T )(Xv)(x,w) = (T X)v(x,w) = w((T X)x), X ∈ χ(M).

For the Levi-Civita connection ∇ of the Riemann extension g, we get the following
formulas (see e.g. [11]):

(∇XcY c)(x,w) = (∇XY )c(x,w) + Cw((∇X)(∇Y ) + (∇Y )(∇X))(x,w)(3.2)

+ Cw(Rx(·, X)Y +Rx(·, Y )X)(x,w)

− c

2
{w(Y )Xc + w(X)Y c + 2w(Y )Cw(∇X) + 2w(X)Cw(∇Y )

+ w(∇XY +∇Y X)W}(x,w) + c2w(X)w(Y )W(x,w),

(∇Xcβv)(x,w) = (∇Xβ)v(x,w) +
c

2
{w(X)βv + β(X)W}(x,w),

(∇αvY c)(x,w) = − (iα(∇Y ))v(x,w) +
c

2
{w(Y )αv + α(Y )W}(x,w),

(∇αvβv)(x,w) = 0, X, Y ∈ χ(M), α, β ∈ Ω1(M),

where c denotes the fraction b/a. For any (1, 1)-tensor field T and a one-form α

on M , we denote by iα(T ) the one-form of M defined by

(iα(T ))(X) = α(T X), X ∈ χ(M).

Let (x,w) be an arbitrary fixed point of T ∗M , where w 6= 0. We take {α1, . . . , αn}
to be a basis of covectors on T ∗

xM such that

(3.3) α1 = w
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and let {e1, . . . , en} be its dual basis on TxM . We denote by the same letter ei the

parallel extension of each ei (along geodesics starting at x) to a normal neighborhood

of x in M for i = 1, n, (see [11]). We obtain a local frame {e1, . . . , en} defined
around x in M such that

(3.4) (∇eiej)x = 0, i, j = 1, n.

We note that:

g(x,w)(e
c
i , e

c
j) = bw(ei,x)w(ej , x), i, j = 1, n.

Next, we denote by the same letter {α1, . . . , αn} the local coframe defined around x
on M which is dual to the local frame {e1, . . . , en}, i.e., αi(ej) = δij , i, j = 1, n, and

we have automatically α1,x = w.

We construct as in [5] an orthonormal basis {Ei, Ei∗}i=1,n with respect to g in

T(x,w)(T
∗M), which is defined at any point (x,w) ∈ T ∗M by

E1 = ec1 +
1− b

2a
αv
1 ; E1∗ = ec1 −

1 + b

2a
αv
1 ;(3.5)

Ek =
1√
2a

(eck + αv
k); Ek∗ =

1√
2a

(eck − αv
k).

Therefore we have g(Ei, Ei) = 1 and g(Ei∗, Ei∗) = −1, i = 1, n, from which we can

see that g is of signature (n, n).

4. Harmonicity of an almost para-complex structure

This section deals with para-complex geometry which has interesting features

and the mathematical literature contains several papers on this subject. To men-

tion only the ones published by the first author, we recall the classification of the

para-Hermitian manifolds given in [1] (and cited in [7]), the existence problem stud-

ied in [2], and some examples of manifolds with almost para-Hermitian structures

given in [3].

Our paper provides an almost para-complex structure P on T ∗M . We recall

Definition 4.1. An almost product structure P (i.e., P2 = Id and P 6= ±Id)

on a manifold N whose eigenvalues ±1 have the same multiplicity, is called a para-

complex structure.

Inspired by [4], in which the authors studied the harmonicity of an almost complex

structure, here we shall construct a canonical almost para-complex structure for

which we characterize its harmonicity.

201



Definition 4.2. We define the endomorphism

(4.1) P : χ(T ∗M) → χ(T ∗M), such that PXc = Xc and Pαv = −αv,

where Xc and αv are the complete lift of a vector field X ∈ χ(M) and the vertical

lift of a differential one-form α on M , respectively. We say that P is canonical, since
its eigen distributions are spanned by the complete lift (of all vector fields on M)

and respectively the vertical lift (of all one-forms on M).

Remark 4.1. A similar endomorphism is constructed in [14], by using the hori-

zontal lift.

From Definition 4.1, one can easily see that the structure P defined by (4.1)
satisfies P2 = Id, P 6= ±Id and the eigen distributions of P corresponding to the
eigenvalues ±1 of P have the same rank. Therefore we obtain

Proposition 4.1. Let M be an n-dimensional manifold. Then the total space of

its cotangent bundle T ∗M endowed with the structure P is an almost para-complex
manifold (T ∗M,P).

We need the following notion introduced in [8]:

Definition 4.3. Any (1, 1)-tensor field T on a (semi-)Riemannian manifold
(N, h) is called harmonic if T viewed as an endomorphism field

T : (TN, hc) → (TN, hc)

is a harmonic map, where hc denotes the complete lift (see [18]) of the semi-

Riemannian metric h.

We recall from [8] the following characterization:

Proposition 4.2. Let (N, h) be a (semi-)Riemannian manifold and let ∇ be the
Levi-Civita connection of h. Then any (1, 1)-tensor field T on (N, h) is harmonic if

and only if δT = 0, where

δT = traceh(∇T ) = traceh{(X,Y ) → (∇XT )Y }.

To obtain our main characterization result, we need the following
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Lemma 4.1. LetM be a connected smooth n-dimensional manifold with the total

space of its cotangent bundle T ∗M , endowed with the natural Riemann extension g.

Then the almost para-complex structure P is harmonic on (T ∗M, g) if and only if

(4.2)
c(n+ 1)

2
W(x,w) =

n∑

s=1

(iαs
(∇es))

v
(x,w),

where the frame {e1, . . . , en} and its dual {α1, . . . , αn} are defined above in Section 3
and (x,w) is an arbitrary fixed point in T ∗M such that w 6= 0.

P r o o f. Any relation written here will be calculated at each point (x,w) ∈ T ∗M .

Let ∇ be the Levi-Civita connection of g given by (3.2). From Proposition 4.2 we
have the following equivalences:

The almost product structure P on (T ∗M, g) is harmonic

⇔ 0 = δP = traceg ∇P

⇔
2n∑

i,j=1

gij(∇Hi
P)Hj = 0,(4.3)

where {Hi}i=1,2n is a local basis on T
∗M and gij is the inverse matrix of the matrix

(g(Hi, Hj))i,j=1,2n. Then

(4.4) (4.3) ⇔
2n∑

i=1

εi(∇Fi
P)Fi = 0,

where {Fi}i=1,2n is a local orthonormal frame on (T ∗M, g) and εi = g(Fi, Fi),

i = 1, 2n. From (3.5) we have the equivalences

(4.4) ⇔
n∑

s=1

{(∇Es
P)Es − (∇Es∗

P)Es∗} = 0 ⇔ (4.5),

where

∇E1
PE1 − P∇E1

E1 −∇E1∗
PE1∗ + P∇E1∗

E1∗(4.5)

=

n∑

k=2

{∇Ek∗
PEk∗ − P∇Ek∗

Ek∗ −∇Ek
PEk + P∇Ek

Ek}.

From ([5], (4.6)) we obtain

(∇E1∗
E1∗ −∇E1

E1)(x,w) = −1

a
{(∇e1α1)

v + cαv
1 + cW − (iα1

∇e1)
v}(x,w).
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By applying P defined by (4.1) we get:

(4.6) (P(∇E1∗
E1∗ −∇E1

E1))(x,w) =
1

a
((∇e1α1)

v + cαv
1 + cW − (iα1

(∇e1))
v)(x,w).

A direct calculation using (3.2) yields

(4.7) (∇E1
PE1 −∇E1∗

PE1∗)(x,w) =
1

a
(−iα1

(∇e1)
v − (∇e1α1)

v)(x,w).

By virtue of (4.6) and (4.7), the left hand side of (4.5) becomes

(∇E1
PE1 − P∇E1

E1 −∇E1∗
PE1∗ + P∇E1∗

E1∗)(x,w)(4.8)

=
1

a
(cαv

1 + cW − 2(iα1
(∇e1))

v)(x,w)

=
2

a
(cW − (iα1

(∇e1))
v)(x,w),

where we used (2.1), (3.3) and (2.3).

Using ([5], (4.8)), we obtain:

(4.9)
n∑

k=2

(P(∇Ek∗
Ek∗ −∇Ek

Ek))(x,w) =
1

a

n∑

k=2

((∇ekαk)
v − (iαk

(∇ek))
v + cW )(x,w).

A direct calculation using (3.2) leads

(4.10)

n∑

k=2

(∇Ek
PEk −∇Ek∗

PEk∗)(x,w) =
1

a

n∑

k=2

(−(iαk
(∇ek))

v − (∇ekαk)
v)(x,w).

By virtue of (4.9) and (4.10), the right hand side of (4.5) becomes

n∑

k=2

(∇Ek∗
PEk∗ − P∇Ek∗

Ek∗ −∇Ek
PEk + P∇Ek

Ek)(x,w)(4.11)

=
1

a

n∑

k=2

(2(iαk
(∇ek))

v − cW )(x,w).

From (4.8), (4.11) and α1 = w, we get (4.2), which completes the proof. �

The above lemma yields the main result of the paper. To obtain it, we first

remark that the classical Riemann extension has b = 0 and therefore c = 0. Then,

the left hand side of (4.2) is zero. Moreover, each term of the right hand side

of (4.2) is zero, since applying the relation (2.3) and taking into account (3.4) gives

(iαs(∇es))
v
(x,w) = 0, s = 1, n. Hence we proved the following:
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Theorem 4.1. Let M be a connected smooth n-dimensional manifold with the

total space of its cotangent bundle T ∗M endowed with the natural Riemann exten-

sion g. The almost para-complex structure P is harmonic if and only if g is the
classical Riemann extension.
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