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A CHART PRESERVING THE NORMAL VECTOR AND

EXTENSIONS OF NORMAL DERIVATIVES IN WEIGHTED

FUNCTION SPACES

Katrin Schumacher, Darmstadt
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Abstract. Given a domain Ω of class Ck,1, k ∈ N, we construct a chart that maps
normals to the boundary of the half space to normals to the boundary of Ω in the sense
that (∂/∂xn)α(x′, 0) = −N(x′) and that still is of class Ck,1. As an application we prove
the existence of a continuous extension operator for all normal derivatives of order 0 to k on
domains of class Ck,1. The construction of this operator is performed in weighted function
spaces where the weight function is taken from the class of Muckenhoupt weights.

Keywords: chart, coordinate transformation, normal vector, normal derivative, extension
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1. Introduction

Let Ω ⊂ R
n be a Ck,1-domain, i.e., its boundary ∂Ω can locally be expressed as

the graph of a Ck,1-function

a : V ∩ (Rn−1 × {0}) → R

with an appropriate open set V ⊂ R
n; here k ∈ N. Then we are looking for a chart

α : V → U ⊂ R
n of regularity as high as possible such that

(1.1)
∂

∂xn
α(x′, 0) = −N(x′) whenever (x′, 0) ∈ V,

where N(x′) denotes the unit outer normal vector at (x′, a(x′)) ∈ ∂Ω. This means

that normals to the boundary of the half space are mapped to normals to ∂Ω. The
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natural mapping with this property is

(2.2) x = (x′, xn) 7→

(
x′

a(x′)

)

− xn ·N(x′).

However, if a is a Ck,1-function, then, since it includes the outer normal N , the chart

(1.2) is only of class Ck−1,1.

For this reason we introduce a different chart which conserves the Ck,1-regularity

and still has the property (1.1).

Coordinate transforms as in (1.2) are used e.g. by Nečas [13] to prove extension

theorems of normal derivatives, see also Chapter 4 of this paper. Moreover, in [12,

Chapter 4.1] Giga uses such a coordinate transformation to obtain symbols of pseudo-

differential operators of a particular form. In a similar context, according to Abels,

the proof of results in [1] can be significantly simplified by the use of a chart with

the property (1.1) but which preserves the regularity of a.

In the second part of this paper we present an application of the chart mentioned

above. We prove the existence of a continuous operator extending functions defined

on the boundary in the following way. Given functions g1, . . . , gm on the boundary

we find a function u defined on Ω such that

∂ju

∂N j
= gj on ∂Ω, 0 6 j 6 k.

In the context of classical Sobolev spaces this result can be found in [13].

The result of [13] is generalized in two aspects. First, using the particular chart

constructed in the first part of this paper, one can deal with more general domains.

More precisely, one can permit domains with a boundary regularity that is of one

order lower than in the former results. Using this it is possible to show that the

results on very weak solutions to the Navier-Stokes equations by Galdi, Simader and

Sohr in [10] and by Farwig, Galdi and Sohr in [5] hold not only in C2,1-domains but,

more generally, in C1,1-domains. This can be seen in [14] where a weighted approach

to this problem is given.

Secondly, we consider the problem in weighted function spaces. This means, we

consider weighted Lebesgue spaces Lq
w(Ω) and Sobolev spacesW k,q

w (Ω) which means

that we integrate with respect to the measure w dx for an appropriate weight function

w, see Section 3 below for the exact definition of these spaces.

All weight functions that we use are contained in the Muckenhoupt class Aq. This

is the class of nonnegative and locally integrable weight functions, for which the

expression

Aq(w) := sup
Q

(
1

|Q|

∫

Q

w dx

)(
1

|Q|

∫

Q

w−1/(q−1) dx

)q−1
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is finite, where the supremum is taken over all cubes Q in R
n. As shown in [6],

examples of Muckenhoupt weights are w(x) = (1 + |x|)α with −n < α < n(q − 1) or

dist (x,M)α, −(n − k) < α < (n − k)(q − 1), where M is a compact k-dimensional

Lipschitzian manifold.

One reason why the class of Muckenhoupt weights is appropriate for the analysis

is that the maximal operator is continuous in weighted Lq-spaces if and only if the

weight function is a Muckenhoupt weight. Thus the powerful tools of harmonic

analysis may be applied, cf. García-Cuerva and Rubio de Francia [11] and Stein [16].

Moreover, there is a powerful extrapolation theorem by Curbera, García-Cuerva,

Martell and Pérez [3] that guarantees estimates in very general Banach function

spaces provided the estimates in weighted function spaces are known for all weights

from the Muckenhoupt class Aq.

2. Construction of the chart

Let Ω ⊂ R
n be a Ck,1-domain, k ∈ N. This means that for every x0 ∈ ∂Ω we

can rotate and shift the coordinate system so that its origin is x0 and so that in a

neighborhood U(x0) of x0 one has

(2.1) ∂Ω ∩ U(x0) = {(x′, a(x′)) | x′ ∈ V (0)},

where V (0) is an appropriate ((n−1)-dimensional) neighborhood of 0 and a : V (0) →

R is a Ck,1-function.

Lemma 2.1. For k ∈ N let Ω ⊂ R
n be a Ck,1-domain. Then for every x0 ∈ ∂Ω

there exists a neighborhood U ⊂ R
n of x0, a neighborhood V ⊂ R

n of 0 and a

bijective map α : V → U such that

α(0) = x0, α(V ∩ (Rn−1 × {0})) = U ∩ ∂Ω, α(V ∩ R
n
+) = U ∩ Ω

and with the following properties:

(1) α ∈ Ck,1(V, U),

(2) (∂/∂xn)α(x′, 0) = −N(x′) and (∂/∂xn)jα(x′, 0) = 0 for k 6 j > 2 even.

(3) With the notation of (2.1) one has

a) ‖α‖Ck,1(V,U) can be estimated by ‖a‖Ck,1(V ∩(Rn−1×{0})),

b) there exists r > 0 which only depends on the sets U(x0), V (x0) and the

size of ‖a‖Ck,1(V ∩(Rn−1×{0})) such that Br(x0) ⊂ U .

P r o o f. We use the notation x = (x′, xn) with x′ ∈ R
n−1 and xn ∈ R and

∂γ = ∂γ1
x1

· . . . · ∂γ1
xn
for γ ∈ N

n.
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After rotating and shifting the coordinate system we may assume that x0 = 0,

(0, a(0)) = 0 and ∇a(0) = 0.

Let 0 6 ̺ ∈ C∞
0 (Rn−1) be radially symmetric so that

supp ̺ ⊂ B1(0) and

∫

Rn−1

̺ = 1.

For t 6= 0 we set ̺t(x
′) = |t|−(n−1)̺(x′/t). We define the function α as follows:

α(x′, xn) =







(
x′

a(x′)

)

− (xn̺xn
∗N)(x′) if xn 6= 0,

(
x′

a(x′)

)

if xn = 0,

where the convolution takes place in R
n−1.

Obviously, if V ⊂ R
n is small enough, then α(x′, 0) ∈ ∂Ω for (x′, 0) ∈ V . Moreover,

since ∂Ω is at least of class C1,1 it follows easily from the construction of α that

α(x′, xn) ∈ Ω and α(x′,−xn) 6∈ Ω, if xn > 0 is small.

Next we show (1): For every multi-index γ = (γ′, γn) ∈ N
n
0 , with |γ| 6 k and

γn 6= 0 one has for xn 6= 0

∂γ(xn̺xn
∗N)(x′) = γn(−1)γn−1

∫

̺(ξ)∇γn−1∂γ′

N(x′ − xnξ) (ξ, . . . , ξ)
︸ ︷︷ ︸

γn−1

dξ

+ xn
∂

∂xn

(

(−1)γn−1

∫

̺(ξ)∇γn−1∂γ′

N(x′ − xnξ) (ξ, . . . , ξ)
︸ ︷︷ ︸

γn−1

dξ

)

.

Then using change of variables an the fact that the map ∇γn−1∂γ′

N(x′ − ξ) is

(γn − 1)-linear, the second summand is equal to

(−1)γn−1xn
∂

∂xn

∫
1

|xn|n+γn−2
̺
( ξ

xn

)

∇γn−1∂γ′

N(x′ − ξ)(ξ, . . . , ξ) dξ

= (−1)γn−1

∫

((−n− γn + 2)̺(ξ) −∇̺(ξ) · ξ)∇γn−1∂γ′

N(x′ − ξxn) (ξ, . . . , ξ)
︸ ︷︷ ︸

γn−1

dξ.

Hence

(2.2) ∂γ(xn̺xn
∗N)(x′) = (−1)γn−1

∫

((−n+ 2)̺(ξ) −∇̺(ξ) · ξ)

×∇γn−1∂γ′

N(x′ − ξxn) (ξ, . . . , ξ)
︸ ︷︷ ︸

γn−1

dξ.
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Still we have to consider the case γn = 0 in which the situation is easier. Integration

by parts yields

(2.3) ∂γ(xn̺xn
∗N)(x′) =

∫

∂β1̺(ξ)∂β2N(x′ − xnξ) dξ,

where γ = β1 + β2 and |β1| = 1.

The map x 7→
(

x′

a(x′)

)
is of class Ck,1 because a is. It remains to show that

∂γ(xn̺xn
∗N(x′)) is Lipschitz continuous for every γ ∈ N

n, |γ| 6 k. This is an easy

consequence of the representations (2.2) and (2.3) and of N ∈ Ck−1,1, e.g.,

|∂γ(xn̺xn
∗N(x′)) − ∂γ(yn̺yn

∗N(y′))|

6

∫

B1(0)

|cn̺(ξ) −∇̺(ξ) · ξ||∇γn−1∂γ′

N(x′ − ξxn) −∇γn−1∂γ′

N(y′ − ξyn)| dξ

6 cLγ |x− y|.

A similar calculation shows that the right-hand side of (2.3) is Lipschitz continuous.

It remains to show (2): From (2.2) we have for j > 1 even

( ∂

∂xn

)j

α(x′, 0) = (−1)j−1

∫

((−n+ 2)̺(ξ) −∇̺(ξ) · ξ)∇j−1N(x′)(ξ, . . . , ξ) dξ

= (−1)j−1

( ∫

(−n+ 2)̺(ξ)∇j−1N(x′)(ξ, . . . , ξ) dξ

+

n−1∑

k=1

∫

̺(ξ)[∇j−1N(x′)(ξ, . . . , ξ) + (j − 1)ξk∇
j−1N(x′)(ek, ξ, . . . , ξ)] dξ

)

= (−1)j−1j

∫

̺(ξ)∇j−1N(x′)(ξ, . . . , ξ) dξ = 0,

since ̺ is assumed to be rotationally symmetric and ξ 7→ ∇j−1N(x′)(ξ, . . . , ξ) is an

odd function for j − 1 odd. Similarly,

∂

∂xn
α(x′, 0) = −N(x′)

(

(2 − n)

∫

̺(ξ) dξ −
n−1∑

i=1

∫

∂i̺(ξ)ξi dξ

)

= −N(x′).

It remains to show (3) b).

By (2.2) and (2.3) one has, since ∇a(0) = 0 and N(0) = −en,

∇α(0) = ∇

(
x′

a(x′)

)

−∇(xn̺xn
∗N(x′))

∣
∣
x=0

= id .
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Since ∇α is Lipschitz continuous with a constant K, we get for x, y ∈ Br(0), r <

(2K)−1 that

|α(x) − α(y)| = sup
|v|=1

|v · ∇α(ξv)(x− y)|, ξv ∈ {(1 − t)x+ ty|t ∈ (0, 1)}

> inf
ξ∈Br(0)

( |x− y|2

|x− y|
−

∣
∣
∣(x− y)(∇α(ξ) −∇α(0))

x− y

|x − y|

∣
∣
∣

)

>
1

2
|x− y|.

This inequality immediately implies that α is injective on Br(0).

Moreover, it is easily seen that B r
2
(x0) ⊂ αBr(0). Indeed, for x ∈ ∂Br(0) one has

|α(x) − x0| >
1
2 |x− 0|. Since ∇α(x) is invertible for every x ∈ Br(0) it follows from

the Inverse Function Theorem that α(Br(0)) is open. Together with the continuity

of α we obtain

B r
2
(x0) ∩ ∂α(Br(0)) = B r

2
(x0) ∩ α(∂Br(0)) = ∅.

Assume now that y ∈ B r
2
(x0) \ α(Br(0)). Then the straight line from y to x0

intersects ∂α(Br(0)). Thus this intersection point is contained in the intersection

which we have shown to be empty. This is a contradiction.

This argument completes the proof. �

3. Weighted function spaces

In Section 4 we want to prove an extension theorem that requires low boundary

regularity. Since this is done in weighted function spaces, in this section we collect

the basic definitions of weight functions and function spaces which are needed in the

sequel.

Definition 3.1. Let Aq, 1 < q < ∞, the set of Muckenhoupt weights, be given

by all 0 6 w ∈ L1
loc(R

n) for which

(3.1) Aq(w) := sup
Q

(
1

|Q|

∫

Q

w dx

)(
1

|Q|

∫

Q

w−1/(q−1) dx

)q−1

<∞.

The supremum is taken over all cubes Q ⊂ R
n and |Q| denotes the Lebesgue measure

ofQ. To avoid trivial cases, we exclude the case where w vanishes almost everywhere.

We introduce some function spaces. First, by C∞
0 (Ω) we denote the space of

smooth functions with compact support in Ω. For 1 < q < ∞, w ∈ Aq and an open

set Ω we define the weighted Lebesgue space by

Lq
w(Ω) :=

{

f ∈ L1
loc(Ω) | ‖f‖q,w :=

( ∫

Ω

|f |qw dx

)1/q

<∞

}

.
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For k ∈ N0, the set of nonnegative integers, the weighted Sobolev spaces are defined

by

W k,q
w (Ω) =

{

u ∈ Lq
w(Ω) | ‖u‖k,q,w :=

∑

|α|6k

‖Dαu‖q,w <∞

}

.

Finally, for k ∈ N we define the space T k,q
w (∂Ω) := (W k,q

w (Ω))|∂Ω equipped with the

norm ‖ · ‖T k,q
w

= ‖ · ‖T k,q
w (∂Ω) of the factor space, i.e.,

‖g‖T k,q
w (∂Ω) := inf{‖u‖W k,q

w (Ω) | u ∈W k,q
w (Ω) and u|∂Ω = g}.

By [7], [8] and [2] the spaces Lq
w(Ω), W k,q

w (Ω) and T k,q
w (∂Ω) are reflexive Banach

spaces in which C∞
0 (Ω) or C∞

0 (Ω) or C∞
0 (Ω)|∂Ω, respectively, are dense.

Note that by Slobodeckĭı [15] and Nečas [13, Chapitre 2, §5], in the unweighted

case one has

T k,q
1 (∂Ω) = W k−1/q,q(∂Ω).

However, in the setting of Muckenhoupt weights such a characterization of the spaces

by an intrinsic norm is known only for few examples of weight functions.

For weighted function spaces change of variables is possible in the following sense.

Lemma 3.2. Let Ω and O be two domains in R
n and let

α : O → Ω

be a Ck−1,1-diffeomorphism, k > 1.

1. The operator

T : u 7→ u ◦ α : W k,q
w (Ω) →W k,q

w◦α(O)

is continuous.

2. The same is true for the operator

S : g 7→ g ◦ α : T k,q
w (∂Ω) → T k,q

w◦α(∂O).

P r o o f. The first assertion follows immediately from the change of variables

formula, the second follows from the first using the definition of T k,q
w (∂Ω). �

By [9] the following weighted analogue of the Poincaré inequality holds: there

exists a constant c = c(q, w) > 0 such that

(3.2) ‖u‖q,w 6 c‖∇u‖q,w for every u ∈W 1,q
w,0(Ω).

Moreover, solvability of the following Laplace resolvent problem continues to hold

in weighted function spaces.
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Theorem 3.3 (Regularity of the Dirichlet Problem). Let 1 < q <∞, k ∈ Z, k >

−1 and let f ∈W k,q
w (Rn

+). Then there exists a unique weak solution u ∈W k+2,q
w (Rn

+)

to the Dirichlet Problem

(1 − ∆)u = f and u|Rn−1 = 0.

It fulfils the estimate ‖u‖k+2,q,w 6 c‖f‖k,q,w, where c = c(k, q, w).

The same is true for the solution u of (1−∆)u = 0, u|Rn−1 = g, if g ∈ T k+2,q
w (Rn−1),

i.e., it fulfils the estimate

‖u‖k+2,q,w 6 c‖g‖T k+2,q
w

.

P r o o f. For k = −1 the first assertion has been proved by Fröhlich in [7].

Using this, one obtains regularity of this boundary value problem as in the classical

unweighted case which can be found e.g. in Evans [4].

For the second assertion let v ∈ W k+2,q
w (Rn

+) be an extension of g. Then we find

a unique u ∈ W k+2,q
w (Rn

+) with (id − ∆)u = (id − ∆)v and u|Rn−1 = 0. Thus v − u

solves the problem and by the first assertion it fulfils the estimate. �

4. Extensions of functions on the boundary

Our next objective is to construct a linear extension operator that maps functions

defined on the boundary ∂Ω to a function defined on the domain Ω whose boundary

values or normal derivatives are given preimages.

We start with the half space.

Theorem 4.1. Let 1 < q <∞, w ∈ Aq and k ∈ N. Then there exists a continuous

linear operator

T :

k−1∏

j=0

T k−j,q
w (Rn−1) →W k,q

w (Rn
+)

such that (∂j/∂xj
n)T (g0, . . . , gk−1)|xn=0 = gj , j = 0, . . . , k − 1.

P r o o f. It suffices to show that for every g ∈ T k−j,q
w (Rn−1), j = 0, . . . , k −

1, there exists u ∈ W k,q
w (Rn

+) depending continuously and linearly on g such that

(∂j/∂xj
n)u = g and (∂i/∂xi

n)u = 0 for every i = 0, . . . , j−1. To see this assume that

for every j = 0, . . . , k − 1 there exists a continuous linear operator

Tj : T k−j,q
w (Rn−1) →W k,q

w (Rn
+),

∂i

∂xi
n

Tj(h)
∣
∣
xn=0

=

{

0, if i < j,

h, if i = j.
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For g = (g0, . . . , gk−1) we can define S0(g) := T0(g) and

Sj+1(g) := Sj(g) + Tj+1

(

gj+1 −
∂j+1

∂xj+1
n

Sj(g)
)

.

Then T = Sk−1 solves our problem.

Next we show the weaker assertion. For g ∈ T k−j,q
w (Rn−1) let v ∈ W k−j,q

w (Rn
+)

with (1 − ∆)v = 0 and v|Rn−1 = g which is uniquely defined by Theorem 3.3. Let

ζ ∈ C∞(R+) be a cut-off function with ζ(t) = 1 for t < 1 and ζ(t) = 0 for t > 2. We

set

(4.1) ϕ(x) = ϕ(xn) =
1

j!
xj

n · ζ(xn) and u(x) = ϕ(x)v(x).

We show that ϕu solves the problem. More precisely, we prove the following claim:

If ϕ ∈ C∞(Rn
+) with ϕ(x) = ϕ(xn), suppϕ ⊂ R

n−1× [0, 2] and (∂/∂xn)mϕ|xn=0 =

0 for m = 0, . . . , l and v ∈ W k,q
w (Rn

+) with (1 − ∆)v = 0 then ϕv ∈ W k+l,q
w (Rn

+)

with ‖ϕv‖k+l,q,w 6 c‖v‖k,q,w.

To prove this we use mathematical induction with respect to l and assume that

we already know the assertion is true for l − 1, l − 2 and all k.

Since (1 − ∆)v = 0 we obtain

(4.2) (1 − ∆)(ϕv) = −∆ϕv − 2∇v · ∇ϕ.

As (∂/∂xn)m∆ϕ|xn=0 = 0 for m = 0, . . . , l − 2, (∂/∂xn)m∇ϕ|xn=0 = 0 for m =

0, . . . , l−1 and (1−∆)∇v = 0, (4.2) and the induction hypothesis yield (1−∆)(ϕv) ∈

W k+l−2,q
w (Rn

+). Thus and since ϕv|Rn−1 = 0, one has ϕv ∈ W k+l,q
w (Rn

+) by the

regularity of the Laplace resolvent problem. Moreover,

‖ϕv‖k+l,q,w 6 c‖(∆ϕ)v+2∇v∇ϕ‖k+l−2,q,w 6 c(‖v‖k,q,w +‖∇v‖k−1,q,w) 6 c‖v‖k,q,w.

For the start of induction we need the cases l = 0 and l = 1. The case l = 0 is trivial,

the case l = 1 is proved in the same way as the induction step.

If one applies the above claim to u given by (4.1) one gets u ∈W k,q
w (Ω). Moreover,

∂l

∂xl
n

u(x′, 0) =

l∑

ν=0

(
l

ν

)
∂ν

∂xν
n

v
∂l−ν

∂xl−ν
n

ϕ(x′, 0) =

{

0 if l < j,

g(x′) if l = j.

This shows the assertion about the boundary values. �

645



Theorem 4.2. Let Ω ⊂ R
n be a bounded Ck−1,1-domain, k > 1. Then there

exists a continuous linear operator

L :
k−1∏

j=0

T k−j,q
w (∂Ω) → W k,q

w (Ω)

such that (∂j/∂N j)L(g)|∂Ω = (−1)jgj , 0 6 j 6 k − 1, where g = (g0, . . . , gk−1).

P r o o f. We start with the case k = 0. Then in the unweighted case the result is

known and can be found in [13]. Since for a Lipschitz-mapping α and an Aq-weight

w the concatenation w ◦ α is again contained in Aq, in this case the proof of the

result without weight can be transferred to the weighted case without change.

Form now on we assume k > 1. As in the proof of Theorem 4.1 we construct an

operator

Lj : T k−j,q
w (∂Ω) →W k,q

w (Ω),
∂k

∂N j
Lj(g) =

{

(−1)jg if k = j,

0 if k < j.

Then the general case follows as in the proof of Theorem 4.1.

We choose the collection of charts (αi, Vi, Ui)
m
i=1 according to Lemma 2.1 and a

decomposition of unity (ϕi)
m
i=1 subordinate to the covering {Ui}.

To simplify the notation we fix i and set γ = αi, U = Ui, V = Vi and ϕ = ϕi.

Moreover, for g ∈ T k−j,q
w (∂Ω) we set g̃ = (g · ϕ) ◦ γ. By Lemma 3.2 we know

g̃j ∈ T k−j,q
w◦γ (Rn−1). Thus we may apply the operator T from Theorem 4.1 and set

v := vi := Li,j(g) := (ψiT (0, . . . , 0, g̃, 0, . . . , 0)) ◦ γ−1,

meaning that the j’th component of (0, . . . , 0, g̃, 0, . . . , 0) is g̃.

Moreover, (ψi)i ⊂ C∞
0 (R

n

+) with ψi = 1 in a neighborhood of supp g̃ and suppψi ⊂

Vi. Here ψi can be chosen such that (∂k/∂xk
n)ψi(x

′, 0) = 0 for every k ∈ N.

Then we have by the choice of γ according to Lemma 2.1 for every k 6 j

(−1)kδj,kg̃(x
′) =

∂k

∂xk
n

T (. . . 0, g̃, 0 . . .)(x′, 0) =
( ∂k

∂xk
n

(v ◦ γ)
)

(x′, 0)

= (∇kv ◦ γ) · (∂nγ, . . . , ∂nγ)(x
′, 0) + terms containing ∇iv ◦ γ(x′, 0), i < j

= (∇kv(γ(x′, 0)))(−N(x′), . . . ,−N(x′)
︸ ︷︷ ︸

k

) = (−1)k
( ∂k

∂kN
v
)

(γ(x′, 0)).

The terms containing ∇iv ◦ γ(x′, 0) vanish for i < j, since

∇i(v ◦ γ)(x′, 0) = ∇i(ψiT (0, . . . , 0, g̃, 0, . . . , 0))(x′, 0) = 0

for i = 1, . . . , j − 1 by the definition of T .
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Finally, we set Lj(g) =
m∑

i=1

Li,j(g) and obtain

∂k

∂Nk
Lj(g)|∂Ω =

m∑

i=1

∂k

∂Nk
Li,j(g)|∂Ω =

{

g if k = j,

0 if k < j.

The continuity of Lj follows from Lemma 3.2 and the continuity of T in Theo-

rem 4.1. �
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