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Abstract

Let G = (V, E) be a graph without isolated vertices. A set S ⊆ V is a to-
tal dominating set if every vertex in V is adjacent to at least one vertex in
S. A total dominating set S ⊆ V is a paired-dominating set if the induced
subgraph G[S] has at least one perfect matching. The paired-domination
number γpr(G) is the minimum cardinality of a paired-domination set
of G. In this paper, we provide a constructive characterization of those
trees with equal total domination and paired-domination numbers, and of
those trees for which the paired domination number is twice the matching
number.
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1 Introduction

In this paper, we continue the study of total domination and paired-domination in
graphs. For a graph G = (V, E), a set S ⊆ V is a dominating set if every vertex
in V − S is adjacent to a vertex in S. The domination number of G, denoted by
γ(G), is the minimum cardinality of a dominating set. Domination and its many
variations have been surveyed and detailed in the two books by Haynes, Hedetniemi,
and Slater [5, 6]. We are interested in two variations of domination called total
domination and paired-domination.

A set S ⊆ V is a total dominating set (TDS) if every vertex in V is adjacent to a
vertex in S. The total domination number of G, denoted by γt(G), is the minimum
cardinality of a TDS. A minimum TDS of a graph G is called a γt(G)-set.

A set S ⊆ V is a paired-dominating set (PDS) if S dominates V and the induced
subgraph G[S] has a perfect matching. Obviously, every PDS is a TDS. Paired-
domination was introduced by Haynes and Slater [7] with the following application
in mind. If we think of a vertex in S as the location of a guard capable of protecting
each vertex in its closed neighborhood, then domination requires every vertex to
be protected, and for total domination, each guard must be protected by another
guard. For paired-domination, the guards’ locations must be selected as adjacent
pairs of vertices so that each guard is assigned one other and they are designated
as backups for each other. The paired-domination number γpr(G) is defined to be
the minimum cardinality of a PDS of G. A minimum PDS of a graph G is called a
γpr(G)-set. Paired-domination is also studied in [2, 8, 9, 11]. Both total domination
and paired-domination require that there be no isolated vertices in the graph.

The edge-independence number (also called the matching number) β1(G) of G is
the maximum cardinality of an edge-independent set of G. A graph G is said to have
a perfect matching if β1(G) = |V |/2.

As a direct consequence of the definitions of the above four parameters, we have
the following observation due to Haynes and Slater [7].

Observation 1 For any graph G without isolated vertices,

γ(G) ≤ γt(G) ≤ γpr(G) ≤ 2β1(G).

An area of research that has received considerable attention is the study of classes
of graphs for which some of these parameters are equal (or not equal). For any graph
theoretical parameters λ and µ, we define G to be a (λ, µ)-graph if λ(G) = µ(G)
and a (λ, 2µ)-graph if λ(G) = 2µ(G). The class of (γ, i)-trees, that is, trees T for
which γ(T ) = i(T ) where i(T ) denotes the independent domination number of T ,
was characterized in [1, 3]. Several classes of (γ, i)-graphs have been found in [10].
Furthermore, a characterization of (i, γr)-trees and (i, γw)-trees, where γr and γw are
respectively the restrained domination and weak domination numbers, is given in [4].
In this article, we have two aims: First to provide a constructive characterization of
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(γt, γpr)-trees and, secondly, to present a constructive characterization of (γpr, 2β1)-
trees.

1.1 Notation

Let G = (V, E) be a graph without isolated vertices, and let v be a vertex in
V . The open neighborhood of v is N(v, G) = {u ∈ V | uv ∈ E} and the closed
neighborhood of v is N [v, G] = N(v, G) ∪ {v}. Furthermore, for a set S of ver-
tices, the open neighborhood of S is defined by N(S, G) =

⋃
v∈S N(v, G) and set

N [S, G] =
⋃

v∈S N [v, G] = N(S, G) ∪ S. The subgraph of G induced by the vertices
in S is defined by G[S]. For X ⊆ V , the private neighborhood pn(v, X) of v ∈ X is
defined by pn(v, X) = N [v, G]−N [X − {v}, G]. When there is no risk of confusion,
we shall write briefly the notation as N(v), N [v], N(S), N [S] and pn(v), respectively.
For n ≥ 1, the complete bipartite graph K1,n is called a star. A subdivided star K∗

1,n

is the graph obtained from a star K1,n by subdividing each edge of the star. A double
star is a tree that contains exactly two vertices that are not leaves.

2 A characterization of (γt, γpr)-trees

Before presenting a characterization of (γt, γpr)-trees, we shall need some additional
notation.

A vertex v is said to be totally dominated by a set S ⊆ V if it is adjacent to a
vertex of S (other than itself). We define an almost total dominating set (ATDS)
of G relative to v as a set of vertices of G that totally dominates all vertices of G,
except possibly for v. The almost total domination number of G relative to v, denoted
γt(G; v), is the minimum cardinality of an ATDS of G relative to v. An ATDS of
G relative to v of cardinality γt(G; v) we call a γt(G; v)-set. Note that it is possible
for v to belong to a γt(G; v)-set although v itself may not be totally dominated. For
ease of presentation, we sometimes consider a tree as rooted tree. The concept of
rooted tree can be found in [10]. A vertex of a tree T is said to be remote if it is
adjacent to a leaf of T .

We shall need the following two observations.

Observation 2 Let T be a tree that is not a star. Then,
(a) there exists a γt(T )-set that contains no leaf, and
(b) if T is a (γt, γpr)-tree, there exists a γpr(T )-set that contains no leaf.

Proof. Replacing each leaf, if any, in a γt(T )-set by its neighboring remote vertex
yields (a). To prove (b), let S be a γpr(T )-set that contains as few leaves as possible.
By definition of a PDS, the set S contains all remote vertices of T . Suppose that
S contains a leaf u. Let v be the remote vertex adjacent to u. Then, {u, v} ⊆ S.
If S contains a neighbor of v different from u, then S − {u} is a TDS of T , and so
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γt(T ) ≤ |S| − 1 = γpr(T )− 1, contradicting the fact that T is a (γt, γpr)-tree. Hence,
u is the only neighbor of v in S. Since T is not a star, there is a non-leaf neighbor w
of v. Since w /∈ S, the set (S − {u}) ∪ {w} is a PDS of T that contains fewer leaves
than does S, contradicting our choice of the set S. Hence, S contains no leaf. �

Let T1, T2 and T3 be the following three operations on a tree T . (By attaching a
path P to a vertex v of T we mean adding the path P and joining v to a leaf of P .)

Operation T1. Attach a path P1 to a vertex of T , which is in some γpr(T )-set.

Operation T2. Attach a path P3 to a vertex v of T , where γt(T ; v) = γt(T ).

Operation T3. Attach a path P4 to any vertex of T .

Let T be the family defined by T = {T | T is obtained from P2 by a finite
sequence of operations T1, T2 or T3}. We show first that every tree in the family T
has equal total domination and paired-domination numbers.

Lemma 3 If T ∈ T , then T is a (γt, γpr)-tree.

Proof. We proceed by induction on the number s(T ) of operations required to
construct the tree T . If s(T ) = 0, then T = P2 and T is a (γt, γpr)-tree. This
establishes the base case. Assume, then, that k ≥ 1 is an integer and that each tree
T ′ ∈ T with s(T ′) < k is a (γt, γpr)-tree. Let T ∈ T be a tree with s(T ) = k. Then,
T can be obtained from a tree T ′ ∈ T with s(T ′) < k by one of the operations T1, T2

or T3. Applying the inductive hypothesis to the tree T ′, T ′ is a (γt, γpr)-tree. If T is
a star or a double-star, then γt(T ) = γpr(T ) = 2 and so T is a (γt, γpr)-tree. Hence
we may assume that diam(T ) ≥ 4. We now consider three possibilities depending on
whether T is obtained from T ′ by operation T1, T2 or T3.

Case 1. T is obtained from T ′ by operation T1. Suppose T is obtained from
T ′ by adding a vertex u and the edge uv where v ∈ V (T ′). Then, v is in some
γpr(T

′)-set. Any such set is a PDS of T , whence γpr(T ) ≤ γpr(T
′). By Observation

2, there is γt(T )-set that contains no leaves of T . Such a set is a TDS of T ′, and so
γt(T

′) ≤ γt(T ). Thus, γt(T ) ≤ γpr(T ) ≤ γpr(T
′) = γt(T

′) ≤ γt(T ). Consequently we
must have equality throughout this inequality chain. In particular, γt(T ) = γpr(T ).

Case 2. T is obtained from T ′ by operation T2. Suppose T is obtained from T ′

by adding the path u1, u2, u3 and the edge u1v where v ∈ V (T ′). Then, γt(T
′; v) =

γt(T
′). Any γpr(T

′)-set can be extended to a PDS of T by adding to it the vertices
u1 and u2. Hence, γpr(T ) ≤ γpr(T

′) + 2. We show next that γt(T
′) ≤ γt(T ) − 2. Let

S be a γt(T )-set that contains no leaf. Then, {u1, u2} ⊂ S. Let S′ = S −{u1, u2}. If
S′ contains a neighbor of v, then S′ is a TDS of T ′, whence γt(T

′) ≤ γt(T )− 2. If S′

contains no neighbor of v, i.e., if S∩N [v] ⊆ {u1, v}, then S′ is an ATDS of T ′ relative
to v, and so γt(T

′) = γt(T
′; v) ≤ |S′| = γt(T ) − 2. In both cases, γt(T

′) ≤ γt(T ) − 2.
Thus,

γt(T ) ≤ γpr(T ) ≤ γpr(T
′) + 2 = γt(T

′) + 2 ≤ γt(T ). (1)
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Consequently we must have equality throughout the inequality chain (1). In partic-
ular, γt(T ) = γpr(T ).

Case 3. T is obtained from T ′ by operation T3. Suppose T is obtained from T ′

by adding the path u1, u2, u3, u4 and the edge u1v where v ∈ V (T ′). By Observation
2, there is a γt(T )-set S that contains no leaf. Thus, {u2, u3} ⊂ S and u4 	∈ S. If
u1 ∈ S, then we can simply replace u1 in S by some other neighbor of v. Hence we
may assume that S ∩ {u1, u2, u3, u4} = {u2, u3}. Thus, S − {u2, u3} is a TDS of T ′,
and so γt(T

′) ≤ γt(T ) − 2. Further, any γpr(T
′)-set can be extended to a PDS of

T by adding to it the vertices u2 and u3. Hence, γpr(T ) ≤ γpr(T
′) + 2. Thus the

inequality chain (1) holds, whence γt(T ) = γpr(T ). �

We show next that every (γt, γpr)-tree belongs to the family T .

Lemma 4 If T is a (γt, γpr)-tree, then T ∈ T .

Proof. We proceed by induction on the order n ≥ 2 of a (γt, γpr)-tree. If T is a
star or a double-star, then T can be obtained from P2 by repeated applications of
operation T1. Hence we may assume that diam(T ) ≥ 4. Let T be rooted at a leaf r
of a longest path P . Let P be a r-u path, and let v be the neighbor of u. Further,
let w denote the parent of v on this path, x the parent of w and y the parent of x.
Then, u is a leaf of T .

By Observation 2(b) since T is a (γt, γpr)-tree, it contains a γpr(T )-set S that
contains no leaf of T . In particular, u 	∈ S, {v, w} ⊂ S, and the vertices v and w are
matched in T [S].

Suppose dT (v) ≥ 3. Then v is adjacent to at least two leaves. Let T ′ = T − u.
Then, γt(T

′) = γt(T ) and γpr(T
′) = γpr(T ). Hence, T ′ is a (γt, γpr)-tree. By the

inductive hypothesis, T ′ ∈ T . Since v is a remote vertex in T ′, the vertex v is in
every γpr(T

′)-set. Hence, T can be obtained from T ′ by operation T1. Thus we may
assume dT (v) = 2, for otherwise T ∈ T , as desired.

Since the PDS S contains no leaf of T , it follows that the vertex w is adjacent to
no remote vertex other than v. Suppose w is adjacent to a leaf v′. Let T ′ = T − v′.
Then, S is a PDS of T ′, and so γpr(T

′) ≤ |S| = γpr(T ). By Observation 2(a),
there is γt(T

′)-set that contains no leaf of T ′. Such a TDS of T ′ contains the vertex
w, and is therefore also a TDS of T , whence γt(T ) ≤ γt(T

′). Therefore, γt(T
′) ≤

γpr(T
′) ≤ γpr(T ) = γt(T ) ≤ γt(T

′). Consequently, we must have equality throughout
this inequality chain. In particular, γt(T

′) = γpr(T
′) and S is a γpr(T

′)-set. By the
inductive hypothesis, T ′ ∈ T . Since the vertex w is in some γpr(T

′)-set, namely S,
the tree T can be obtained from T ′ by operation T1. Thus we may assume dT (w) = 2,
for otherwise T ∈ T , as desired.

Suppose x 	∈ pn(w, S). Let T ′ = T − {u, v, w}. Then, S − {v, w} is a PDS
of T ′, and so γpr(T

′) ≤ γpr(T ) − 2. Any γt(T
′)-set can be extended to a TDS

of T by adding to it the vertices v and w, and so γt(T ) ≤ γt(T
′) + 2. Hence,

γt(T
′) ≤ γpr(T

′) ≤ γpr(T ) − 2 = γt(T ) − 2 ≤ γt(T
′). Consequently, we must have
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equality throughout this inequality chain. In particular, γt(T
′) = γpr(T

′) and γt(T ) =
γt(T

′) + 2. By the inductive hypothesis, T ′ ∈ T . Now, γt(T
′; x) ≤ γt(T

′). Any
γt(T

′; x)-set can be extended to a TDS of T by adding to it the vertices v and w,
whence γt(T ) ≤ γt(T

′; x) + 2 ≤ γt(T
′) + 2 = γt(T ). Consequently, γt(T

′; x) = γt(T
′).

Thus, T can be obtained from T ′ by operation T2. Hence we may assume that
x ∈ pn(w, S), for otherwise T ∈ T , as desired.

Since x ∈ pn(w, S), it follows from our choice of the PDS S (which contains no leaf
of T ) that dT (x) = 2. Let T ′ = T −{u, v, w, x}. Then, S−{v, w} is a PDS of T ′, and
so γpr(T

′) ≤ γpr(T ) − 2. Further, γt(T ) ≤ γt(T
′) + |{v, w}| = γt(T

′) + 2. Therefore,
γt(T

′) ≤ γpr(T
′) ≤ γpr(T )− 2 = γt(T )− 2 ≤ γt(T

′), whence γt(T
′) = γpr(T

′). By the
inductive hypothesis, T ′ ∈ T . Thus, T can be obtained from T ′ by operation T3. �

As an immediate consequence of Lemmas 3 and 4 we have the following charac-
terization of (γt, γpr)-trees.

Theorem 5 A tree T is a (γt, γpr)-tree if and only if T ∈ T .

3 A characterization of (γpr, 2β1)-trees

We now turn our attention to a characterization of (γpr, 2β1)-trees. First we introduce
two types of operations that are used to construct (γpr, 2β1)-trees. Let F1 and F2 be
the following two operations on a tree T . (By attaching a subdivided star to a vertex
v of T we mean adding a subdivided star K∗

1,k to T and joining v to either a leaf of
the subdivided star if k = 1 or to the vertex of degree k in the subdivided star if
k ≥ 2.)

Operation F1. Attach a path P1 to a vertex of T , which is in every γpr(T )-set.

Operation F2. Attach the subdivided star to a vertex of T , which is in every
γpr(T )-set.

Lemma 6 If γpr(T
′) = 2β1(T

′) and T is obtained from T ′ by operation F1, then
γpr(T ) = 2β1(T ).

Proof. Suppose that T is obtained from T ′ by adding a new vertex u and the edge
uv where v ∈ V (T ′). Then, v is in every γpr(T

′)-set. It is easily seen that γpr(T ) =
γpr(T

′). We show next that β1(T ) = β1(T
′). For otherwise, β1(T ) = β1(T

′) + 1. If
M is a maximum matching of T , then uv ∈ M and M ′ = M − {uv} is a maximum
matching of T ′. Clearly, V (M ′) is a PDS of T ′. Note that

γpr(T
′) ≤ |V (M ′)| = |V (M)| − 2 = 2(β1(T ) − 1) = 2β1(T

′).

Hence, V (M ′) is a γpr(T
′)-set, but v 	∈ V (M ′). This contradiction implies that

β1(T ) = β(T ′). So γpr(T ) = 2β1(T ). �
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Lemma 7 If γpr(T
′) = 2β1(T

′) and T is obtained from T ′ by operation F2, then
γpr(T ) = 2β1(T ).

Proof. Suppose that T is obtained from T ′ by attaching a subdivided star K∗
1,k,

k ≥ 1, to a vertex v in T ′, where v is in every γpr(T
′)-set. Let u be the vertex of

the subdivided star that is adjacent to v. Let N(u) − {v} = {u1, . . . , uk} and for
i = 1, . . . , k, let N(ui)−{u} = {u′

i}. Let M be a maximum matching of T . Without
loss of generality, we may assume that uju

′
j ∈ M , 1 ≤ j ≤ k. If uv /∈ M , then

M −{uju
′
j | j = 1, . . . , k} is a matching of T ′, and so β1(T

′) ≥ β1(T )−k. If uv ∈ M ,
then M ′ = M −{uv, uju

′
j | j = 1, . . . , k} is a matching of T ′. Since every γpr(T

′)-set
contains the vertex v and γpr(T

′) = 2β1(T
′), it follows that every maximum matching

of T ′ must contain the vertex v. Hence, M ′ is not maximum matching of T ′, that
is, β1(T

′) ≥ β(T ) − k. Furthermore, we note that any maximum matching of T ′

can be extended to a matching of T by adding all edges uju
′
j, j = 1, . . . , k, whence

β1(T ) ≥ β1(T
′) + k. Consequently, β1(T ) = β1(T

′) + k.

Now let S be a γpr(T )-set. Then, {u1, . . . , uk} ⊂ S. If u /∈ S, then we must have
that {u′

1, . . . , u
′
k} ⊂ S. This means that S′ = S − {uj, u

′
j |j = 1, 2, · · · , k} is a PDS

of T ′ (with uj and u′
j paired in T [S]). Thus, we have

γpr(T
′) ≤ |S′| = |S| − 2k = γpr(T ) − 2k ≤ 2(β1(T ) − k) = 2β1(T

′).

Since γpr(T
′) = 2β1(T

′), we must have equality throughout the above inequality
chain. In particular, γpr(T ) = 2β1(T ). Suppose u ∈ S and there exists a vertex ui

paired with u in T [S]. As above, it is easily verified that γpr(T ) = 2β1(T ). Finally,
suppose u ∈ S with u and v paired in T [S]. Then, {u′

1, . . . , u
′
k} ⊂ S. If N(v) ⊂ S,

then S −{u, v} is a PDS of T , contradicting the minimality of S. Hence there exists
a vertex w ∈ N(v) ∩ V (T ′) such that w /∈ S. Thus, S∗ = (S ∪ {w}) − {u} is a
minimum PDS of T and u /∈ S∗. As before, the desired result follows. �

We now define the family of trees F as:

F = {T | T is obtained from P2 by a finite sequence of operations F1 and F2 }.
As an immediate consequence of Lemmas 6 and 7, we have the following result.

Lemma 8 If T ∈ F , then T is a (γpr, 2β1)-tree.

We show next that every (γpr, 2β1)-tree belongs to the family F .

Lemma 9 If T is a (γpr, 2β1)-tree, then T ∈ F .

Proof. We proceed by induction on the order n ≥ 2 of a (γpr, 2β1)-tree T . If n ≤ 5,
then T ∈ {K1,2, K1,3, K1,4, P2, P3, P5} and clearly T ∈ F . Let n ≥ 6 and assume that
for all (γpr, 2β1)-trees T ′ of order n′ < n, it holds that T ′ ∈ F . Let T be a (γpr, 2β1)-
tree of order n. If T is a star, it is easily seen that T can be obtained from a finite
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sequence of operations F1. So we assume that T is not a star. Let v1, v2, . . . , v�

be a longest path in T . If � = 4, then T is a double star and γpr(T ) 	= 2β1(T ), a
contradiction. Hence, � ≥ 5.

Case 1. d(v2) ≥ 3. Then, v2 is adjacent to at least two leaves. Let T ′ = T − v1.
Since v2 is a remote vertex in T ′, every PDS of T ′ contains v2, and so γpr(T ) ≤ γpr(T

′).
Further, β1(T ) ≥ β1(T

′). Hence, γpr(T ) ≤ γpr(T
′) ≤ 2β1(T

′) ≤ 2β1(T ) = γpr(T ).
Consequently we must have equality throughout this inequality chain. In particular,
γpr(T

′) = 2β1(T
′). By the inductive hypothesis, T ∈ F . Since the vertex v2 belongs

to every γpr(T
′)-set, the tree T can be obtained from T ′ by operation F1.

Case 2. d(v2) = 2 and d(v3) = 2. Let T ′ = T − N [v2]. First we note that
γpr(T ) ≤ γpr(T

′) + 2 and β1(T ) ≥ β1(T
′) + 1. Therefore, we have

γpr(T ) ≤ γpr(T
′) + 2 ≤ 2β1(T

′) + 2 ≤ 2β1(T ).

Since γpr(T ) = 2β1(T ), we must have equality throughout the above inequality chain.
In particular, γpr(T

′) = 2β1(T
′) and β1(T

′) = β1(T ) − 1. We show next that the
vertex v4 is in every γpr(T

′)-set. Suppose there exists a γpr(T
′)-set S′ = V (M ′) such

that v4 /∈ S′, where M ′ is a maximum matching of T ′. Then M ′ ∪ {v1v2, v3v4} is a
matching of T . So β1(T ) = 2+β1(T

′), contradicting the fact that β1(T ) = β1(T
′)+1.

Hence, the vertex v4 is in every γpr(T
′)-set. Therefore, the tree T can be obtained

from T ′ by operation F2.

Case 3. d(v2) = 2 and d(v3) ≥ 3. Let T ′ and T ′′ denote the components of
T − v3v4 containing v4 and v3, respectively. Suppose v3 is adjacent to t ≥ 1 leaves.
Then, β1(T

′′) ≥ d(v3) − t and γpr(T
′′) ≤ 2(d(v3) − t − 1), and so

γpr(T ) ≤ γpr(T
′) + γpr(T

′′)

≤ 2(β1(T
′) + d(v3) − t − 1)

< 2(β1(T
′) + β1(T

′′))

≤ β1(T
′),

which contradicts the fact that T is a (γpr, 2β1)-tree. Hence, v3 is adjacent to no
leaf, and so each child of v3 is a remote vertex. If some child of v3 has degree at
least 3, then proceeding as in Case 1, T ∈ F . Hence we may assume that each child
of v3 has degree 2. Let N(v3) − {v2, v4} = {u1, . . . , uk}, where k = d(v3) − 2 ≥ 1.
For i = 1, . . . , k, let N(ui) − {v3} = {u′

i}. Since γpr(T ) ≤ 2(d(v3) − 1) + γpr(T
′) and

β1(T ) ≥ d(v3) − 1 + β1(T
′), we have

γpr(T ) ≤ 2(d(v3) − 1) + γpr(T
′)

≤ 2(d(v3) − 1) + 2β1(T
′)

≤ 2β1(T )

= γpr(T ).

Consequently, we must have equality throughout this inequality chain. In particular,
γpr(T

′) = 2β1(T
′) and β1(T ) = β1(T

′) + d(v3) − 1.
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We show next that the vertex v4 is in every γpr(T
′)-set. Suppose there exists

a γpr(T
′)-set S′ = V (M ′) such that v4 /∈ S′, where M ′ is a maximum matching

of T ′. Then M = M ′ ∪ {v1v2, v3v4, u1u
′
1, . . . , uku

′
k} is a matching of T , and so

β1(T ) ≥ |M | = β1(T
′)+d(v3), contradicting the fact that β1(T ) = β1(T

′)+d(v3)−1.
Hence, the vertex v4 is in every γpr(T

′)-set. Therefore, the tree T can be obtained
from T ′ by operation F2. �

As an immediate consequence of Lemmas 8 and 9, we have the main result in the
section.

Theorem 10 A tree T is a (γpr, 2β1)-tree if and only if T ∈ F .
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