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A CHARACTERIZATION
OF TWO WEIGHT NORM INEQUALITIES

FOR FRACTIONAL AND POISSON INTEGRALS

ERIC T. SAWYER

ABSTRACT. For 1 < p < q < oo and w(x), v(x) nonnegative functions on R",

we show that the weighted inequality

(/IT/,-.) "*<C (//.,)"'

holds for all / > 0 if and only if both

f[T(xQVl'pl)\"w<Cy(jvl-P'\       <oo

and

/ [T(xqw)}"'v1-"' < C2 ( /  w J < oo

hold for all dyadic cubes Q. Here T denotes a fractional integral or, more gen-

erally, a convolution operator whose kernel K is a positive lower semicontinu-

ous radial function decreasing in |i| and satisfying K(x) < CK{2x), x 6 Rn.

Applications to degenerate elliptic differential operators are indicated.

In addition, a corresponding characterization of those weights v on Rn and

w on R"+1 for which the Poisson operator is bounded from Lp(v) to Lq(w)

is given.

1. Introduction. Suppose 1 < p, q < oo, v(x) and w(x) are nonnegative

measurable functions (i.e. weights) on R" and Rm respectively, and that T is an

operator taking suitable functions on R" into functions on Rm. In his survey

article [26], B. Muckenhoupt raised the general question of characterizing when the

weighted norm inequality,

(1.1) (J     \Tf(x)\*w(x)dx^      <C^\f(x)\pv(x)dx^      ,

holds for all appropriate /. In the case of "one weight", e.g. p = q, m = n and

w — v, and for many classical operators T, inequality (1.1) can be characterized by

remarkably simple conditions, most notable being that the Ap condition,

<^»_(m Lw) (m L "'"'T' -c """"cubes Q c R"'
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534 E. T. SAWYER

is necessary and sufficient for the Hardy-Littlewood maximal function and Hilbert

transform inequalities (see [19 and 25]).

The case of different weights has been far less accommodating. Only for the

simplest of nontrivial operators, namely the Hardy operator, Tf(x) = f* f(t) dt,

has a correspondingly simple characterizing condition for (1.1) been obtained (see

[1, 3, 25, 40 and 41]), namely

a°°    \ 1//<? / fr \ 1^p'
wj      ( /   t>1"p' j        < C     for all 0 < r < oo.

In a sense, the next simplest classical operator is the Hardy-Littlewood maximal

function,

Mf(x) =     sup    ±- [ |/|,
x€Qcube M Jq

and in [31] it was shown that for T = M, (1.1) holds if and only if

( f [M(xQv1-p')]qw J      <c(f vl~p j      < °°     for a11 cubes Q C R"-

In particular, this says that (1.1), with T = M, holds for all / if it holds when

tested over functions of the form / = xqv1~p (since then fpv = f). This sug-

gested a reasonable conjecture: (1.1) holds for all / provided it holds when tested

over functions of the form XQyl~p , where the sets Q are appropriately related to

the geometry of the operator T. While this is born out in the one weight cases

considered above and in the two weight inequality for M, it fails, for example, for

fractional integrals,

Tf(x) = Iaf(x)= f    [x-y[a-nf(y)dy,
Jr"

and for higher dimensional Hardy operators

rX\ rXn

Tf(xy,...,Xn)= •••   /        f(ty,...,tn)dty-dtn
Jo Jo

(see [32] and [33] respectively for counterexamples). The point here, first indicated

in the work of B. Muckenhoupt and R. L. Wheeden in [28], is that for linear

operators, one should also test the inequality dual to (1.1) over appropriate test

functions.

It is convenient at this point to recast (1.1) in a more "natural" form, one that

permits the replacement of the functions v and w by positive Borel measures p, and

w, and that leads more naturally to the correct testing functions:

(1.2)   ^m|T(//i)(x)|*dW(x))   ' <C^Jf(x)\"dp(x)^   \        felTQt).

To see that (1.1) is included in (1.2), set du>(x) = w(x) dx, dp(x) = v(x)1~p dx and

replace / by fvp _1 in (1.2). If T is linear and T* its dual under the usual pairing,

i.e.

f    (Tf)(x)g(x) dx= f    f(y)(T*g)(y)dy     for all / and g,
Jl\m •/Ft"
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TWO WEIGHT NORM INEQUALITIES FOR FRACTIONAL INTEGRALS 535

then (1.2) is equivalent to the dual inequality,

(1'3)

^jr(^)(x)|*'dM*))   ° <c(£jff(x)|«'<Mx))   \      geL«'(u).

The new conjecture is that (1.2) holds for all / in Lp(p) if and only if both (1.2)

and (1.3) hold when tested over characteristic functions of sets Q appropriately

related to the geometry of T. In [33], this conjecture was established for the two-

dimensional Hardy operator

T/(Xi,X2)=   f   '   f  ' f(ty,t2)dtydt2
Jo    Jo

by showing that it sufficed to test (1.2) over rectangles of the form [0, a] x [0, b] and

to test (1.3) over rectangles of the form [a, oo] x [b, oo].

The purpose of this paper is to establish the conjecture above for fractional in-

tegral operators (and some generalizations thereof) along with the Poisson integral

operator. For other work on weighted inequalities for these operators, see [2, 4, 6,

7, 9, 10, 11, 15, 17, 20, 21, 22, 23, 27, 30, 32, 35, 36, 39] and references given
there. Before stating our two theorems, we establish some notation. Given a cube

Q and R > 0, denote by RQ the cube concentric with Q and with R times the side

length. For any measure p and set E, denote by [E]^ the /^-measure of E. Finally,

the letter C will be used to denote a positive constant that may change from line

to line but will remain independent of the appropriate quantities.

THEOREM 1. Suppose 1 < p < q < oo, uj and p are positive Borel measures on

Rn, and Tf = K * f where K(x) is a positive lower semicontinuous radial function

decreasing in \x\ and satisfying the growth condition K(x) < CK(2x), x E R".

Then the weighted inequality

(1.4) (f[T(fp)}Uoj\      <c(ffpdp\ forallf>0

holds if and only if both

(1.5) ( f[T(xQP)]qduj\      < Cy[Q[]/p < oo     for all dyadic cubes Q

and

a\i/p'[T(xQuj)]pl dpi       < C2\Q[xJq' < oo     for all dyadic cubes Q.

THEOREM 2. Suppose 1 < p < q < oo, oj and p are positive Borel measures on

R"+1 and Rn respectively, and

P(fp)(x,t)= f   Pt(x-y)f(y)dp(y),
Jr"

P*(guj)(y) = f      Pt(y - x)g(x, t) doj(x, t),
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536 E. T. SAWYER

denote the Poisson and dual Poisson operators.  Then the weighted inequality

(1.7) (jn+[P(fp)}qduj)      <c(j    fpdp\ forallf>0

holds if and only if

(1.8) j f       [P(XQP-)]q duo j       < C\Q[]JP < oo     for all dyadic cubes QcRn

and

(1.9) \j    |P*[xg(z,0<9_1 doj(x,t)[\pldp <c(( tqdoj(x,t)\       <co

for all dyadic cubes Q C R"

where Q denotes the cube in R"+1 having Q as a face.

Applications of Theorem 1 to regularity and eigenvalve estimates for degenerate

elliptic differential operators are readily suggested by the following observation:

Suppose / has support in, or mean zero on, a cube Q. Then (see [12])

(110) |/(x)| <CIy(XQ\Vf[)(x),        XEQ,

where Iy denotes the fractional integral of order 1 given by

Iyf(x)=  f    [x-y\1-nf(y)dy.
Jr"

Thus if dp = xq(x)v(x)1~p dx and du = xq{x)w(x) dx satisfy conditions (1.5) and

(1.6) with T = Iy, then we have the two weight Poincare-Sobolev inequality

(1-11) f [f(x)\2w(x)dx<CQ f [Vf(x)[2v(x)dx
Jq Jq

for all / with either supp / C Q or /Q / = 0, and where Cq is a fixed multiple of

Cy + C2. This inequality has been used by S. Chanillo and R. L. Wheeden [8] to

study the local behaviour of solutions to degenerate elliptic operators P = V AV

where the weights w(x) and v(x) are given by the largest and smallest eigenvalues

of A(x) (see also [12, 18 and 38]). Inequality (1.11) is also the crucial ingredient

in estimating eigenvalues for degenerate Schrodinger operators —V • AV + V; see

S. Chanillo and R. L. Wheeden [7] (see also [5, 14, 21 and 22] for earlier related

results).

REMARK 1. Neither (1.5) nor (1.6) alone is in general sufficient for (1.4) as

shown by the example in [32]. Note however that (1.5) and (1.6) coincide when

oj = p and q = p'.

REMARK 2. A modification of the proof of Theorem 1 given below shows that

in conditions (1.5) and (1.6), the integrations on the left need be taken only over

the cubes Q and 12Q respectively. We do not know if it is possible to restrict both

integrations to Q.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TWO WEIGHT NORM INEQUALITIES FOR FRACTIONAL INTEGRALS 537

2. Proof of Theorem 1. Assume (1.4) holds. Then so does its dual inequality

(2.1) ( f [T(goj)f dp\        <C( fgq' dojj for all g > 0.

With / = xq in (1.4) and g = xq m (2-1) we obtain (1.5) and (1.6).
Conversely, suppose (1.5) and (1.6) hold and, without loss of generality, that /

is nonnegative and bounded with compact support. Now T(fp) is lower semicon-

tinuous and so for each fc, we can write the open set Uk = {T(fp) > 2k} as (jjQj

where the Qj are the dyadic cubes maximal among those dyadic cubes Q satisfying

RQ C fife. Choosing R > 3 sufficiently large, depending only on the dimension n,

we obtain

(2.2) (i)  (disjoint cover) Uk = [j Qk3 and Qk n Qk = 0 for i ^ j,

3

(ii) (Whitney condition)    RQk C Qk and ZRQk n Uck ̂ 0 for all fc, j,

(iii) (finite overlap) 2^X30* ^ Cxn* for all fc,

3

(iv) (crowd control) The number of cubes Qks intersecting a

fixed cube SQk is at most C,

(v) (nested property) Qk C Q\ implies k > I.

In fact, (i) and (v) are obvious, (ii) follows as in Theorem 2.1 of [16], and (iii) and

(iv) are a consequence of (ii) and a geometric packing argument on p. 16 of [13].

We now claim the following maximum principle holds:

(2.3) T(x(zQ)Yfp)(x)<C2k,        xEQk,

for all (k,j) where C is a constant. To see this, momentarily fix (k,j) and choose

z E 3RQk fl fi£, which is possible by the Whitney condition (2.2)(ii). From

the growth assumption on K(x), we conclude there is a constant C such that

K(x -y)< CK(z - y) for xEQk,yE (SQk)c. Multiplying this inequality by f(y)

and then integrating over {3Qk)c with respect to dp(y) yields T(x'3Qt\cfp)(x) <

CT{fp)(z) < C2k since z <£ Clk. This proves (2.3).

Now fix an integer m > 2 satisfying 2m~2 > (7 where C is the constant appearing

in (2.3). Define Ek = Qkf){nk+m-i-nk+m) for all (k,j). For x E Ek C fW-,,

the maximum principle (2.3) yields

T(x3Q*fl*)(x) = T(fn)(x) - T(X{3Q^fp)(x)

^ nk+m— 1 _ ft<yk ^ nk+m—1 _nk+m — 2 _ nk+m—2 -*, nk

and so

[Ekl < 2-k f   T(x3Qtfp)doj = 2~k f     fT(XE*oj)dp
Je" ' J3Q" '

= 2-*    / fT(XE*uj)dp+ f fT(XE*oj)dp
/3Q*-nk+m ] ./3Q*nnk+m '

= 2-k[ak + Tk].
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538 E. T. SAWYER

We now estimate the left side of (1.4) by

f[T(fp)]q d0J < J2(2k+m)q\nk+m-l - Sik+ml
J k

<cj2\E3^2kq
(2.4) k'j

= c( E + E + E W2*9
\(k,j)€E      (k,j)€F      (k,j)eGj

= C(l + II + III)

where

E = {(k,j):\E%<fi[Q%},

F = {(k,j): \E}\U > fi[Q% and a) > rk},

G = {(k,j): \E$\U > fi\Q% and a) < rk},

and where fi, to be chosen later, satisfies 0 < fi < 1. We have

1=    E   \EkL2kq < fiJ2\Q3^2h9
(k,j)€E k,j

<l3J22kq\{T(fp)>2k}\u     by(2.2)(i)

(2-5) * ( v

<fi J   lJ22kqX{Tfp.>2*}\   dp

<CfiJ[T(fp)[qdoj;

\ 2ak V
n=  E  \E^kq<  E  141- wr

(k,j)eF (k,j)€F IWJ

[-18

-L- f fT(XE*")dp
\Qk\u J3Q*-nk+m

\Ek\ r r , r/p' r /• r/p
^"'EW    /      [T(x«^)]P<*M / /P^

(2.6) k'3 l     ' qlv

<C(C2)qfi-qT\ f fpdp) by (1.6)
k,j \Jw$-nk+m      /

< C/T «    E / /P ^ since p<q

<Cfi-q(j Pdp\
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TWO WEIGHT NORM INEQUALITIES FOR FRACTIONAL INTEGRALS 539

since

Ex30*-nt+m <CExnfc-nt+m <C(m+T)     by (2.2)(iii).
kj k

To estimate term III in (2.4) we will need the following easy variant of the

maximal theorem in [37]. For v a positive Borel measure on Rn, define

Af„/(x) =      sup      [-L- / |/| du],        fe L\oc(u).
xeQ dyadic LIVIk JQ

cube

MAXIMAL THEOREM. For 1 < r < oo, and i/ a positive Borel measure on Rn,

(2.7) f(Mvf)rdv<Crf[f\Tdu     for all f eU(v).

Inequality (2.7) follows by interpolation from the weak type (1,1) and type

(co,co) estimates for Mv (both with constant 1) as in [37].

Let Hk = {i: Qk+m n 3Q* # 0} so that 3Qk n nfc+m C U€h* Q,*+m- In order

to estimate r* we observe that the growth condition imposed on the kernel A"(x)

implies that for y £ ZQk+m,

max   K(x — y)<C   min   /f(x — y)

which in turn yields

max   T(xEkOj)(x) < C   min   T(xEkU>)(x),        iEHk,
x€Q*+m ' x€Q*+m > J

since 3Qk+m C Hfc+m (see (2.2)(ii)) and Uk+m does not intersect Ek.  It follows

that

sc£[4-^"H[i5P=u4-H-i
For notational convenience, set

\Qj U -/q*

and let L) = {s: Qk n 3Q* ^ 0}. Then we have

(2.9) -,

^CE     E     /t+ nxE^)dp Ak+m .
s€ij  [t: Q* + mC«J L  W- -I
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For future reference, note that the cardinality of Lk is at most C by (2.2)(iv). We

now claim that

(2.10) E       \Ekl2kq < C ( f fpdp)9 *

k>N
fc=M(mod m)

with a constant C independent of the integers N and M where — oo < N < oo,

0 < M < m. Fix such integers N and M and introduce the convention, in force

until the proof of (2.10) is completed, that all indices (k,j) are understood to be

restricted to fc > N, k = M (modm).

With this convention we introduce "principal" cubes as in B. Muckenhoupt and

R. L. Wheeden [29, p. 804]. Let Go consist of those indices (fc, j) for which Qk is

maximal. If Gn has been defined, let Gn+i consist of those (k,j) for which there

is (t, u) E Gn with Qk C Qlu and

(i) A) > 2Ai,
(ii) A\ < 2A\ whenever Qk % Q\ C Q*u.

Define T = Ur^=o ^« ano- mx eacn (^>i)> define P(Qk) to be the smallest cube Q%u

containing Qk and with (t, u) E T. Then we have

(2 11) 0)    P{Qk]) = Q" implleS ̂  ~ 2A"'

(ii)    Qk $ Qi, (k,j) and (t, u) ET imply Ak > 2A\.

Using (2.9) and the fact that the cardinality of Lk is at most C, we obtain

(2-12)

E \Ek\.ikq< e \e% M-
(k,j)€G (k,j)€G V    J|("J

tjsei'1^1      t: P(Q*+m)=P(0*) L g- J

"I 9

k,j• i^jiw   ,eH*: (fc+m,i)er r*. J

(since if Qk+m C Qk and (fc + m, i) <£ T,

then P(Q*+m) = P(Qk))

= IV + V.

We will use conditions (1.5) and (1.6) to estimate terms IV and V respectively.
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First, note that for a fixed (t, u) E T,

E    E     i|      E     [JU^*]*-
Q* + mC«*

^E E 1^1"   T7WT f   T^Q«")d»    PO"    by(2-H)(i)
u t t       , [\Qj\<» Jq" '

(2.13) r -.,

< C(A^)«  / [Mw[:r(xQ£/*)]]' dw     since cardinality of Lk < C(n,R)

< C(Atu)q  I [T(xQt fi)]q dw     by the maximal theorem

<C(At)«(Ci)«|gi|«/p     by (1.5).

Summing (2.13) over (t,u) E T yields

(2.14)
-i q/p

lV<Cfi~q    E    \Qu\qJP(Atu)q < Cfi~q       E    \Qu\Mu)V since p<9.
(t,u)er [(t,u)er

To obtain the corresponding estimate for V, we note that for a fixed (k,j),

Holder's inequality yields

(2.15)
1q

] ie//* : (k+m,i)er L   vi

,-1 <t/p'

3       ieH" L wi J

"I 8/P

E l<5?+mlM(4+m)p
i€H» : (k+m,t)er

-i 9/p   r -i 9/p

*|fe £ fk \nxQr)Y'du e    iermiM(^+m)p
J       i€H*   wi ie//*: (Hm,i)er

-i q/p

<(C2)« E IQf+mU(Afc+m)p by (1.6).

16//* : (fc + m,i)er
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Summing (2.15) over (k,j), using the fact that p < q, and then noting that any

fixed Qk+m occurs at most C times in the resulting sum (by (2.2)(iii)), we obtain

-i q/p

(2-16) V<Cfi~q     E   \Qu\,(Al)p        ■
_(t,u)er

Combining (2.12), (2.14) and (2.16) shows that the left side of (2.10) is bounded

by

-i q/p

(2.17) Cfi~q     E   \Qu\Mu)P
_(t,u)er

r -i -| q/p

<Cfi~q      f        E    (Au)PXQi(x)     dp(x)
~    [(«,u)€r

<Cfi-"U(MtlfYdp "

since (2.11) (ii) implies that for any fixed x,

E   WxqiW < 2p sup (Ai)^ < 2pM,f(x)p.
(t,u)er IG<5«

From (2.17) and the maximal theorem we obtain (2.10). Now let N —> -co in

(2.10) and then sum over M = 0,1,2,..., m — 1 to obtain

(2.18) III < Cfi-q ( f fp dp J

Combining (2.4), (2.5), (2.6) and (2.18) we have

(2.19) j[T(fp)]qdoj<Cfi j[T{fp)]qdoj + Cfi-q(jfpdp\      .

Now chose fi so small that Cfi < ^ and then subtract the first term on the right side

of (2.19) from both sides (it is finite by (1.5) and our assumptions on /) to obtain

(1.4) for / > 0 bounded with compact support, and hence for arbitrary / > 0 by

the monotone convergence theorem. This completes the proof of Theorem 1.

3. Proof of Theorem 2. The proof of Theorem 2 follows very closely the line

of argument used in Theorem 1, but applied to the dual Poisson operator P* rather

than P. In order to minimize confusion in referring to the proof of Theorem 1, we

set T = P*, i.e. T(fp)(x) = JPt(x — y)f(y,t)dp(y,t), interchange the roles of u

and p, q and p', and consider instead the inequality,

(3.1) (f   [T{fp)}qdo?j      <C\[   ,lfPdA for all/>0.
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We will show that (3.1) holds if and only if both

/11/9 r /■ 1 i/p
{T[xq{x, ty''1 dp(x, t)})q doj       < C \ I tp' dp(x, t)        < 00,

■ , ]1/p' / (      x 1/9'

(3.3) /       (PxquY dp <CU   doj)       <co

hold for all dyadic cubes Q C Rn.

Condition (3.2) follows by setting f(x,t) = Xq(M)*p'_1 in (3.1), and (3.3)

follows by testing the inequality dual to (3.1) with XQ-

Conversely, we begin exactly as in the proof of Theorem 1 but with the maximum

principle in (2.3) replaced by

(3.4) T(xi3Q>)cfp)(x)<C2k,        xEQk.

To see (3.4), choose z E 3RQk nfi£ as before by the Whitney condition. Inequality

(3.4) now follows from the inequality

Pt(x -y)< CPt(z -y),       xe Qk, (y,t) £ 3Qk,

after multiplying by f(y, t) and then integrating over (3Qk)c with respect to dp(y, t).

From this point up to the inequality in (2.8), the proof of Theorem 1 can be

applied verbatim provided that in the context of the measure space (R"+1,d/i),

cubes Q are replaced by Q and the sets Qk are replaced by Clk = \J Qk. The

only new development in this proof arises now:   T*(xEkUJ) is n0 longer roughly

constant on any Qk+m, but merely roughly constant on level planes of Qk+m (see

(3.6) below). The substitute for (2.8) is

rk= f fT*(XE^)dp= E   f        fT*(XE*u)dp

(3-5) r w -,

<CT     f       T*(xEkoj)t-xdp I        f        ft^'dpf

where dp(y,t) = tp dp(y,t). To see the inequality in (3.5), observe that if xk+m is

the centre of Qk+m, then for (x,t) E Qk+m,

(3.6) T*(XE>u)(x,t) *T*(XE^)(xk+m,t) « ^T*(XE^)(xk+m,dk)

3

since 3Qk+m f) Ek = 0.   Here dk is the side length of Qk and the symbol of

approximate equality means the ratio of the sides is bounded between absolute
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positive constants. From (3.6) we have

/        fT*(xE*")dpK±T*(xE^)(xk+m,dk) f        f(x,t)tdp(x,t)
jQk+m        i dKj       > •/<§*+">

'U+m ^T*(xEkoj)(xk+m,dk)tp'-1dp(x,t)]    ,

=   —-c1     „,,,,*-    /        f(x,t)tdp(x,t)
jQk + mtP   dp(x,t) J Qk + m

'Uk+'"T*(f<EkUJ)(x,t)t-1 dp(x,t)]   f ,

«    3-r2-"7=-     / ft^d-p
jQk + m   Op jQk + m

which yields (3.5) upon summing over i E Hk.

In   view   of   (3.5),   it   is   now   appropriate   to   define   the   averages   Ak-   by

{1/\Qk\u) Jnk ft1"1'' dp.   With these changes, the argument in the proof of The-
3 Wj

orem 1 now leads to the conclusion, as in (2.17), that the left side of (2.10) is

dominated by Cfi-q(f(Mfig)pd~p)q'p where g(x,t) = t1-"'f(x,t) and

Mjig(x,t)=        sup —-— /   \g\dp   ■
(x,t)€Q dyadic LMm Jq
cube in i?"+1

The maximal theorem now shows that

f{Mji)p dp<C f gpdp = C f fPt^-p')ptp' dp

= C f fpdp

and the proof of Theorem 2 is now completed as in the proof of Theorem 1.
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