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ABSTRACT This paper introduces a chattering-free, adaptive, and robust tracking control scheme for a

class of second-order nonlinear systems with uncertain dynamics. First, a proportional-integral-derivative

control-fast terminal sliding function is proposed to enable the advantages of both the PID and non-singular

fast terminal sliding mode approaches in the field of non-singularity, fast convergence time, defined time

convergence, and stability with small steady-state errors. Second, to obtain the desired control target

without chattering behavior, the proposed controller with a continuous approach has been applied. In detail,

the proposed controller uses an integral of a switching term and an adaptive updating law to compensate the

lumped system uncertainty (e.g., disturbances, unmodeled dynamics, nonlinearities, or unmeasurable noise).

Our proposed controller does not require knowledge about bound values of those anonymous components.

The robust behavior and the defined time convergence have been demonstrated rigorously by the Lyapunov

principle. Finally, the position tracking computer simulations have been performed to demonstrate the

effectiveness and practicality of the suggested controller.

INDEX TERMS Proportional-integral-derivative control, non-singular fast terminal sliding mode control,

adaptive updating law, finite-time control.

I. INTRODUCTION

The faster the development of modern production systems

is, the greater the requirements are for speed, accuracy, reli-

ability, and safety. Further, the more complex a technology

is, the more it needs to adopt more advanced technical sys-

tems, especially in mechanical structures, sensor systems,

and electronic systems. If uncertainty parameters of a system

are not accurately calculated and thoroughly resolved, they

can reduce the system performance. Moreover, a significant

drawback worthy of concern is the delay of the mechanical

system generated by friction. To deal with all of the above

constraints is a difficult challenge, requiring researchers to

propose solutions for performance enhancement. In detail,

a robust controller with the ability to counteract or com-

pensate for undesirable terms disturbing the system needs

to be developed. Once developed, the system’s performance,

reliability, and safety will be enhanced.

As reported in the literature, several control algorithms

have been successfully adopted to control uncertain nonlinear

systems. Noteworthy examples such as proportional-

derivative (PD) or proportional-integral-derivative (PID)

controllers [1], [2], intelligent controllers [3]–[8], adaptive

controllers [9], [10], synchronization controllers [11], [12],

and sliding mode controllers (SMCs) [13]–[22] have been

cited. Among these control approaches, SMCs have the

best properties to control strongly against perturbations

and system uncertainties. However, the classical SMC still

has several weaknesses (e.g., significant chattering behav-

ior due to the way to eliminate the chattering in SMC is

still missing, undefined time convergence, and ineffective

adaptation with rapid variations of perturbations or faults).

To treat those obstacles, several recently improved controllers

have been suggested and adopted using a nonlinear sliding

function in place of a linear sliding function. Those con-

trol methodologies are called terminal sliding mode control

(TSMC) [23]–[27].

Technically, TSMC carries a defined time convergence but

attaches a singularity matter. Additionally, when the state
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variables are far from the desired path, TSMC provides a

slower convergence time than SMC. To treat the singularity

matter thoroughly, non-singular terminal sliding mode con-

trol (NTSMC) was established and successfully adopted in an

effort to control nonlinear systems [28]–[30]. The remaining

weak point was fast convergence time, which led to fast

terminal slidingmode control (FTSMC) being applied to con-

trolling uncertain, nonlinear second-order systems [31]–[33].

Unfortunately, the methods based on NTSMC and FTSMC

only treat specific systems. Hence, to treat both singularity

and fast convergence time simultaneously, the non-singular

fast terminal sliding mode control (NFTSMC) system has

been developed [34]–[38].

As a special consideration, undesired chattering occurred

in practical systems whenever all the above control

approaches (e.g., TSMC, FTSMC, NTSMC, NFTSMC) were

applied with a large control gain in the corresponding reach-

ing control law. A large amount of chattering can limit the

robust behavior of the control system and attenuate perfor-

mance significantly. For this reason, several capable algo-

rithms such as the boundary layer technique [39]–[41], the

high-order sliding mode [13], [41]–[43], and the disturbance

observer [44] have been reported to cause a reduction in chat-

tering. The weaknesses of the above-mentioned techniques

sometimes present a challenging trade-off between chatter-

ing behavior attenuation and trajectory tracking accuracy,

or else demanding an unrealistic magnitude of initial control

input. However, there is an effective method to eliminate

chattering behavior without the attenuation of the precision

of the controlled system; the method applies an integral of a

switching term to give chattering-free behavior such as Full-

Order Sliding Mode (FOSM) [45].

It should be mentioned that all of the above-stated meth-

ods require prior knowledge of the bounded value of the

uncertainties. To overcome this dependence, many kinds of

SMC and TSMC methods using adaptive control have been

introduced for the estimation of sliding gains [36], [40],

[46]–[49] because of the estimated ability of the adaptive laws

without the need for unrealistic assumptions.

Consequently, the motivation of our article is to propose

a chattering-free, robust tracking control method that simul-

taneously eliminates the disadvantages of SMC and TSMC

methods. In detail, a robust controller for uncertain nonlinear

second-order systems must perform as follows:

• Removes the singularity weakness, provides fast conver-

gence time, and states error with small oscillation along

with robust behavior.

• Removes the dependency on essential knowledge of

the upper bounded constants of unknown, uncertain

terms.

• Gives chattering-free behavior without losing the robust

behavior by adopting an integral of a switching term and

an adaptive updating law.

• The convergence, the defined time stability, and the

suggested adaptive adjustment law of the control system

can be confirmed by the Lyapunov criterion.

The rest of our paper is presented as follows. The problem

statements facilitated for the proposed PID-NFTSM func-

tion and the control law are presented in Section 2.

Section 3 explains the design process of the suggested control

method to obtain the desired output performance and to reject

chattering behavior from the classic SMC. In Section 4, the

suggested control method is applied to an uncertain nonlinear

system [50]. Its simulated performance tracks a desired

path to be compared to those methods based on the classi-

cal SMC [15], [18] and TSMC [26] methods to investi-

gate positional errors, convergence time, rapid response, and

chattering behavior reduction. Finally, Section 5 gives some

conclusions of this paper.

II. PRELIMINARIES AND PROBLEM STATEMENT

This section presents some preliminary information and the

problem statement, which is necessary for the controlling

design.

Lemma 1 [51]: Suppose that a continuous positive-definite

function 3 (t) satisfies the following inequality:

Ż (t) ≤ −αZγ (t) , ∀t ≥ t0, Z (t0) ≥ 0, (1)

in which α > 0, 0 < γ < 1 are positive coefficients. Then

for any given t0,Z (t) the following inequality is satisfied:

Z1−γ (t) ≤ Z1−γ (t0) − α (1 − γ ) (t − t0) , t0 ≤ t ≤ t1,

(2)

with Z (t) = 0, ∀t ≥ t1, and t1 is computed by

t1 = t0 + 1

α (1 − γ )
Z1−γ (t0) . (3)

Lemma 2 ([52], Jensen’s Inequality): The following

expression holds:

(

k
∑

i=1

ϑ
β2
i

)1/φ2

≤
(

k
∑

i=1

ϑ
β1
i

)1/φ1

, 0 < φ1 < φ2, (4)

with ϑi ≥ 0, 1 ≤ i ≤ k .

Consider the following general nonlinear second-order

system with disturbances and/or uncertainties ([45]):

{

Ẋ1 = X2

Ẋ2 = 5 (X , t) + 8 (X , t) u∗ (t) + δ (X , t),
(5)

where X =
[

X1, X2
]T ∈ Rn denotes the system state vector.

5 (X , t) ∈ Rn and 8 (X , t) ∈ Rn×n are dynamic nonlinear

smooth functions that have the corresponding expression as

5 (X , t) = 5n (X , t) + 15 (X , t) with 5 (0) = 0, and

8 (X , t) u∗ (t) = 8 (X , t) u (t) + 8 (X , t) 1u (t). The term

15 (X , t) indicates structural variation of the dynamic sys-

tem, which is an uncertain term. The term of δ (X , t) indicates

the disturbances and uncertainties, u∗ (t) is the actuation

control input, u (t) is the designed control value, and 1u is

the input signal uncertainty.
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In this paper, all anonymous terms are a function

L (X , 1u, δ, t), which is termed as the lumped system uncer-

tainty and defined as

L (X , 1u, δ, t) = 15 (X , t) + 8 (X , t) 1u (t) + δ (X , t).

(6)

From Eq. (6), the dynamics system of Eq. (5) can be repre-

sented as
{

Ẋ1 = X2

Ẋ2 = 5n (X , t) + 8 (X , t) u (t) + L (X , 1u, δ, t).
(7)

The central motivation of our article is that the proposed

control system can provide high tracking precision for the

system (7). Here, stated variables in (7) can approach the slid-

ing function in a defined time. Then, those variables converge

along the sliding function to the stable point regardless of

disturbances and uncertainties.

The following constraint is assumed for the control

approach design.

Assumption 1: There exists a known positive coefficient

Ŵd such that the derivative of the � (X , 1u, δ, t) function is

bounded by
∥

∥

∥

∥

d

dt
(� (X , 1u, δ, t))

∥

∥

∥

∥

≤ Ŵd , (8)

where � (X , 1u, δ, t) will be explained after Eq. (15).

III. DESIGN A CHATTERING-FREE, ADAPTIVE, ROBUST

CONTROLLER USING THE PID-NFTSM FUNCTION

This section presents the approach to investigate the good

features of both the PID and the NFTSMcontrollers as well as

adaptive controllers. First, a new form of the sliding function

is introduced. Second, a control method with an integral of a

switching term and an adaptive updating law is designed to

obtain the desired performance.

In this work, the PID sliding function is proposed as

σ = KPs+ KI

t
∫

0

sdφ + KDṡ, (9)

where KP, KI , and KD correspond to the proportional, inte-

gral, and derivative gain, respectively. σ ∈ Rn is the

PID-NFTSM sliding function, s is the first order NFTSM

variable, and s is defined as [26]

s = X2 + κ1X1 + κ2 (X1)
[ϕ] , (10)

with 0 < ϕ < 1 a constant, κ1 = diag
(

κ11 · · · κ1n
)

∈
Rn×n, κ2 = diag

(

κ21 · · · κ2n
)

∈ Rn×n, (X1)
[ϕ] =

sign (X1)
ϕ , and sign (X1)

ϕ is defined as [26]: sign (X)ϕ =
[

|X1|ϕi sign (X1) , · · · , |Xn|ϕn sign (Xn)
]

, i = 1, 2.

The k th element of the sliding surface of Eq. (10) is

expressed as:

sk = X2k + κ1kX1k + κ2k |X1k |ϕk sign (X1k) . (11)

The first derivative of the first order NFTSM variable (10) is

calculated as

ṡk = Ẋ2k + κ1kX2k + κ2kXqk , (12)

where

Xqk =
{

ϕk |X1k |ϕk−1 Ẋ1k , if X1k 6= 0

0, if X1k 6= 0.
(13)

Furthermore, Eq. (12) can be rewritten in the vector form as

ṡ = Ẋ2 + κ1X2 + κ2Xq.

The PID sliding function (9) is based on the NFTSM

variables of Eq. (10), and thus it owns the values of both

algorithms such as non-singularity, quick response, defined

time convergence, robustness with uncertainties, and small

steady-state error. These features are suitable and crucial for

the controlling design because of its capability to compensate

and quickly stabilize uncertain systems.

Substituting the derivative of the NFTSM variable (11)

into (9) gives

σ = KPs+ KI

∫

s+ KD
(

Ẋ2 + κ1X2 + κ2Xq
)

. (14)

Substituting system (7) into (14) gives

σ = KPs+ KI

∫

s

+KD

(

5n (X , t) + 8 (X , t) u (t)

+L (X , 1u, δ, t) + κ1X2 + κ2Xq

)

= KPs+ KI

∫

s+ KD
(

κ1X2 + κ2Xq
)

+KD (5n (X , t) + 8 (X , t) u (t) + L (X , 1u, δ, t))

= 4 (X , s) + � (X , 1u, δ, t)

+KD (5n (X , t) + 8 (X , t) u (t)), (15)

where 4 (X , s) = KPs + KI
∫

s + KD
(

κ1X2 + κ2Xq
)

, and

� (X , 1u, δ, t) = KDL (X , 1u, δ, t) indicates the anony-

mous terms in the system.

The following control law is developed for system (7) to

achieve the desired performance:

u = −8∗ (X , t)
(

ueq − K−1
D ure

)

, (16)

where 8∗ (X , t) = 8T (X , t)
[

8 (X , t) 8T (X , t)
]−1

is pseu-

doinverse. The equivalent control law is constructed as

ueq = K−1
D 4 (X , s) + 5n (X , t), (17)

and the continuous reaching control law is

u̇re + 3ure = ω (18)

and

ω = − (Ŵd + ŴT + ρ) sign (σ ). (19)

The initial value of ure (0) is chosen to be zero, Ŵd is a

constant value which was stated as (8), and ρ is a small

positive coefficient. 3 ≥ 0 and ŴT are chosen such that

ŴT ≥ 3Ld . (20)
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Remark 1: From (18-19), ure is obtained by adopting an

integral of a switching term. Accordingly, the control system

will achieve the chattering-free behavior.

Regarding the upper-bounded constants of both distur-

bances and uncertainties, an adaptive adjustment law is

adopted to estimate those upper bounded values. Therefore,

the system performance is always assured regardless of dis-

turbances, uncertainties, and unknown terms influencing the

control system.

A continuous adaptive reaching control law is designed as

u̇re + 3ure = ωa (21)

and

ωa = −
(

Ŵ̂a + ρ
)

sign (σ ), (22)

in which Ŵ̂a is the estimating value of the bounded constants

Ŵd + ŴT . Ŵ̂a is adopted by the following updating law:

˙̂
Ŵa = 1

µ
|σ |, (23)

where µ > 0 indicates the adaptive gain.

Theorem 1: The uncertain nonlinear system (7) will

quickly approach the sliding function in the defined time

and then stabilize around zero within the defined time
(

T ≤ 2V
1/2
2 (0)

ϒ

)

; if the satisfactory sliding function is pro-

posed as (9), the control input signal is designed as

(16-17, 21-22) with its corresponding adaptive adjustment

law as (23), and there exist a bounded constant Ŵ∗ satisfying

the constraint (24).

Ŵ̂a ≤ Ŵ∗. (24)

This means that the robustness stability and the desired per-

formance of the system (7) are always assured.

Proof: Adopting the control laws (16-17) and (21-22) to

the sliding function (15) obtains

σ = 4 (X , s) + � (X , 1u, δ, t)

+KD

(

5n (X , t) − 8 (X , t) 8∗ (X , t)

×
(

K−1
D 4 (X , s) + 5n (X , t) − K−1

D ure

)

)

= ure + � (X , 1u, δ, t). (25)

The result of Eq. (18) is presented by

ure (t) =
(

ure (t0) +
(

1
/

3
)

(

Ŵd + ŴT
+ρ

)

sign (σ )

)

et−t0

−
(

1
/

3
)

(Ŵd + ŴT + ρ) sign (σ ) . (26)

Considering (20), (25-26) and the condition ure (0) = 0,

the following inequalities are achieved:

ŴT ≥ 3Ld ≥ 3 |ure (t)|max ≥ 3 |ur (t)|. (27)

With (21-22), the derivative of the sliding variable (25) gives

σ̇ = −
(

Ŵ̂a + ρ
)

sign (σ ) − 3ure + �̇ (X , 1u, δ, t). (28)

The estimated Error is described as

Ŵ̃a = Ŵ̂a − (Kd + KT ). (29)

The positive-definite Lyapunov functional is defined as

V1 = 1

2
σ Tσ + µŴ̃T

a Ŵ̃a

2
. (30)

Utilizing the adaptive adjustment law (23), the derivative of

sliding function (28), and the estimated error (29), the time

derivative of the Lyapunov function (30) gives

V̇1 = σ T σ̇ + µ
(

Ŵ̂a − (Ŵd + ŴT )

) ˙̂
Ŵa

× σ T
(

−
(

Ŵ̂a + ρ
)

sign (σ )

−3ure + �̇ (X , 1u, δ, t)

)

+
(

Ŵ̂a − (Ŵd + ŴT )

)

|σ |

= (−3ureσ − ŴT |σ | − ρ |σ |) +
(

�̇ (X , 1u, δ, t) σ
−Ŵd |σ |

)

≤ −ρ |σ |. (31)

The parameter ρ is assigned to be greater than zero, and

thus, V̇1 will be negative. According to the Lyapunov prin-

ciple, because V̇1 is negative σ and Ŵ̃a will reach zero. This

means that the estimated value of Ŵ̂a has a bounded constant

in Eq. (24). Next, it will be proved that system (7) will

approach the sliding function within the defined time.

Consider the following Lyapunov function candidate as

V2 = σ Tσ

2
+ ξŴ̃T

a Ŵ̃a

2
, (32)

where ξ is a positive coefficient. With Eq. (24), the time

derivative of Eq. (32) is derived similarly to obtain V̇1 as

V̇2 = σ T σ̇ + µ
(

Ŵ̂a − Ŵ∗
) ˙̂

Ŵa

= σ T

(

−
(

Ŵ̂a + ρ
)

sign (σ )

−3ure + �̇ (X , 1u, δ, t)

)

+ ξ

µ

(

Ŵ̂a − Ŵ∗
)

|σ |

= (−3ureσ − ŴT |σ | − ρ |σ |)
+
(

�̇ (X , 1u, δ, t) σ − Ŵd |σ |
)

+ ξ

µ

(

Ŵ̂a − Ŵ∗
)

|σ |

≤ −ρ |σ | + ξ

µ

(

Ŵ̂a − Ŵ∗
)

|σ |. (33)

Because the estimated value Ŵ̂a is bounded by Ŵ∗, (33) yields

V̇2 ≤ −ρ |σ | + ξ

µ

(

Ŵ̂a − Ŵ∗
)

|σ | ≤ 0. (34)

The parameters ρ, ξ are assigned to be greater than zero, so

V̇2 will be negative:

V̇2 ≤ −ρ |σ | − ρ1

∣

∣

∣
Ŵ̂a − Ŵ∗

∣

∣

∣

≤ −
√
2ρ

|σ |√
2

− ρ1

√

2

ξ

√

ξ

∣

∣

∣
Ŵ̂a − Ŵ∗

∣

∣

∣

√
2

≤ −min

{

√
2ρ, ρ1

√

2

ξ

}

·





|σ |√
2

+
√

ξ

∣

∣

∣
Ŵ̂a − Ŵ∗

∣

∣

∣

√
2



,

(35)

where ρ1 = ξ
µ

|σ |.

10460 VOLUME 7, 2019



A. T. Vo, H.-J. Kang: Chattering-Free, Adaptive, Robust Tracking Control Scheme

By using Jensen’s inequality in Lemma 2 and assigning

ϒ = min
{√

2ρ, ρ1

√

2
ξ

}

, the following inequality can be

achieved.

V̇2 ≤ −ϒ







σ Tσ
(√

2
)2

+
(

√

ξ
)2

(

Ŵ̂a − Ŵ∗
)T (

Ŵ̂a − Ŵ∗
)

(√
2
)2







1
2

≤ −ϒV
1/2
2 . (36)

Based on Lemma 1, it can be proved that the sliding variables

in Eq. (9) will approach the PID-NFTSM function σ = 0

within the defined time

(

T ≤ 2V
1/2
2 (0)

ϒ

)

. Additionally, when

the PID-NFTSM function approaches zero, then the state

variable system (10) will also stabilize around 0 in the defined

time. This completes the proof of Theorem 1.

Remark 2: Once the PID-NFTSM function quickly

approaches the stable point, the NFTSM variables will

approach zero. For sliding variables defined by (10)
(

s = X2 + κ1X1 + κ2 (X1)
[ϕ]
)

, X1 is the system’s terminal

attractor. The attaining time ts that is taken to travel from

X1 (tr ) 6= 0 to X1 (tr + ts) = 0 has been defined as [26]:

ts = 1

κ1 (1 − ϕ)
ln

κ1V
1−ϕ (X0) + κ2

κ2
, (37)

where V is an extended Lyapunov description of the finite-

time convergence, which can be given by V̇ (X)+ κ1V (X)+
κ2V

ϕ (X) ≤ 0, 0 < ϕ < 1, with tr defined as in [37].

Remark 3: In practical systems, the parameter drift matter

has usually happened under the updating law (23). Therefore,

the bounded method is performed to set up the updating law

as

˙̂
Ŵa =







0 if |σ | ≤ υ

1

µ
|σ | if |σ | > υ,

(38)

whereas υ > 0 is an arbitrary positive value.

Remark 4: In this work, two control methodologies

(PID-SMC and TSMC [26] shown in Appendix) used a

boundary layer technique [39]–[41] to reject chattering

behavior. This technique adopts a saturation function in the

reaching control law instead of adopting a sign (σ ) function:

sat

(

σ

χ

)

=







sign (σ ) if |σ | ≥ χ
σ

χ
if |σ | < χ,

(39)

in which χ is a minor positive coefficient. However, in some

cases, the tracking error accuracy will be significantly

reduced by using this technique. This technique will be ana-

lyzed in detail with numerical simulations.

IV. NUMERICAL SIMULATIONS

The suggested control algorithm can be applied to many

systems, such as robotic manipulators, magnetic levitation

systems, chaotic systems, etc. In the simulation section, some

position tracking computer simulations for a three-link robot

FIGURE 1. Tracking Positions in situation 1: (a) at Joint 1, (b) at Joint 2,
and (c) at Joint 3.

manipulator have been performed to confirm the effective-

ness of the proposed methodology.

For an n-link rigid robotic manipulator, the corresponding

dynamic equation is given as ([16], [26])

M (θ) θ̈ + Cm
(

θ, θ̈
)

θ̇ + G(θ ) = τ (t) + τd (t), (40)

where θ (t) , θ̇ (t), θ̈ (t) ∈ Rn denote the system’s state

vectors. M (θ) = M0 (θ) + 1M (θ) ∈ Rn×n is the pos-

itive definite inertia matrix and is symmetric, Cm
(

θ, θ̇
)

=
C0

(

θ, θ̇
)

+ 1Cm
(

θ, θ̇
)

∈ Rn×1 indicates Coriolis and cen-

trifugal forces, G (θ) = G0 (θ) + 1G (θ) ∈ Rn×1 indicates

gravitational force terms, τ (t) ∈ Rn×1 indicates the control

input torque, and τd (t) ∈ Rn×1 indicates unknown distur-

bances. Here M0 (θ) ,C0

(

θ, θ̇
)

,G0 (θ) are nominal terms,

whereas 1M (θ) , 1Cm
(

θ, θ̇
)

, 1G (θ) are dynamic uncer-

tainties. Then, Eq. (40) can be represented as

M0 (θ) θ̈ + C0

(

θ, θ̇
)

θ̇ + G0(θ )

= τ (t) + τd (t) + F(θ, θ̇ , θ̈ ), (41)

whereas F(θ, θ̇ , θ̈ ) = 1M (θ )θ̈ −1Cm(θ, θ̇ )θ̇ −1G(θ ) ∈ Rn

Eq. (41) can be rewritten as

θ̈ = M−1 (θ)
[

−C0

(

θ, θ̇
)

θ̇ − G0(θ )
]

+M−1(θ )τ (t) +M−1(θ )[τd (t) + F(θ, θ̇ , θ̈ )] (42)
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FIGURE 2. Tracking Errors in situation 1: (a) at Joint 1, (b) at Joint 2,
and (c) at Joint 3.

To simplify the analysis and design in subsequent develop-

ment, (42) can be expressed as

θ̈ = 5
(

θ, θ̇
)

+ 8 (θ) τ (t) + δ
(

θ, θ̇ , t
)

, (43)

where 5
(

θ, θ̇
)

= M−1 (θ)
[

−C0

(

θ, θ̇
)

θ̇ − G0(θ )
]

, 8 (θ) =
M−1 (θ), and δ

(

θ, θ̇ , t
)

= M−1(θ )[τd (t) + F(θ, θ̇ , θ̈ )].

u∗ (t) = τ (t) is assigned to be the control input torque,

and X = [X1,X2]
T is the state variable vector with X1,X2

corresponding to θ, θ̇ ∈ Rn×1. Therefore, the robotic dynamic

system (43) can be presented as

{

Ẋ1 = X2

Ẋ2 = 5 (X , t) + 8 (X , t) u∗ (t) + δ (X , t),
(44)

where and 8 (X , t) ∈ Rn×n are the smooth nonlinear vector

fields and δ (X , t) ∈ Rn represents the disturbances and

uncertainties.

It can be seen that (44) is exactly the same form of the

general nonlinear second-order system (5). Consequently,

the proposed control method can be directly applied to the

robotic system (40).

In this work some position tracking computer simulations

for a three-link robot manipulator were performed to show

practicality and effectiveness of the suggested methodology.

The dynamical model and crucial parameters of the robot was

FIGURE 3. Control Input Signals in situation 1: (a) at Joint 1, (b) at Joint 2,
and (c) at Joint 3.

reported previously [50]. All simulation studies were imple-

mented in the MATLAB/Simulink software with a fixed-step

size of 10−3 s. The Robot was only inspected when the first

three joints and the last three joints were locked.

The reference joint paths for the position tracking are






























θd1 = cos

(

t

5π

)

− 1

θd2 = sin

(

t

5π
+ π

2

)

− 1

θd3 = sin

(

t

5π
+ π

2

)

− 1.

(45)

Disturbances τd (t) and the dynamic uncertainties

F
(

θ, θ̇ , θ̈
)

at each joint are assumed to be










τd1 + F1 = 7.3 sin
(

θ̇1
)

+ 7.5sign
(

3θ̇1
)

+ 6.2θ̇1

τd2 + F2 = 6.5 sin
(

θ̇2
)

+ 8.3sign
(

2θ̇2
)

+ 9.3θ̇2

τd3 + F3 = 5.5 sin
(

θ̇3
)

+ 3.5sign
(

2θ̇3
)

+ 4.5θ̇3.

(46)

The initial state variables of the robotic system were cho-

sen as θ1 (0) = −0.5; θ2 (0) = −0.5; θ3 (0) = −0.5,

θ̇1 (0) = θ̇2 (0) = θ̇3 (0) = 0. The parameters of the

PD-FTSM function (9-10) were experimentally chosen as

KP = 15,KI = 0.1,KD = 0.5, κ1 = 0.1, κ2 = 2.2

and ϕ = 0.5. The controlling input (16-17) and (21-22) are

experimentally chosen with ρ = 0.02, 3 = 0.5 and other

related parameters of the controller were chosen as same as
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FIGURE 4. Tracking Positions in situation 2: (a) at Joint 1, (b) at Joint 2,
and (c) at Joint 3.

the PID-FTSM function. The initial value of adaptive control

law was chosen as Ŵ̂a (0) = 0, µ = 0.05, and υ = 0.01 to

compensate and quickly stabilize uncertain systems.

To present the best capability of the proposed control

algorithm, its reference trajectory performances were com-

pared with PID-SMC that was based on the classical SMC

[15], [18] and the TSMC [26] to inspect positional errors,

convergence time, rapid response, and chattering-free behav-

ior. These controllers for comparison have been briefly pre-

sented in Appendix.

The parameters of the sliding function and the PID-SMC

were suitably selected from the simulated experiment as

KP = 6.5,KI = 0.01,KD = 0.5, Ŵ = 10, and ρ = 0.02

to similarly assign the initial control input magnitude and to

achieve good simulation performance.

The parameters of the control method in [26] were

suitably selected from the simulated experiment as β =
diag (0.5, 0.5, 0.5) , γ = 1.67, k1 = diag (38, 65, 15), Ŵ =
10, and ρ = 0.02 to similarly assign the initial control input

magnitude and to achieve good simulation performance.

The examples were simulated in two situations to analyze

the effectiveness of the control methods in terms of both their

chattering phenomenon and positional accuracies.

Situation 1: Each of three control methods has the sign (·)
function in its reaching control term.

FIGURE 5. Tracking Errors in situation 2: (a) at Joint 1, (b) at Joint 2,
and (c) at Joint 3.

Situation 2: The proposed control methodology has the

sign (·) function in its the reaching control law compared to

both PID-SMC and TSMC [26] adopting Remark 4.

In Situation 1, the reference tracking positions and the

corresponding tracking errors of the first three joints under

all controllers are shown in Figs. 1-2. From Figures 1-2,

it can be observed that all three control methods can reach

and maintain the desired path. However, TSMC [26] and

PID-SMC are less robust against large assumption uncertain-

ties, while the suggested methodology has smaller position

errors, (with 10−6 – 10−7 rad) compared to both mentioned

controllers, by an order of 10−3 – 10−4 rad. Regarding chat-

tering issues, a comparison of the control inputs in terms of

the chattering phenomena is shown in Fig. 3. To obtain good

simulation performance with the TSMC [26] and PID-SMC,

the reaching control term required a large sliding gain that led

to a significant chattering behavior. The chattering behavior

from the suggested methodology was eliminated because this

method applies a PID-FTSM function and an integral of a

switching term.

The simulation results of Situation 2 verify the expected

results illustrated in Figs. 4-6. In this Situation, the satu-

ration function has been adopted in two control algorithms

(PID-SMC and TSMC [26]) instead of the sign (·) func-

tion to reduce the chattering phenomena while the proposed
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FIGURE 6. Control Input Signals in situation 2: (a) at Joint 1, (b) at Joint 2,
and (c) at Joint 3.

FIGURE 7. The response time of the estimating parameter.

methodology still adopts an integral of a switching term.

However, as stated above, this technique decreases chatter-

ing behavior along with decreasing the robustness of the

controllers. From Figs. 4-6, it is easy to anticipate that

all three controllers will have a continuous control signal.

It is noteworthy that the suggested control algorithm guar-

antees robustness with small steady-state errors, which are

on the order of 10−6 rad, and chattering-free behavior, while

those of the other controllers are worse, on the order of

10−2 – 10−3 rad.

Considering the bounded value of the uncertainties,

the PID-SMC and TSMC control methods require prior

knowledge of those bounded constants, but our sug-

gested methodology does not. Therefore, the suggested

FIGURE 8. The response time of the proposed Sliding Surfaces: (a) at
Joint 1, (b) at Joint 2, and (c) at Joint 3.

methodology will be more optimal than the other controllers.

The variations of the approximated value are shown in Fig. 7.

It can be observed that the values are approximated according

to the variation of the unknown disturbances and uncertain-

ties, and these approximated values will approach constant

values along with the state variables reach to the PID-FTSM

function.

The response time of the sliding surface is shown in Fig. 8.

From the simulation results, it is concluded that the sug-

gested control methodology exhibits the best performance

among the three control methods, including higher posi-

tion precision, lower steady-state error, faster response, and

chattering-free behavior.

V. CONCLUSION

This paper develops a chattering-free, adaptive, robust track-

ing control algorithm for a class of second-order nonlinear

systems. In our algorithm, a novel sliding function, termed

as a PID-Non-Singular fast terminal sliding (PID-NFTSM)

function, is proposed to incorporate the good features of

both the PID and the NFTSM approaches. Our proposed

sliding function inherits some approaches in the field such

as PID, NTSMC, and FTSMC to achieve non-singularity,

fast response, defined time convergence, and stability with

small steady-state error. To obtain a chattering-free behavior,

a continuous method (with an integral of a switching term

and adaptive updating law) have been applied to compen-

sate for all of the anonymous uncertain components in the

control system, such as disturbances, unmodeled dynam-

ics, nonlinearities, and unmeasurable noise. Accordingly, the

suggested method does not need prior information about

the bound values of those anonymous components, along

with chattering-free behavior, compared to other controllers.

The experimental results for a PUMA560 robot manipulator

confirm that the suggested methodology has more capabil-

ity to adapt to many uncertain nonlinear systems with high

accuracy.

APPENDIX

DESIGN PID-SMC

The PID based on SMC for the robotic manipulator (40) can

be constructed as follows [15], [18].
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Let e (t) = θ (t) − θd (t) be the tracking positional error,

with θd indicating the desired reference trajectory.

The following sliding function is considered as

s = KPe+ KI

t
∫

0

e (t) dt + KDė, (47)

in which KP,KI , and KD are proportional gain, integral gain,

and derivative gain matrices, respectively. The time derivative

of Eq. (47) is computed as

ṡ = KPė+ KI e+ KDë. (48)

To guarantee that the controlled variables of Eq. (47) con-

verge to sliding variables, the following relations must be

satisfied: s = 0 and ṡ = 0. The following proposed controller

is based on the sliding mode design procedure

τ (t) = τeq (t) + τre (t) . (49)

The term of the equivalent control of τeq (t) holds the trajec-

tory of the error state variables on the sliding function, and it

is computed with ṡ = 0 and δ
(

θ, θ̇ , t
)

.

ṡ = KPė+ KI e+ KD

(

5
(

θ, θ̇
)

+ 8 (θ) τ (t)

+δ
(

θ, θ̇ , t
)

− θ̈d

)

(50)

Therefore, the term of the equivalent control of τeq (t) is

designed as

τeq (t) = −8−1 (θ)

(

(

5
(

θ, θ̇
)

− θ̈d
)

+ KI

KD
e+ KP

KD
ė

)

,

(51)

and the reaching control term is designed as

τre (t) = −8−1 (θ) (Ŵ + ρ) sign (s). (52)

DESIGN TSMC AS FOLLOWS [26]

The control algorithm based on TSMC for the robotic manip-

ulator (40) can be constructed as follows [24], [26]. Let

e (t) = θ (t) − θd (t) be the tracking positional error, with

θd indicating the desired reference trajectory. The sliding

function can be considered as

s = e+ βsig (ė)γ , (53)

where β = diag (β1, β2, · · · , βn) with βi > 0, 1 < γ < 2

and sig (ė)γ = (|ė1|γ sign (ė1) , |ė2|γ sign (ė2) , · · · , |ėn|γ
sign (ėn)).

The time derivative of Eq. (53) is computed as

ṡ = ė+ βγ |ė|γ−1 ë. (54)

To guarantee that the controlled variables of Eq. (53) con-

verge to sliding variables, the following relations must be

satisfied: s = 0 and ṡ = 0.

The following proposed controller is based on the sliding

mode design procedure

τ (t) = τeq (t) + τre (t) . (55)

The term of the equivalent control of τeq (t) holds the trajec-

tory of the error state variables on the sliding function, and it

is computed with ṡ = 0 and δ
(

θ, θ̇ , t
)

= 0.

ṡ = ė+ βγ |ė|γ−1 ë

= ė+βγ |ė|γ−1
(

5
(

θ, θ̇
)

+8 (θ) τ (t) + δ
(

θ, θ̇ , t
)

− θ̈d
)

(56)

Therefore, the term of the equivalent control of τeq (t) is

designed as

τeq (t) = −8−1 (θ)

(

5
(

θ, θ̇
)

− θ̈d + β−1

γ
|ė|2−γ

)

, (57)

and the fast TSM reaching control term is designed as

τre (t) = −8−1 (θ) (k1s+ (Ŵ + ρ) sign (s)), (58)

in which k1 = diag (k11, k12, k13) , k1i, Ŵ, and ρ are positive

coefficients. Therefore, the TSM controller has the control

input as

τ (t) = −8−1 (θ)





5
(

θ, θ̇
)

− θ̈d + β−1

γ
|ė|2−γ

+k1s+ (Ŵ + ρ) sign (s)



. (59)
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