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S
cience is facing a reproducibility crisis. A recent Nature survey 
of 1,576 researchers from various disciplines found that more 
than 70% of researchers were unable to reproduce research by 

others, and 50% were not even able to reproduce their own results1. 
Indeed, the issue of reproducibility has been raised across many 
fields of science. For instance, the estimates of non-reproducible 
studies are as high as 89% in cancer research2 and 65% in drug 
research3, and even high-profile, ‘landmark’ studies are not free of 
reproducibility issues4. New scientific research builds on previous 
efforts, allowing methods for testing hypotheses to evolve con-
tinually5. Therefore, research results must be communicated with 
enough context, detail and circumstance to allow correct inter-
pretation, understanding and, whenever possible, reproduction. 
Reproducibility is a cornerstone of the scientific process and must 
be emphasized in scientific reports and publications. Although 
best-practice guidelines have been published and adopted for areas 
such as computer science6 and clinical research7,8, for various rea-
sons, guidelines for ensuring reproducibility are still largely absent 
in many (even large) research communities.

Along these lines, the issue of reproducibility may be especially 
difficult to address in ecology, given the less-controlled aspects of 
many studies (for example, natural community surveys, field exper-
iments). The issue of reproducibility has been noted only recently 
in ecology9,10, but is likely prominent11,12. Because ecological stud-
ies often encompass uncontrollable or unaccountable factors13, it is 
especially important to report in detail the circumstances and meth-
ods that apply. Furthermore, ecological studies often depend on sta-
tistical models, such that reporting specific modelling methods and 
decisions and how they are intended to reflect biological knowledge 
or assumptions holds particular importance for reproducibility in 
ecology14,15. More than ever before, it has become critical to report 

these aspects, as the data and analytical tools underlying ecological 
studies are accumulating and evolving at an unprecedented rate in 
the age of big data16; ecological niche modelling (ENM) is a promi-
nent example.

Ecological niche modelling
Also known as species distribution modelling (SDM)17–19, ENM 
uses associations between known occurrences of species and envi-
ronmental conditions to estimate species’ potential geographic dis-
tributions. Although ENM and SDM are often used interchangeably 
in the literature20, ENM typically has a stronger focus on estimat-
ing parameters of fundamental ecological niches, whereas SDM is 
more focused on geographic distributions of species. ENM is widely 
applied across many aspects of ecology and evolution, and is increas-
ingly incorporated in decision-making regarding land use and con-
servation21. ENM studies are proliferating rapidly; in particular, a 
popular ENM algorithm, Maxent22, has been cited in tens of thou-
sands of research papers in the past decade alone. Though methods 
and assumptions in these studies vary greatly, to our knowledge, 
no evaluation of reproducibility of ENM or SDM studies has been 
conducted to date (but see ref. 21 for scoring key model aspects for 
biodiversity assessments). Furthermore, no guidelines on reporting 
essential modelling parameters exist, hindering accurate evalua-
tion (for example, scoring21) of model methodology and reuse of 
published research. It is concerning that such a fast-growing and 
fast-evolving body of literature lacks assessment and guidelines for 
reproducibility.

Typically, ENM analyses take biodiversity data and environ-
mental data (such as point observations of a species and climate) 
as input and use correlative or machine-learning methods to quan-
tify underlying relationships, which then are used in making spatial  
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predictions. This typical workflow of ENM — obtaining and pro-
cessing data, model calibration, model transfer and evaluation 
— is shared widely across disciplines that rely on statistical mod-
els. Therefore, the fast development, broad use and application, 
and existence of a rather established workflow for ENM makes it 
an excellent and representative example to tackle the challenges of 
reproducibility. Here, we assess the reproducibility of ENM stud-
ies via a comprehensive literature review and introduce a checklist 
to facilitate reproducibility of ENMs that can be extended to other 
areas of ecological research or other disciplines.

A checklist for ecological niche modelling
Although the role of ‘methods’ sections of scientific publications 
is to provide information that makes the study replicable, they are 
often highly condensed and lacking details needed for reproduc-
ibility, owing in large part to space limitations in journals. What is 
needed is a standardized format for reporting the full suite of details 
that comprise the critical information to ensure reproducibility. 
Therefore, a compendium of crucial parameters and qualities — in 
effect a metadata standard for ecological niche models — would 
be highly useful. A metadata standard establishes a common use 
and understanding through defining a series of attributes and 
standardized terminology to describe them. Such standards have 
been applied in various fields, such as GeoTIFF for spatial rasters23 
and Darwin Core and Humboldt Core for biodiversity data24,25. A 
metadata standard can provide a straightforward way to balance 
efficiency and accuracy in facilitating research reproducibility26 in 
ENM, as well as scientific studies in general27–29.

Here we present a checklist for ENM, to demonstrate how to 
define general and flexible reproducibility standards that can be 
used across a wide range of sub-fields of ecology. We compiled a list 
of essential elements required to reproduce ENM results based on 
the literature to date, and organized the elements into four major 
topics: (A) occurrence data collection and processing, (B) environ-
mental data collection and processing, (C) model calibration and 
(D) model transfer and evaluation (labels correspond to elements 
in Table 1). We justify the design of the checklist briefly, and pro-
vide detailed definitions, examples of reporting for each element, 
and related literature, in Table 1. We do not distinguish the rela-
tive importance among the checklist elements, as all are necessary 
to assure full reproducibility. We provide a template of the checklist 
for easier use (Supplementary Table 1). We envision this checklist 
as a dynamic entity that will continue to be developed and refined 
by the ENM/SDM community to keep pace with the state of the 
art in the field. We also provide access to the checklist on Github, 
as an open-source project where users can comment and suggest 
changes (https://github.com/shandongfx/ENMchecklist or https://
doi.org/10.5281/zenodo.3257732).

Occurrence data (A). Across many fields, online databases are 
growing and changing rapidly30, such that reporting data versions 
or providing complete datasets used in analyses is crucial to repro-
ducibility. Occurrence data are increasingly available owing to mass 
digitization of museum specimens and increased interest and par-
ticipation in observational data collection by citizen scientists31. 
Because the quality of occurrence data can vary significantly among 
data sources, data types and taxa32–34, it is vital to record data cura-
tion details to assure consistent quality and accuracy. The first attri-
bute to report is the source of the data (A1; labels correspond to 
elements in Table 1 hereafter). If the occurrence data were the result 
of an online database query, the Digital Object Identifier (DOI), 
query and download date, or the version of a database must also be 
reported (A2), as online biodiversity data are accumulating rapidly 
and these data are often edited, corrected, improved or excluded 
over time35–37. The final dataset (that is, after editing and quality 
control), with the exception of sensitive information (for example, 

specific locations of endangered taxa), should be deposited in a data 
archive when reserving rights allow it, thereby assuring reproduc-
ibility in case of changes to the original data source.

Whenever available, the ‘basis of record’ (A3) as used in Darwin 
Core, a community-developed standard for sharing biodiversity 
data24, should be reported. This field describes how records were 
originally collected, and thus can indicate different levels of qual-
ity and different auxiliary information available. For instance, 
‘MachineObservation’ via automated identification may be more 
prone to error compared with a ‘PreservedSpecimen’ collected and 
identified by an expert and deposited in a museum. Further, with 
a deposited specimen and catalogue number, researchers have the 
opportunity to examine the specimen physically to verify the iden-
tification38,39, whereas an observation may not be verifiable. Spatial 
uncertainty (see A6-3) can vary with the type of occurrence data, as 
well as the time when the data were collected. For example, coordi-
nates associated with older ‘PreservedSpecimens’ are usually geo-
referenced from descriptions of administrative units (for example, 
township, county or country), thus involving higher spatial uncer-
tainty, whereas coordinates linked to recent ‘HumanObservations’ 
may have been directly reported from GPS devices, making them 
more accurate. Information regarding the uncertainty of occur-
rences can also facilitate evaluation of whether the spatial resolu-
tion of environmental data utilized is appropriate (see B3). The 
spatial uncertainty in biodiversity data has long been recognized40,41, 
though the quantification of such uncertainty has not been imple-
mented systematically at large scale (thus A6-3 was excluded from 
our literature review; see below); this task could be facilitated by 
recently developed informatics tools42,43.

Increasingly, ecological research uses data from large-scale data 
aggregators (for example, the Global Biodiversity Information 
Facility (GBIF)). As with many sciences relying on observational, 
rather than design-based data collection, biodiversity data used in 
ENM have generally not been collected explicitly for this purpose. 
Thus, the spatial and temporal attributes of occurrences, and how 
they have been parsed or filtered in preparation for modelling, are 
essential details required to model ecological niches adequately17. 
Checking the extent of occurrences (A4) against expert-defined 
distributions (for example, regional floras) may reduce errors in 
identification or data transcription. Underrepresentation of the 
known distribution may suggest inadequate or biased sampling of 
occurrences, whereas spatial outliers may represent recent range 
expansion44,45, occasional or vagrant occurrences46, sink popula-
tions47, or errors of identification or georeferencing. The collection 
date of occurrence records may influence spatial accuracy; in gen-
eral, records from before the 1980s will lack precise point location 
data (that is, GPS coordinates) and are often georeferenced by hand 
from locality descriptions and with less precision33. Also, because 
environments change over time (for example, seasonal change, cli-
mate change, land-use changes), the temporal range of the occur-
rence data (A5) must be specified to connect it appropriately to the 
temporal dimension of environmental conditions48. Often, occur-
rence data are processed before modelling (A6). Common proce-
dures include removing duplicate coordinates, excluding spatial 
and/or environmental outliers, and eliminating records with high 
spatial uncertainty43 or erroneous coordinates49. Additionally, schol-
ars have proposed various ways to address the well-known issues of 
sampling bias50–52 and spatial autocorrelation53, often by imposing 
distance-based filters on occurrence data or incorporating spatial 
structure as a component in the modelling process54 (A7).

Environmental data (B). Similar to occurrence data, sources for 
environmental data are numerous, and data often require processing 
before inclusion in ENM analyses. The source (B1), and database 
query/download date or version of the database must be reported 
(B2), as environmental data may be updated periodically (for example,  
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WorldClim55,56) or may accumulate new data regularly through 
time (for example, PRISM57). Such information is also important 
for environmental variables derived from remotely sensed data 
(such as MODIS, Landsat). For example, NASA conducts regular 
quality assessments of MODIS data products and reprocesses data 
that may have been influenced by algorithm or calibration issues58.

The spatial resolution of the environmental variables used 
(B3) can affect ENM results, as different ecological processes 
occur at different spatial scales59. It has been hypothesized that 
at broad scales, abiotic conditions have a more dominant role 
in determining species’ distributions than biotic conditions60,61, 
though increasing numbers of reported exceptions suggest that 
this pattern is context dependent62,63. In practice, using different 
spatial resolutions of environmental variables can produce differ-
ent results64–66. Reporting the spatial resolution of environmen-
tal variables can also facilitate checking the match or mismatch 
with the spatial uncertainty of occurrences, given that coordinates 
are at times georeferenced from county centroids at coarse reso-
lution33. In addition to reporting the spatial resolution used for 

modelling, aggregation or disaggregation methods used to align the 
spatial resolutions of variables (for example, if they came from dif-
ferent data providers) should also be reported.

Providing the temporal range covered by the environmen-
tal variables (B4) is important for two reasons67,68. First, shorter 
temporal ranges can capture finer variation of environments (for 
example, extremes of daily temperature69), whereas longer temporal 
ranges capture longer-term trends in environmental conditions (for 
example, temperature seasonality). Second, it is helpful to evaluate 
how the temporal range of environmental data relates to the tempo-
ral range of occurrence data. For instance, associating occurrence 
data with environmental data from completely different time peri-
ods (for example, Last Glacial Maximum versus present) could be 
problematic, though the environmental data may need to include 
time lags to correspond to the life history of particular species70. 
The same reporting should be applied to information on future or 
past environments, as appropriate (D9–12). Similarly, the details of 
methods for processing and resampling of environmental data in 
temporal dimensions should also be reported.

Table 1 | Details of the ENM checklist and representation of its elements (percentage) in a review of recent ecology and evolution 
literature (2017–2018; 163 papers)

Category What to report Why reporting this element is 
important

Exemplar papers reporting the element relevant 
references

Papers 
(%)

(A) Obtaining and processing occurrence data

Metadata (A1) Source of 
occurrence data

Reporting occurrence data sources 
allows one to assess data quality and 
trace/correct any possible issues that 
may be detected.

“Species distribution records were collected from 
the Ocean Biogeographic Information System (OBIS; 

http://iobis.org, accessed February 2016), from 
the Global Biodiversity Information Facility (GBIF; 
http://gbif.org, accessed January 2016), the Reef 
Life Survey (RLS; http://reeflifesurvey.com, accessed 
February 2016) and for a few species via personal 
communications.”109

NA 93

(A2) Download 
date; version of 
data source

Databases and datasets change over 
time.

“Occurrences were downloaded from GBIF.org on 28 
January 2016 (https://doi.org/10.15468/dl.iou7qq).”110

NA 22

(A3) Basis of 
records

Biodiversity databases comprise 
many different types of data, each 
with specific uses and caveats. 
Relevant distinctions include whether 

data are collected opportunistically, 
as part of structured surveys, as 
part of repeated surveys, as part 
of comprehensive checklists of 
co-occurring species, by scientists, by 
citizen scientists and so on.

“Before fieldwork, we obtained locality information 
from C. canescens herbarium specimens and online 
biodiversity databases such as the Southwest 
Environmental Information Network and the Rocky 

Mountain Herbarium (University of Wyoming). In 
addition, the Rocky Mountain Herbarium and the 
Colorado State University Herbarium were visited to 
examine potentially misidentified specimens from 
outlying portions of the species’ distribution.”111

112–114 48

(A4) Spatial 
extent

Spatial extent of occurrences is 
crucial for interpretation of model 
predictions, including whether 
potential sink populations are 
included, whether sampling is biased 
or whether records outside the native 
range are used.

“We integrated missing countries by obtaining 
occurrences from the literature — that is, for France, 
Italy and Switzerland. To increase the accuracy of 
the analysis, we excluded the following records: (1) 
localities for which we were not able to obtain precise 
coordinates; [...] (4) record of M. bourneti in the Canary 
Islands, due to taxonomical issues currently unresolved 
(C. Ribera, personal communication, 2016).”115

116,117 67

(A5) Temporal 
range

Environments can change over time, 
thus the timestamp of occurrence 
records is crucial for linking them to 
the relevant environmental conditions 
experienced by the species, and 
hence correctly describing the niche.

“Although the sightings dataset extended over 257 
years, 79% of sightings occurred between 2000 and 
2015. Therefore only this subset of 5,419 sightings 
was retained for further analysis. These sightings were 
divided into each quarter of the year (Jan–Mar, Apr–
May, Jun–Aug and Sep–Dec) and matched with recent 
climate data available through online data sharing 
platforms.”118

70 26

Continued
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Category What to report Why reporting this element is 
important

Exemplar papers reporting the element relevant 
references

Papers 
(%)

Processing (A6-1) Duplicate 
coordinates

Duplicated coordinates can 
potentially bias model training. Also, 
different modelling algorithms may 
have different default options for 
handling duplicated coordinates, 
either at point level or at  
pixel level.

“We constructed potential distributions for each 
species in the program Maxent 3.3.3k (Phillips et al., 
2006) using the default settings, including removing 
duplicate species records from the same grid 
square.”119

120 23

(A6-2) 
Spatial and 
environmental 
outliers; error

Outliers or errors may lead to model 
errors. Also, the model prediction 
may be sensitive to outliers or errors.

“Finally, we plotted all the points on maps and 
excluded any point falling far outside the proven 
distribution described in Krapovickas et al. (2007).”121

116 35

(A6-3) Spatial 
and coordinate 
uncertainty

The coordinates of a record may 
not represent the exact location 
of collection. Coordinates are 
often recorded or processed to 
different degrees of specificity 
(for example, two decimal points 
versus four). Further, coordinates 
are often georeferenced from 
locality descriptions to, for example, 
centroids of political boundaries. The 
mismatch between the coordinate 
uncertainty and spatial resolution 
of environmental variables can 
significantly affect the results 
and interpretation of the model 
predictions. Thus, spatial uncertainty 
should be reported when adequate 
information is available.

“For this study, precise locality coordinates for P. 
solenopsis were not available, so the district-level 
occurrence data published by Nagrare et al. (2009) 
were used (n = 42 records). The centroid method 
may be acceptable if the target scale of prediction 
is global but may not be appropriate at national, 
state or finer scales; districts are not homogeneous, 
and some of them can be quite large. We calculated 
district-level averages of climatic variables in ArcMap 
(version 9.3, ESRI, Redlands, CA, USA) and used 
those as predictors. This is a relatively unconventional 
use of ENM/SDM, and the results may be useful for 
designing detailed surveys and making district-level 
state, regional or national pest management policies 
before more detailed, precise data for this species 
become available.”122

“With the GeoClean function from speciesgeocodeR 
R Package we also removed coordinates assigned 
to capital cities, coordinates with latitude equal 
to longitude, coordinates equal to exactly zero; 
coordinates based on centroids of provinces, and 
corrected country references (cleaned  
GBIF records).”123

33,40–43 NA

(A7-1) Sampling 
bias

Biased sampling, unequal sampling 
of a species’ distribution, may cause 
the model to overfit environmental 
conditions associated with such 
samples. Also, different algorithms 
may have different default methods 
for handling spatially biased 
occurrences.

“To reduce the effects of sampling bias, we spatially 
filtered the occurrence dataset to ensure that no two 
localities were within 10 km of one another.”124

50–52, 
120, 
125–129

34

(A7-2) Spatial 
autocorrelation

Spatial autocorrelation, here referring 
to the non-independent spatial 
distribution of occurrences, could 
violate the modelling assumption of 
independent and identical residuals, 
thus could bias estimations of model 
parameters.

“In order to account for autocorrelation in the 
observations, models were also fitted in which 
contagion (see below: spatial interpolators) was 
included as an autocovariate term in the initial  
variable set (AGLM). These models are termed 
autologistic (Smith, 1994; Augustin et al., 1996; Araújo 
& Williams, 2000). Measures of aggregation for point 
and lattice data, such as Kernel estimation and nearest 
neighbour measures (for example, Bailey & Gatrell, 
1995), can be used to model species’ probabilities 
of occurrence. This uses the idea of positive spatial 
autocorrelation (Legendre, 1993), in which the 
occurrence of a species in one area is expected to be 
more likely if the species occurs in many surrounding 
areas (Araújo & Williams, 2000, 2001; Araújo et al., 
2002). A measure of contagion (CONT) for each cell, 
based on a two-order neighbourhood, was used  
to estimate a distance-based probability of  
occurrence.”130

53,127, 
131–133

18

Continued

Table 1 | Details of the ecological niche modelling checklist and representation of its elements (percentage) in a review of recent 
(2017–2018) ecology and evolution literature (163 papers) (continued)
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Category What to report Why reporting this element is 
important

Exemplar papers reporting the element relevant 
references

Papers 
(%)

(B) Obtaining and processing environmental data

Metadata and 
processing

(B1) Source Reporting the source of 
environmental data enables the 
reader to access them and assess 
their relevance to study goals.

“Climate data comprised the 19 BIOCLIM variables 
available from WorldClim (Hijmans et al., 2005) 
at a resolution of 2.5 arc-min. Elevation data were 
obtained from the Digital Elevation Model at PRISM 
(Precipitation-elevation Regressions on Independent 
Slopes Model; Daly et al., 1994) at 2.5 arc-min 
resolution.”111

NA 99

(B2) Download 
date; version of 
data source

Data and databases are not static — 
they change over time. Thus reporting 
the access/query/download date or 
version of the dataset is necessary to 
ensure reproducibility.

“Out of the available WorldClim data (http://www.
worldclim.org), we used the 19 bioclimatic variables, 
which express 11 temperature and 8 precipitation 
metrics at about 1-km resolution (WorldClim version 
1.4; Hijmans, Cameron, Parra, Jones, & Jarvis, 
2005).”134

NA 27

(B3) Spatial 
resolution

Environmental data usually have 
various spatial resolutions that need 
to be reconciled for model training. 
Also, the decision of spatial resolution 
is both a technical and an ecological 
issue.

“Four static variables were derived from the digital 
elevation model (DEM) of the EMODnet Bathymetry 
portal: depth (the DEM); slope and curvature, 
calculated using DEM Surface Tools for ArcGIS 10.2; 
distance to the nearest 200 m bathymetric line, 
calculated using QGis 2.12. Curvature was used as a 
proxy of sea bottom roughness, providing an estimate 
of sea floor relief, which can influence some cetacean 
species (Lindsay et al., 2016). All static variables were 
calculated at a spatial resolution of 0.5 × 0.5 km.”68

64–66,135 82

(B4) Temporal 
range

The temporal range (time period 
across which the variable was 
measured and averaged) is needed 
to determine the temporal match or 
mismatch with species’ occurrences.

“We summarized occurrence of passerine bird 
species at BBS routes in the conterminous U.S. during 
historical (1977–1979) and recent (2012–2014) 
periods. Land use covariates were the proportion of 
the buffer surrounding each route in developed and 
conservation or low human use classes based on 
the 1974 and 2012 versions of the U.S. conterminous 
wall-to-wall anthropogenic land use trends dataset 
(NWALT; Falcone, 2015).”136

68 42

(C) Model calibration

Data input (C1) Modelling 
domain

The geographic domain of a model 
has to be specified because it is 
associated with the underlying 
assumptions of the relationship 
between species’ distribution and the 
environments, as well as background 
selection for some ENM algorithms.

“In the second approach, locality data were overlaid 
on terrain base maps in ArcGIS 10.2 (Environmental 
Systems Research Institute, 2011) together with a world 
ecoregions layer (World Wildlife Fund, 2011). These 
were used to identify breaks in habitat and ecological 
regions in topographically homogeneous areas. [...] 
Restricting calibration areas to regions bounded by 
significant abiotic barriers (for example, large rivers, 
mountain ranges) and known or hypothesized dispersal 
distances yielded more accurate models and reduced 
these errors (Barve et al., 2011; Owens et al., 2013; 
Royle, Chandler, Yackulic, & Nichols, 2012; Saupe et al., 
2012). Thus, in our study, Ms were constrained by deep 
valleys (for example, the Maranon Valley), the crests of 
mountains (for example, the Andes) and ~other distinct 
features likely to act as barriers to species distributions 
(for example, the llanos of northern South America).”137

52,71, 
72,74, 
138–140

50

(C2) Number of 
background data

Background data are assumed 
to represent the environmental 
composition of species’ accessible 
area, thus the optimal number of 
background data may depend on 
the extent of the study area and 
resolution of environmental data, as 
well as computation capacity.

“For each geographical background we selected 
10,000 random cells that did not hold a species 
presence record (or all available cells if fewer than 
10,000 were available).”141

73,142 54

Continued

Table 1 | Details of the ecological niche modelling checklist and representation of its elements (percentage) in a review of recent 
(2017–2018) ecology and evolution literature (163 papers) (continued)
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Category What to report Why reporting this element is 
important

Exemplar papers reporting the element relevant 
references

Papers 
(%)

(C3) Sampling 
method for 
background data

Random selection of background data 
has been used as the default strategy 
in some algorithms, but new methods 
have been developed for different 
purposes.

“We used Maxent with default settings, except that we 
applied a targeted background sampling to reduce the 
influence of sample selection bias (Phillips et al., 2009) 
by using 666 vertebrate fossil site localities (excluding 
moa bones [Order Dinornithiformes] and swamp sites) 
throughout New Zealand as background points.”143

72,73, 
75,76, 
142,144, 
145–147

53

(C4) Variable 
selection

Selection of variables is biologically 
and/or statistically relevant, thus 
criteria and justification are needed.

“Four ‘bioclimatic’ layers were used to calibrate 
models: mean temperature of the warmest quarter, 
mean temperature of the coldest quarter, precipitation 
of the wettest quarter, and precipitation of the driest 
quarter. These four layers were chosen because 
they represent the climatic extremes that often 
constrain species distributions and because most 
other bioclimatic layers are derived from different 
combinations of or are tightly correlated with these 
variables (Root, 1988).”137

77,87,148 70

Algorithm (C5) Name Reporting the name of modelling 
algorithm is the basis of 
reproducibility.

“ENM was performed using the maximum entropy 
approach as implemented in MAXENT 3.3.3k (Phillips, 
Anderson, & Schapire, 2006).”149

NA 100

(C6) Version of 
algorithm and 
software

Modelling algorithm, default settings, 
and dependent libraries can change 
over time, so providing the version 
will enhance the reproducibility of a 
study.

“For BRTs, different combinations of learning rates 
(0.005, 0.01, 0.05) and tree complexity (1, 2, 3) were 
tested. Folds were set at random and other parameters 
were left as default in the gbm R package (version 
2.1.1). Runs on R version 3.3.2.”150

17,151,152 59

(C7) 
Parameterization

Parameter or modelling settings 
can influence the resulting model, 
and default settings may not be 
appropriate for a study. Thus specific 
settings should be reported, including 
default ones.

“Selecting the best settings for the regularization 
multipliers and number of feature classes, which 
determine the model complexity, requires quantitative 
evaluation (Merow et al., 2013). The optimal 
model parameters were tuned using the function 
ENMevaluate in the package ‘ENMeval’ (Muscarella 
et al., 2014) for R. Within ENMevaluate, we jackknifed 
each species presence record and evaluated models 
with the following feature classes: linear, quadratic, 
and hinge, and the following values of regularization 
multipliers: 0.75, 1, 1.25, 1.5.”153

72,81,83, 
154–157

45

(D) Model transfer and evaluation

Evaluation (D1) Evaluation 
index

Proper understanding of model 
performance requires the use of model 
evaluation indices. Also, different 
evaluation indices may be informative 
of different aspects of a model.

“We evaluated the performance of the models by three 
different methods using an independent dataset of 
occurrences for model evaluation: (a) an omission error 
test [...] (b) the binomial cumulative probability [...] (c) 
the partial receiver operating characteristic [...]”158

89,90, 
159–165

90

(D2) Threshold 
for evaluation 
index

Calculation of some evaluation 
indices requires a threshold. The 
threshold will vary by study because 
there is no single, default method for 
choosing a threshold.

“A threshold to convert continuous predicted 
probabilities into a binomial output was estimated 
for each model run, using the threshold value that 
maximized specificity (true negative rate) and 
sensitivity (true positive rate) over the evaluation 
dataset predictions (Liu, Newell, & White, 2016). 
Using this threshold, two metrics of predictive 
performance were derived: the sensitivity of 
models when predicting ARGOS tracking locations 
(“sensitivity. ARGOS”, in% correctly classified as 
presences), and the true statistic skill when predicting 
the evaluation datasets (“TSS”; Allouche, Tsoar, & 
Kadmon, 2006).”150

92,93,166 36

(D3) Dataset 
used to evaluate 
models

Evaluation of a model is usually based 
on another independent dataset, or 
part of the dataset not used in model 
training. The choice of dataset can 
influence the evaluation results and the 
subsequent interpretations.

“All these methods used observed presences as input 
with a 70% random sample for model development 
and the remaining 30% sample for model 
evaluation.”167

81,91,168 39

Continued

Table 1 | Details of the ecological niche modelling checklist and representation of its elements (percentage) in a review of recent 
(2017–2018) ecology and evolution literature (163 papers) (continued)
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(C4). However, as mechanistic relationships are often unknown, 
justification of variable selection procedures is necessary. Further, 
collinearity of environmental variables, a well-recognized issue in 
regression models, affects parameter estimation during model cali-
bration77; one common strategy is to remove highly correlated envi-
ronmental variable pairs following rule-of-thumb thresholds (for 
example, |r| > 0.4 or 0.7)77,78. Selecting one variable from a pair of 
variables can be subjective (for example, based on expert knowledge), 
objective (for example, using variable contribution to model fit79)  
or random; hence justification is required to ensure accurate inter-
pretation and reproducibility of variable selection.

The version of the ENM software or algorithm used (C5 and 
C6) also needs to be provided, as these tools are often updated80 

Model calibration (C). Typically, an ENM study first has to deter-
mine the geographic domain of interest (C1). Delimitation of the 
domain requires both ecological and practical justification, such 
as focusing on areas that have been accessible to a species71,72, and 
areas that have been sampled. Many ENM algorithms make use of 
background points22 that represent environmental conditions con-
trasting those known to be occupied by the taxa of interest. Several 
aspects of background point selection can influence model out-
comes, including the number of points (C2)73,74 and the algorithms 
used to select these points75,76 (C3).

The suite of environmental predictors that are used in ENM 
should be directly relevant to a species’ distributional ecology19, 
and the rationale for selecting those variables should be transparent  

Category What to report Why reporting this element is 
important

Exemplar papers reporting the element relevant 
references

Papers 
(%)

Output (D4) Format/
transformation

The raw model predictions are 
sometimes transformed (for example, 
logistic transformation) via different 
methods under different assumptions.

“[...] we used the logistic output format [...]”124 80,169,170 51

(D5) Threshold Often, the model predictions are 
in continuous format, which is 
subsequently transformed into a 
binary prediction under a particular 
threshold. Researchers have proposed 
different ways of thresholding for 
different purposes and under varied 
assumptions.

“We repeated this procedure 20 times for each 
algorithm and used the Lowest Present Threshold 
values (Pearson et al., 2007) to transform each map 
in binary.”171

92,93,172 92

Extrapolation (D6) Novelty 
of projected 
environments 
relative to training 
environments

Transferring a model across space 
and/or time may lead to extrapolation 
if the projected environments 
are novel compared with training 
environments. Quantification of novel 
environments could help understand 
the uncertainties associated with 
model predictions.

“To assess the effect of model extrapolation on 
values of predictor variables lying outside the training 
range, that is, projecting models on non-analogous 
climates (cf. Nogues-Bravo, 2009), we conducted a 
multivariate environmental similarity surfaces (MESS) 
analysis, following Elith et al. (2011).”173

48,95,97, 
174,175

8

(D7) Collinearity 
shift between 
training and 
projected 
environments

Transferring a model outside training 
data may be affected by differences 
in collinearity structure between 
training and projection environments, 
which can lead to degraded 
prediction performance. Therefore, 
quantification of collinearity shift or 
any steps towards correcting for it 
should be specified.

“We compared the correlation matrix of the 6 
variables in the training region to the average of the 
correlation matrices of present and future climate 
layers in the projected area (Tables S2 & S3 in 
Supplement 2). The highest absolute change of r was 
0.3 for bio4 and bio17, and r increased above the 0.7 
threshold for 2 pairs of variables (−0.78 for bio3 and 
bio4; 0.71 for bio16 and bio17; Supplement 2).”176

77,96,177 0

(D8) 
Extrapolation 
strategy

Model extrapolation is statistically 
challenging. Different extrapolation 
strategies can lead to very different 
model predictions, therefore the 
choice of extrapolation, even the 
default setting of an algorithm, should 
be provided.

“Five replicates of each model were conducted with 
no clamping or extrapolation and with all the default 
‘features’ used.”137

94,97, 
98,178

36

Metadata (D9) Source See (B1) See (B1) See (B1) 89

(D10) Download 
date; version of 
data source

See (B2) See (B2) See (B2) 23

(D11) Spatial 
resolution

See (B3) See (B3) See (B3) 72

(D12) Temporal 
range

See (B4) See (B4) See (B4) 94

Table 1 | Details of the ecological niche modelling checklist and representation of its elements (percentage) in a review of recent 
(2017–2018) ecology and evolution literature (163 papers) (continued)

NATurE ECology & EvoluTioN | VOL 3 | OCTOBER 2019 | 1382–1395 | www.nature.com/natecolevol1388

http://www.nature.com/natecolevol


PERSPECTIVENATURE ECOLOGY & EVOLUTION

to model accuracy, information criterion-based indices should be 
reported if they were used to select among competing models based 
on predictive performance and model complexity or used to gener-
ate ensembles of models. Authors should report whether and how 
data were partitioned to calculate the evaluation indices (D3), if gen-
uinely independent testing data (that is, different sources and meth-
ods of collection) were not available. Common approaches include 
random partitioning of occurrence datasets into training and testing 
(for example, the default in Maxent); among other methods, parti-
tioning based on structured blocks (for example, separating occur-
rences into spatial blocks) is expected to assess model transferability 
better81,91. Given the variety of options regarding data separation, it is 
important to specify methods used to ensure better reproducibility.

Once a model is calibrated, it may then be transferred or pro-
jected onto another landscape or time. Generally, these predictions 
are initially continuous (D4) and sometimes are subsequently trans-
formed into binary predictions using a particular threshold (D5). 
Researchers have proposed different ways of thresholding92,93 for 
different purposes and under varied assumptions, so these choices 
need to be reported.

Transferring a model across space and/or time may lead to 
extrapolation if the projected environments are novel relative to 
training environments. Several studies have found that environ-
mental novelty48,94,95 (D6) and collinearity shift (D7; changes of 
collinearity structure of covariates77,96) reduce predictive perfor-
mance, and recommended quantifying the novelty of the projected 
environments and the collinearity shift between the calibrated and  

to include bug fixes or revised default settings. For instance, the 
default transformation method of Maxent raw output was changed 
from ‘logistic’ to ‘cloglog’ between versions 3.3 and 3.480. Dependent 
libraries for coded algorithms may change over time as well.

Parameterizations or model settings and their justification (C7) 
are important to understanding how they may affect predictions. 
Examples of these settings include features and regularization val-
ues in Maxent81,82, covariate formulas for regression-based models, 
link functions in generalized linear models (GLMs)83, learning rate 
and maximum complexity in boosted regression trees (BRTs)84, 
and optimizer values in generalized additive models 85. In practice, 
authors often use the default settings provided by the software or 
algorithm utilized, which may or may not yield robust models72,82,86, 
wheareas in other cases, authors fine-tune parameters to get best 
model performance81,87.

Model transfer and evaluation (D). Understanding model per-
formance requires model evaluation (D1). A first step is that of 
assessing model precision and significance — that is, whether the 
model can correctly predict independent presence (or absence) 
data and whether the model prediction is better than null expec-
tations. Commonly used indices that measure model performance 
can be either threshold-independent (D2; for example, area under 
the receiver operating characteristic curve or ROC AUC88), or 
threshold-dependent (for example, partial ROC89, true skill statistic 
or TSS, sensitivity and specificity90); the latter approaches require 
reporting of thresholds and how they were derived. In addition 

0 25 50 75 25 50 75100
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Fig. 1 | Completeness of checklist elements reported in the current literature. Assessments are based on 163 articles published in eight ecology and 

evolution journals during 2017–2018. a, Percentage of papers that report individual element of the checklist. b, Frequency of completeness (%) of checklist 

elements reported in all articles.
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publishing practices do not provide sufficient information regarding  
the methodologies, decisions and assumptions involved. Despite 
being based on a relatively recently developed toolset, ENM is no 
exception. For thorough evaluations of proper use of ENM appli-
cations (for example, use of ENMs in biodiversity assessment21), a 
detailed and standardized description of the methods must be pro-
vided. The checklist presented here includes the bare minimum of 
categories and elements necessary to evaluate and replicate ENM 
analyses. However, the details reported in recent publications var-
ied greatly: on average, papers in our review included only 54% of 
checklist items, a generally incomplete set of information for repro-
ducibility. This shortcoming may reflect a lack of community expec-
tations on model reporting, or even unawareness of alternative 
options and underlying caveats in the modelling workflow. We high-
light several key areas that were particularly deficient in reporting,  
and thus need attention to make ENM studies reproducible (Box 1).

improving reproducibility with software solutions
The rapid development of ENM can be attributed at least in part to 
increased access to relevant data; with such development, informat-
ics tools offer one route by which to improve reproducibility99,100. 
Such tools include data management plans101, standardized meta-
data102,103, programming language resources to record data analysis 
steps (for example, R and rmarkdown) and version-control tools 
(for example, GitHub). Open-source programming languages such 
as R have allowed for development of packages specifically designed 
for managing and processing large datasets in preparation for anal-
ysis. Exemplary packages include biogeo, which directly detects, 
corrects, and assesses occurrence data quality42, and geoknife, a 
package designed specifically for United States Geological Survey 
gridded dataset management104. Other packages help users to cre-
ate reproducible workflows, such as zoon105, nicheA106 kuenm86, and 
Wallace107. In particular, the package Wallace provides a graphical 
user interface to build reproducible workflows, from data download 
to model output107. Borregaard and Hart11 described how the use 
of these new software tools is facilitating ecological research that 
is both robust and transparent, and thus reproducible. The func-
tionality of the software solutions, however, depends on developers 
monitoring changes in data, modelling algorithms and the software 
platforms (for example, R), to avoid incompatibility issues. As such, 
authors should report software versions for all such solutions to 
ensure reproducibility.

implications for other fields
The design of the checklist presented here is based on a typical 
ENM workflow, involving steps of obtaining and processing data, 
and model calibration, transfer and evaluation. We emphasized 
reporting data origin and metadata; crucial steps in data processing, 
modelling decisions and model evaluation; and potential caveats 
in model transfer. Those concepts and principles are generalizable 
to other disciplines. Further, the specifics of the checklist that we 
have proposed for ENM studies could be readily generalized to be 
adopted by other fields, especially those that involve biological data, 
environmental data and statistical modelling.

Researchers have proposed similar solutions in other fields, such 
as climate change research29; however, to our knowledge, our check-
list takes additional steps in refining the methodology workflow 
and is therefore more comprehensive. For example, information 
pertaining to occurrence data (data source, spatial and temporal 
range, and data cleaning procedures) can be generalized to other 
studies that rely on digitized biodiversity data and other categories 
of ‘big data’. The information regarding environmental data neces-
sary to reproduce studies is similar across biological research, such 
as in studies of relationships between species richness and environ-
mental gradients108. The modelling algorithm details in the check-
list are applicable to other studies that use statistical models, such 

projected environments96,97. Further, different algorithms use dif-
ferent strategies to extrapolate (clamping, truncation, extrapola-
tion94,98); for example, the default clamping function in Maxent 
uses the marginal values in the calibration area as the prediction for 
more extreme conditions in transfer areas22.

Assessing the state of reproducibility in ENM research
To assess the state of reproducibility in ENM research in the context 
of our proposed checklist, we reviewed current (2017–2018) ENM 
literature in eight widely read ecology and evolution journals: Global 
Ecology and Biogeography; Diversity and Distributions; Journal 
of Biogeography; Evolution; Evolutionary Applications; Molecular 
Phylogenetics and Evolution; Molecular Biology and Evolution; and 
Systematic Biology. Additional details of our review criteria are pro-
vided in Appendix 1, Supplementary Fig. 1, and Supplementary 
Tables 2 and 3.

Inclusion of elements of the checklist (32 in total) varied widely, 
ranging from fully reported (100%; C5 algorithm name) to not 
reported at all (0%; D7 collinearity shift), though documentation 
of the importance of this latter element is still limited in the litera-
ture77,96. Completeness of information across the checklist also var-
ied among papers, ranging from 24% to 89%, averaging 54% (s.d. = 
13%) of checklist elements reported in a given paper (Fig. 1).

Most studies (93%) fully reported sources of occurrence  
data (A1), but the date of access or version of the data source (A2) 
was included in only 22% of papers reviewed, and the basis of  
these records (A3) was described clearly in only 48% of papers.  
A relatively high number of papers (67%) reported the spatial  
extent (A4) of the occurrence data, but the temporal range (A5)  
was mentioned less frequently (26%). Few papers gave details  
of occurrence data processing, ranging between 18 and 35% in  
elements A6 and A7.

Although most papers we reviewed reported the source of envi-
ronmental data (B1), they largely did not include download date 
or version of the data source: only 27% of papers reported such 
information for model training (B2) and only 23% for environ-
mental data in model transfer (D10). The spatial resolution and the 
method of resampling layers with different spatial resolutions (B3) 
were generally reported (82%), although the temporal range (B4) 
was less frequently reported (42%). The pattern was opposite for 
environmental layers for model transfer: temporal range (D12) was 
almost always reported (94%) but spatial resolution (D11) was less 
frequently reported (72%).

Only 32% of papers fully reported information regarding mod-
elling domain (C1–3). A high percentage of papers reported the 
variable selection procedure (C4; 70%). The ENM algorithm or 
software (C5) was always reported, though less frequently for the 
corresponding version (C6; 59%). In general, less than half of papers 
fully disclosed parameters for algorithms (C7; 45%).

Although model evaluation is critical for modelling studies, not 
all papers (90%) presented information pertaining to model evalu-
ation (D1). Surprisingly, less than half adequately reported how the 
evaluation dataset was generated (D3; 39%) or mentioned specific 
values for threshold-dependent evaluation indices (D2; 36%). For 
model predictions generated, 51% of papers adequately specified 
output format or acknowledged that default settings were used. 
Among the papers that converted continuous predictions to binary, 
92% specified the adopted threshold. When transferring model 
to different times and/or regions, few of the papers specified the 
extrapolation strategy (D8; 36%). The novelty of projected environ-
ments (D6) was rarely evaluated (8%).

lessons from ecological niche modelling
Reproducibility of scientific studies has been under major scrutiny 
in recent years, and numerous high-profile studies have been found 
to be irreproducible, in large part because current reporting and  
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to these generally applicable elements, the checklist can easily be 
extended to incorporate information particular to a field.

Although the methods sections of most scientific publications 
lack the formal standardization needed for reproducibility and 
their length is frequently influenced by journal space limitations, 
the checklist approach can provide greater detail to ensure repeat-
ability. The usual methods section, combined with a standardized 
checklist, will make papers easier to review and replicate. Other dis-
ciplines can and should design comparable checklists with similar 
concepts and levels of detail.

Closing remarks
ENM is increasingly used in ecological studies and incorporated 
into conservation decisions. Our literature review revealed numer-
ous gaps that undermine reproducibility of these studies. We rec-
ommend researchers developing ENM studies in the future to 
consider our checklist, extend and adjust it to meet study needs, 
with particular focus on elements that are commonly neglected 
(Table 1), and include this more structured metadata in publications 
(see checklist template in Supplementary Table 1). This checklist 
provides an important tool for both understanding and replicat-
ing previous studies, and also provides editors and reviewers with 
an efficient way to gauge and promote ENM reproducibility29. As a 
general metadata framework linking observational data and statisti-
cal modelling, our checklist provides a starting point for adopting 
similar standards in other fields, both within and beyond ecology 
that rely on these methods.

Data availability
The checklist for ENM can be downloaded from Supplementary 
Table 1 and is available as an open-source project where users can 
comment and suggest changes (https://github.com/shandongfx/
ENMchecklist or https://doi.org/10.5281/zenodo.3257732). 
Details of the literature review are available in the Supplementary 
Information.
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Box 1 | improving the reproducibility of ENM studies and beyond

Reporting the use of default settings is better than not report-
ing anything. During our literature review, we came across many 
cases in which default software or algorithm settings were used. 
If the version of an algorithm or software is provided, others can 
infer and reproduce default settings. However, simple manipula-
tions of parameter settings can lead to dramatic differences in 
model performance and predictions72,81, and, since default set-
tings can change with upgrades to software/algorithms, we rec-
ommend listing the actual default parameters employed instead 
of simply stating that default settings were used. This point ap-
plies to any scientific study that uses conventional software and 
algorithms.

Random may often be the default but should not be inferred 
to be so. Some modelling parameters and settings, such as data 
partitioning for training and testing or selecting background 
points (for example, in Maxent), are commonly set to ‘random,’ 
which is often the default setting. However, recent developments 
in ENM methodologies provide more options, such as ‘block’ 
partitioning of occurrences81 and background selection from 
particular spatial extents or environmental conditions51,75,144. 
Although random may be the default setting in many modelling 
tools used in ENM and beyond179–181, it needs to be reported 
explicitly to make the analysis reproducible.

Data and code change through time, so report the date 
and version. Data resources available online (for example, 
biodiversity records and environmental layers) are changing at 
an increasing pace, thus the reproducibility of studies based on 
these fast-evolving data, such as ENM studies, are particularly 
vulnerable to these changes. The status quo of biodiversity data 
continuously changes as more specimens or observations are 
collected, digitized, and mobilized online, and existing data are 
re-examined and updated. The accuracy of environmental data is 
also being improved, with advances in GIS and remote-sensing 
technologies. In addition to data input, existing algorithms, 
software and methodologies are updated and refined, and new 
ones are being developed and released. On a positive note, GBIF 
implemented a DOI system to track metadata of datasets from 
GBIF182, to facilitate accurate reporting of metadata and thus 
increase reproducibility.

Models can be projected in both space and time. Modelling 
the ecological niche (via correlative methods183) is based on 
spatial locations of known occurrences of species and the 
corresponding environments. However, in reality species’ 
geographic distributions are not fixed, but rather are dynamic, and 
environments can also change over time. Therefore, the temporal 
dimension is crucial in modelling niches accurately67,68,70 and 
affects reproducibility. The temporal dimension of climate data 
was overlooked in 58% of climate research papers reviewed by 
Morueta-Holme et al.29. Our review also revealed that temporal 
dimensions of occurrence data and environmental data often 
go unreported in ENM studies (74% and 58%, respectively), 
although the temporal dimension tended to be better reported 
when the research involved model transfers (Table 1). Similar 
issues may plague many other studies that employ data that are 
spatiotemporally linked, regardless of discipline.

NATurE ECology & EvoluTioN | VOL 3 | OCTOBER 2019 | 1382–1395 | www.nature.com/natecolevol 1391

https://github.com/shandongfx/ENMchecklist
https://github.com/shandongfx/ENMchecklist
https://doi.org/10.5281/zenodo.3257732
https://www.economist.com/leaders/2013/10/21/how-science-goes-wrong
http://www.nature.com/natecolevol


PERSPECTIVE NATURE ECOLOGY & EVOLUTION

 46. Feng, X. & Papeş, M. Ecological niche modelling confirms potential 
north-east range expansion of the nine-banded armadillo (Dasypus 
novemcinctus) in the USA. J. Biogeogr. 42, 803–807 (2015).

 47. Pulliam, H. R. On the relationship between niche and distribution. Ecol. 
Lett. 3, 349–361 (2000).

 48. Fitzpatrick, M. C. et al. How will climate novelty influence ecological 
forecasts? Using the Quaternary to assess future reliability. Glob. Ecol. 
Biogeogr. 24, 3575–3586 (2018).

 49. Belbin, L. et al. Data Quality Task Group 2: tests and assertions. BISS 2, 
e25608 (2018).

 50. Fourcade, Y., Engler, J. O., Rödder, D. & Secondi, J. Mapping species 
distributions with MAXENT using a geographically biased sample of 
presence data: a performance assessment of methods for correcting 
sampling bias. PLoS ONE 9, e97122 (2014).

 51. Phillips, S. J. et al. Sample selection bias and presence-only distribution 
models: implications for background and pseudo-absence data. Ecol. Appl. 
19, 181–197 (2009).

 52. Merow, C., Allen, J. M., Aiello-Lammens, M. & Silander, J. A. Jr Improving 
niche and range estimates with Maxent and point process models by 
integrating spatially explicit information. Glob. Ecol. Biogeogr. 25, 
1022–1036 (2016).

 53. Dormann, C. F. et al. Methods to account for spatial autocorrelation  
in the analysis of species distributional data: a review. Ecography 30, 
609–628 (2007).

 54. Latimer, A. M., Banerjee, S., Sang, H. Jr, Mosher, E. S. & Silander, J. A. Jr 
Hierarchical models facilitate spatial analysis of large data sets: a case study 
on invasive plant species in the northeastern United States. Ecol. Lett. 12, 
144–154 (2009).

 55. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very 
high resolution interpolated climate surfaces for global land areas. Int. J. 
Climatol. 25, 1965–1978 (2005).

 56. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution 
climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

 57. PRISM Gridded Climate Data (PRISM Climate Group, accessed 1 July 
2017); http://prism.oregonstate.edu

 58. QA Note: Case #PM_MOD16_17166 (LAADS and DAAC, 2017); https://
go.nature.com/2lu5NCw 

 59. McGill, B. J. Matters of scale. Science 328, 575–576 (2010).
 60. Soberón, J. & Nakamura, M. Niches and distributional areas: concepts, 

methods, and assumptions. Proc. Natl Acad. Sci. USA 106, 19644–19650 
(2009). (suppl. 2).

 61. Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global 
redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).

 62. Wisz, M. S. et al. The role of biotic interactions in shaping distributions and 
realised assemblages of species: implications for species distribution 
modelling. Biol. Rev. 88, 15–30 (2013).

 63. Alexander, J. M., Diez, J. M. & Levine, J. M. Novel competitors shape 
species’ responses to climate change. Nature 525, 515–518 (2015).

 64. Bradter, U., Kunin, W. E., Altringham, J. D., Thom, T. J. & Benton, T. G. 
Identifying appropriate spatial scales of predictors in species distribution 
models with the random forest algorithm. Methods Ecol. Evol. 4, 167–174 
(2012).

 65. Song, W., Kim, E., Lee, D., Lee, M. & Jeon, S.-W. The sensitivity  
of species distribution modeling to scale differences. Ecol. Model. 248, 
113–118 (2013).

 66. Connor, T. et al. Effects of grain size and niche breadth on species 
distribution modeling. Ecography 41, 1270–1282 (2018).

 67. Smeraldo, S. et al. Ignoring seasonal changes in the ecological niche of 
non-migratory species may lead to biases in potential distribution models: 
lessons from bats. Biodiv. Conserv. 27, 2425–2441 (2018).

 68. Fernandez, M., Yesson, C., Gannier, A., Miller, P. I. & Azevedo, J. M. N. The 
importance of temporal resolution for niche modelling in dynamic marine 
environments. J. Biogeogr. 44, 2816–2827 (2017).

 69. Barve, N., Martin, C., Brunsell, N. A. & Peterson, A. T. The role of 
physiological optima in shaping the geographic distribution of Spanish 
moss: physiological optima of Spanish moss. Glob. Ecol. Biogeogr. 23, 
633–645 (2014).

 70. Williams, H. M., Willemoes, M. & Thorup, K. A temporally explicit species 
distribution model for a long distance avian migrant, the common cuckoo. 
J. Avian Biol. 48, 1624–1636 (2017).

 71. Barve, N. et al. The crucial role of the accessible area in ecological  
niche modeling and species distribution modeling. Ecol. Model. 222, 
1810–1819 (2011).

 72. Merow, C., Smith, M. J. & Silander, J. A.Jr. A practical guide to MaxEnt for 
modeling species’ distributions: what it does, and why inputs and settings 
matter. Ecography 36, 1058–1069 (2013).

 73. Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting 
pseudo-absences for species distribution models: how, where and how 
many? Methods Ecol. Evol. 3, 327–338 (2012).

 15. Hunter, P. The reproducibility ‘crisis’: reaction to replication crisis should 
not stifle innovation. EMBO Rep. 18, 1493–1496 (2017).

 16. Hampton, S. E. et al. Big data and the future of ecology. Front. Ecol. 
Environ. 11, 156–162 (2013).

 17. Peterson, A. T. et al. Ecological Niches and Geographic Distributions 
(Princeton Univ. Press, 2011).

 18. Franklin, J. Mapping Species Distributions: Spatial Inference and Prediction 
(Cambridge Univ. Press, 2010).

 19. Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in 
ecology. Ecol. Model. 135, 147–186 (2000).

 20. Peterson, A. T. & Soberón, J. Species distribution modeling and  
ecological niche modeling: getting the concepts right. Nat. Conservação 10, 
102–107 (2012).

 21. Araújo, M. B. et al. Standards for distribution models in biodiversity 
assessments. Sci. Adv. 5, eaat4858 (2019).

 22. Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy 
modeling of species geographic distributions. Ecol. Model. 190,  
231–259 (2006).

 23. Mahammad, S. S. & Ramakrishnan, R. GeoTIFF: a standard image file 
format for GIS applications. In Map India Conf. 2003 28–31 (2003).

 24. Wieczorek, J. et al. Darwin Core: an evolving community-developed 
biodiversity data standard. PLoS ONE 7, e29715 (2012).

 25. Guralnick, R., Walls, R. & Jetz, W. Humboldt Core: toward a standardized 
capture of biological inventories for biodiversity monitoring, modeling and 
assessment. Ecography 41, 713–725 (2018).

 26. Gad-el-Hak, M. Publish or perish—an ailing enterprise? Phys. Today 57, 
61–62 (2004).

 27. Munafò, M. R. et al. A manifesto for reproducible science. Nat. Hum. 
Behav. 1, 0021 (2017).

 28. Grimm, V. et al. A standard protocol for describing individual-based and 
agent-based models. Ecol. Model. 198, 115–126 (2006).

 29. Morueta-Holme, N. et al. Best practices for reporting climate data in 
ecology. Nat. Clim. Change 8, 92–94 (2018).

 30. Michener, W. K. et al. Participatory design of DataONE — enabling 
cyberinfrastructure for the biological and environmental sciences. Ecol. 
Inform. 11, 5–15 (2012).

 31. Bonney, R. et al. Citizen science: a developing tool for expanding science 
knowledge and scientific literacy. Bioscience 59, 977–984 (2009).

 32. Daru, B. H. et al. Widespread sampling biases in herbaria revealed from 
large-scale digitization. New Phytol. 217, 939–955 (2018).

 33. Park, D. S. & Davis, C. C. Implications and alternatives of assigning climate 
data to geographical centroids. J. Biogeogr. 44, 2188–2198 (2017).

 34. Meyer, C., Weigelt, P. & Kreft, H. Multidimensional biases, gaps and 
uncertainties in global plant occurrence information. Ecol. Lett. 19, 
992–1006 (2016).

 35. Enquist, B. J., Condit, R., Peet, R. K., Schildhauer, M. & Thiers, B. M. 
Cyberinfrastructure for an integrated botanical information  
network to investigate the ecological impacts of global climate  
change on plant biodiversity. Preprint at https://doi.org/10.7287/peerj.
preprints.2615v2 (2016).

 36. Boyle, B. et al. The taxonomic name resolution service: an online tool  
for automated standardization of plant names. BMC Bioinformatics  
14, 16 (2013).

 37. iNaturalist Research-grade Observations (iNaturalist.org, 2018); https://doi.
org/10.15468/ab3s5x

 38. Castro, M. C. et al. Reassessment of the hairy long-nosed armadillo 
‘Dasypus’ pilosus (Xenarthra, Dasypodidae) and revalidation of the genus 
Cryptophractus Fitzinger, 1856. Zootaxa 3947, 30–48 (2015).

 39. Park, D. S. & Potter, D. A reciprocal test of Darwin’s naturalization 
hypothesis in two mediterranean-climate regions. Glob. Ecol. Biogeogr. 24, 
1049–1058 (2015).

 40. Guralnick, R. P., Wieczorek, J., Beaman, R. & Hijmans, R. J. & the 
BioGeomancer Working Group BioGeomancer: automated georeferencing 
to map the world’s biodiversity data. PLoS Biol. 4, e381 (2006).

 41. Wieczorek, J., Guo, Q. & Hijmans, R. The point-radius method for 
georeferencing locality descriptions and calculating associated uncertainty. 
Int. J. Geogr. Inf. Sci. 18, 745–767 (2004).

 42. Robertson, M. P., Visser, V. & Hui, C. Biogeo: an R package for assessing 
and improving data quality of occurrence record datasets. Ecography 39, 
394–401 (2016).

 43. Zizka, A. et al. CoordinateCleaner: standardized cleaning of occurrence 
records from biological collection databases. Methods Ecol. Evol. 10, 
744–751 (2019).

 44. McCracken, G. F. et al. Rapid range expansion of the Brazilian  
free-tailed bat in the southeastern United States, 2008–2016. J. Mammal. 99, 
312–320 (2018).

 45. Taulman, J. F. & Robbins, L. W. Range expansion and distributional limits 
of the nine-banded armadillo in the United States: an update of Taulman & 
Robbins (1996). J. Biogeogr. 41, 1626–1630 (2014).

NATurE ECology & EvoluTioN | VOL 3 | OCTOBER 2019 | 1382–1395 | www.nature.com/natecolevol1392

http://prism.oregonstate.edu
https://go.nature.com/2lu5NCw
https://go.nature.com/2lu5NCw
https://doi.org/10.7287/peerj.preprints.2615v2
https://doi.org/10.7287/peerj.preprints.2615v2
https://doi.org/10.15468/ab3s5x
https://doi.org/10.15468/ab3s5x
http://www.nature.com/natecolevol


PERSPECTIVENATURE ECOLOGY & EVOLUTION

(Communications in Computer and Information Science Vol. 544,  
Springer, 2015).

 103. Merow, C. et al. Species’ range model metadata standards: RMMS. Glob. 
Ecol. Biogeogr. https://doi.org/10.1111/geb.12993 (2019).

 104. Read, J. S. et al. geoknife: reproducible web-processing of large gridded 
datasets. Ecography 39, 354–360 (2016).

 105. Golding, N. et al. The zoon R package for reproducible and shareable 
species distribution modelling. Methods Ecol. Evol. 9, 260–268 (2018).

 106. Qiao, H. et al. NicheA: creating virtual species and ecological niches in 
multivariate environmental scenarios. Ecography 39, 805–813 (2016).

 107. Kass, J. M. et al. Wallace: A flexible platform for reproducible modeling of 
species niches and distributions built for community expansion. Methods 
Ecol. Evol. 9, 1151–1156 (2018).

 108. Sandel, B. et al. The influence of Late Quaternary climate-change velocity 
on species endemism. Science 334, 660–664 (2011).

 109. Bosch, S., Tyberghein, L., Deneudt, K., Hernandez, F. & De Clerck, O.  
In search of relevant predictors for marine species distribution  
modelling using the MarineSPEED benchmark dataset. Divers. Distrib. 24, 
144–157 (2018).

 110. Franklin, J., Serra-Diaz, J. M., Syphard, A. D. & Regan, H. M. Big data for 
forecasting the impacts of global change on plant communities. Glob. Ecol. 
Biogeogr. 26, 6–17 (2017).

 111. McMinn, R. L., Russell, F. L. & Beck, J. B. Demographic structure and 
genetic variability throughout the distribution of Platte thistle (Cirsium 
canescens Asteraceae). J. Biogeogr. 44, 375–385 (2017).

 112. Graham, C. H., Ferrier, S., Huettman, F., Moritz, C. & Peterson, A. T. New 
developments in museum-based informatics and applications in biodiversity 
analysis. Trends Ecol. Evol. 19, 497–503 (2004).

 113. Jetz, W., McPherson, J. M. & Guralnick, R. P. Integrating biodiversity 
distribution knowledge: toward a global map of life. Trends Ecol. Evol. 27, 
151–159 (2012).

 114. Edwards, T. C. Jr, Cutler, D. R., Zimmermann, N. E., Geiser, L. & Moisen, 
G. G. Effects of sample survey design on the accuracy of classification tree 
models in species distribution models. Ecol. Model. 199, 132–141 (2006).

 115. Mammola, S. & Isaia, M. Rapid poleward distributional shifts in the 
European cave-dwelling Meta spiders under the influence of competition 
dynamics. J. Biogeogr. 44, 2789–2797 (2017).

 116. Soley-Guardia, M., Radosavljevic, A., Rivera, J. L. & Anderson, R. P. The 
effect of spatially marginal localities in modelling species niches and 
distributions. J. Biogeogr. 41, 1390–1401 (2014).

 117. McPherson, J. M., Walter, J. & Rogers, D. J. The effects of species’ range 
sizes on the accuracy of distribution models: ecological phenomenon or 
statistical artefact? J. Appl. Ecol. 41, 811–823 (2004).

 118. Phillips, N. D. et al. Applying species distribution modelling to a  
data poor, pelagic fish complex: the ocean sunfishes. J. Biogeogr. 44, 
2176–2187 (2017).

 119. Lee, T. R. C. et al. Ecological diversification of the Australian  
Coptotermes termites and the evolution of mound building. J. Biogeogr. 44, 
1405–1417 (2017).

 120. Boria, R. A., Olson, L. E., Goodman, S. M. & Anderson, R. P. Spatial 
filtering to reduce sampling bias can improve the performance of ecological 
niche models. Ecol. Model. 275, 73–77 (2014).

 121. Ceolin, G. B. & Giehl, E. L. H. A little bit everyday: range size  
determinants in Arachis (Fabaceae), a dispersal-limited group. J. Biogeogr. 
44, 2798–2807 (2017).

 122. Kumar, S., Graham, J., West, A. M. & Evangelista, P. H. Using district-level 
occurrences in MaxEnt for predicting the invasion potential of an exotic 
insect pest in India. Comput. Electron. Agric. 103, 55–62 (2014).

 123. Gomes, V. H. F. et al. Species distribution modelling: contrasting 
presence-only models with plot abundance data. Sci. Rep. 8, 1003 (2018).

 124. Boria, R. A., Olson, L. E., Goodman, S. M. & Anderson, R. P. A single-
algorithm ensemble approach to estimating suitability and uncertainty: 
cross-time projections for four Malagasy tenrecs. Divers. Distrib. 23, 
196–208 (2017).

 125. Varela, S., Anderson, R. P., García-Valdés, R. & Fernández-González, F. 
Environmental filters reduce the effects of sampling bias and improve 
predictions of ecological niche models. Ecography 33, 1084–1091 (2014).

 126. Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & 
Anderson, R. P. spThin: an R package for spatial thinning of species 
occurrence records for use in ecological niche models. Ecography 38, 
541–545 (2015).

 127. Hijmans, R. J. Cross-validation of species distribution models: removing 
spatial sorting bias and calibration with a null model. Ecology 93,  
679–688 (2012).

 128. Hortal, J., Valverde, A. J., Gómez, J. F. & Lobo, J. M. Historical bias in 
biodiversity inventories affects the observed environmental niche of the 
species. Oikos 117, 847–858 (2008).

 129. Royle, J. A., Nichols, J. D. & Kéry, M. Modelling occurrence and abundance 
of species when detection is imperfect. Oikos 110, 353–359 (2005).

 74. VanDerWal, J., Shoo, L. P., Graham, C. & Williams, S. E. Selecting 
pseudo-absence data for presence-only distribution modeling: How far 
should you stray from what you know? Ecol. Model. 220, 589–594 (2009).

 75. Senay, S. D., Worner, S. P. & Ikeda, T. Novel three-step pseudo-absence 
selection technique for improved species distribution modelling. PLoS ONE 
8, e71218 (2013).

 76. Feng, X. & Papeş, M. Can incomplete knowledge of species’ physiology 
facilitate ecological niche modelling? A case study with virtual species. 
Divers. Distrib. 23, 1157–1168 (2017).

 77. Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a 
simulation study evaluating their performance. Ecography 36, 27–46 (2013).

 78. Suzuki, N., Olson, D. H. & Reilly, E. C. Developing landscape habitat 
models for rare amphibians with small geographic ranges: a case study of 
Siskiyou Mountains salamanders in the western USA. Biodiv. Conserv. 17, 
2197–2218 (2008).

 79. Lee, D. N., Papeş, M. & Van den Bussche, R. A. Present and potential 
future distribution of common vampire bats in the Americas and the 
associated risk to cattle. PLoS ONE 7, e42466 (2012).

 80. Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. 
Opening the black box: an open-source release of Maxent. Ecography 40, 
887–893 (2017).

 81. Muscarella, R. et al. ENMeval: An R package for conducting spatially 
independent evaluations and estimating optimal model complexity for 
Maxent ecological niche models. Methods Ecol. Evol. 5, 1198–1205 (2014).

 82. Phillips, S. J. & Dudík, M. Modeling of species distributions with  
Maxent: new extensions and a comprehensive evaluation. Ecography 31, 
161–175 (2008).

 83. Elith, J. et al. Novel methods improve prediction of species’ distributions 
from occurrence data. Ecography 29, 129–151 (2006).

 84. Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression 
trees. J. Appl. Ecol. 77, 802–813 (2008).

 85. Lehmann, A., Overton, J. M. & Leathwick, J. R. GRASP: generalized 
regression analysis and spatial prediction. Ecol. Model. 157, 189–207 (2002).

 86. Cobos, M. E., Peterson, A. T., Osorio-Olvera, L. & Narayani, B. kuenm: An 
R package for detailed development of Maxent ecological niche models. 
PeerJ 7, e6281 (2019).

 87. Moreno-Amat, E. et al. Impact of model complexity on cross-temporal 
transferability in Maxent species distribution models: an assessment using 
paleobotanical data. Ecol. Model. 312, 308–317 (2015).

 88. DeLong, E. R., DeLong, D. M. & Clarke-Pearson, D. L. Comparing the 
areas under two or more correlated receiver operating characteristic curves: 
a nonparametric approach. Biometrics 44, 837–845 (1988).

 89. Peterson, A. T., Papeş, M. & Soberón, J. Rethinking receiver operating 
characteristic analysis applications in ecological niche modeling. Ecol. 
Model. 213, 63–72 (2008).

 90. Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of  
species distribution models: prevalence, kappa and the true skill  
statistic (TSS): assessing the accuracy of distribution models. J. Appl. Ecol. 
43, 1223–1232 (2006).

 91. Roberts, D. R. et al. Cross-validation strategies for data with  
temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40, 
913–929 (2017).

 92. Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds  
of occurrence in the prediction of species distributions. Ecography 28, 
385–393 (2005).

 93. Liu, C., White, M. & Newell, G. Selecting thresholds for the prediction of 
species occurrence with presence-only data. J. Biogeogr. 40, 778–789 (2013).

 94. Owens, H. L. et al. Constraints on interpretation of ecological niche models 
by limited environmental ranges on calibration areas. Ecol. Model. 263, 
10–18 (2013).

 95. Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting 
species. Methods Ecol. Evol. 1, 330–342 (2010).

 96. Feng, X., Park, D. S., Pandey, R., Liang, Y. & Papeş, M. Collinearity in 
ecological niche modeling: confusions and challenges. Ecol. Evol. https://doi.
org/10.1002/ece3.5555 (2019).

 97. Qiao, H. et al. An evaluation of transferability of ecological niche models. 
Ecography 42, 521–534 (2019).

 98. Elith, J. & Graham, C. H. Do they? How do they? Why do they differ? On 
finding reasons for differing performances of species distribution models. 
Ecography 32, 66–77 (2009).

 99. Soberón, J. & Peterson, A. T. Biodiversity informatics: managing and 
applying primary biodiversity data. Phil. Trans. R. Soc. Lond. B 359, 
689–698 (2004).

 100. Boyd, D. S. & Foody, G. M. An overview of recent remote sensing and GIS 
based research in ecological informatics. Ecol. Inform. 6, 25–36 (2011).

 101. Michener, W. K. in Ecological Informatics (eds. Recknagel, F. & Michener, 
W.) 13–26 (Springer, 2018).

 102. Borba, C. & Correa, P. L. P. in Metadata and Semantics Research. MTSR 
2015 (eds. Garoufallou, E., Hartley, R. & Gaitanou, P.) 113–118 

NATurE ECology & EvoluTioN | VOL 3 | OCTOBER 2019 | 1382–1395 | www.nature.com/natecolevol 1393

https://doi.org/10.1111/geb.12993
https://doi.org/10.1002/ece3.5555
https://doi.org/10.1002/ece3.5555
http://www.nature.com/natecolevol


PERSPECTIVE NATURE ECOLOGY & EVOLUTION

 157. Guillera-Arroita, G. et al. Is my species distribution model fit for  
purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 
24, 276–292 (2015).

 158. Martínez-Gutiérrez, P. G., Martínez-Meyer, E., Palomares, F. & Fernández, 
N. Niche centrality and human influence predict rangewide variation in 
population abundance of a widespread mammal: the collared peccary 
(Pecari tajacu). Divers. Distrib. 24, 103–115 (2018).

 159. Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240, 
1285–1293 (1988).

 160. Lobo, J. M., Jiménez-Valverde, A. & Real, R. AUC: a misleading measure of 
the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17, 
145–151 (2008).

 161. Liu, C., White, M. & Newell, G. Measuring and comparing the accuracy of 
species distribution models with presence-absence data. Ecography 34, 
232–243 (2011).

 162. Bahn, V. & Mcgill, B. J. Testing the predictive performance of distribution 
models. Oikos 122, 321–331 (2012).

 163. Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. Evaluating 
resource selection functions. Ecol. Model. 157, 281–300 (2002).

 164. Lawson, C. R., Hodgson, J. A., Wilson, R. J. & Richards, S. A. Prevalence, 
thresholds and the performance of presence-absence models. Methods Ecol. 
Evol. 5, 54–64 (2013).

 165. Fielding, A. H. & Bell, J. F. A review of methods for the assessment of 
prediction errors in conservation presence/absence models. Environ. 
Conserv. 24, 38–49 (1997).

 166. Liu, C., Newell, G. & White, M. On the selection of thresholds for 
predicting species occurrence with presence-only data. Ecol. Evol. 6, 
337–348 (2015).

 167. Johnston, M. R., Elmore, A. J., Mokany, K., Lisk, M. & Fitzpatrick, M. C. 
Field-measured variables outperform derived alternatives in Maryland 
stream biodiversity models. Divers. Distrib. 23, 1054–1066 (2017).

 168. Hastie, T., Tibshirani, R. & Friedman, J. H. The Elements of Statistical 
Learning: Data Mining, Inference, and Prediction (Springer, 2009).

 169. Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. 
Distrib. 17, 43–57 (2011).

 170. Royle, J. A., Chandler, R. B., Yackulic, C. & Nichols, J. D. Likelihood 
analysis of species occurrence probability from presence only data for 
modelling species distributions. Methods Ecol. Evol. 3, 545–554 (2012).

 171. Bartoleti, L. F. M. et al. Phylogeography of the dry vegetation endemic 
species Nephila sexpunctata (Araneae: Araneidae) suggests recent expansion 
of the Neotropical Dry Diagonal. J. Biogeogr. 44, 2007–2020 (2017).

 172. Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Peterson, A. T. Predicting 
species distributions from small numbers of occurrence records: a test case 
using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2006).

 173. Di Febbraro, M. et al. Does the jack of all trades fare best? Survival  
and niche width in Late Pleistocene megafauna. J. Biogeogr. 44,  
2828–2838 (2017).

 174. Peterson, A. T., Papeş, M. & Eaton, M. Transferability and model evaluation 
in ecological niche modeling: a comparison of GARP and Maxent. 
Ecography 30, 550–560 (2007).

 175. Randin, C. F. et al. Are niche-based species distribution models transferable 
in space? J. Biogeogr. 33, 1689–1703 (2006).

 176. Feng, X., Lin, C., Qiao, H. & Ji, L. Assessment of climatically suitable area 
for Syrmaticus reevesii under climate change. Endanger. Species Res. 28, 
19–31 (2015).

 177. Braunisch, V. et al. Selecting from correlated climate variables: a major 
source of uncertainty for predicting species distributions under climate 
change. Ecography 36, 971–983 (2013).

 178. Zurell, D., Elith, J. & Schröder, B. Predicting to new environments: tools for 
visualizing model behaviour and impacts on mapped distributions. Divers. 
Distrib. 18, 628–634 (2012).

 179. Matsumoto, M. & Nishimura, T. Mersenne twister: a 623-dimensionally 
equidistributed uniform pseudo-random number generator. ACM Trans. 
Model. Comput. Sim. 8, 3–30 (1998).

 180. Bak, P. & Sneppen, K. Punctuated equilibrium and criticality in a simple 
model of evolution. Phys. Rev. Lett. 71, 4083–4086 (1993).

 181. Newman, M. E. J., Watts, D. J. & Strogatz, S. H. Random graph  
models of social networks. Proc. Natl Acad. Sci. USA 99, 2566–2572  
(2002). (suppl. 1).

 182. Citation guidelines. GBIF https://www.gbif.org/citation-guidelines (2018).
 183. Peterson, A. T., Papeş, M. & Soberón, J. Mechanistic and correlative models 

of ecological niches. Eur. J. Ecol. 1, 28–38 (2015).

Acknowledgements
X.F., C.W., A.T.P. and M.P. acknowledge the National Institute for Mathematical and 
Biological Synthesis (NIMBioS) for facilitating initial discussions of this work. X.F. 
and D.S.P. acknowledge support from The University of Arizona Office of Research, 
Discovery, and Innovation, Institute of the Environment, the Udall Center for Studies in 
Public Policy, and the College of Science on the postdoctoral cluster initiative—Bridging 

 130. Segurado, P. & Araújo, M. B. An evaluation of methods for modelling 
species distributions. J. Biogeogr. 31, 1555–1568 (2004).

 131. Latimer, A. M., Wu, S., Gelfand, A. E. & Silander, J. A. Building statistical 
models to analyze species distributions. Ecol. Appl. 16, 33–50 (2006).

 132. Record, S., Fitzpatrick, M. C., Finley, A. O., Veloz, S. & Ellison, A. M. 
Should species distribution models account for spatial autocorrelation? A 
test of model projections across eight millennia of climate change: 
Projecting spatial species distribution models. Glob. Ecol. Biogeogr. 22, 
760–771 (2013).

 133. Wintle, B. A. & Bardos, D. C. Modeling species-habitat relationships with 
spatially autocorrelated observation data. Ecol. Appl. 16, 1945–1958 (2006).

 134. Figueiredo, F. O. G. et al. Beyond climate control on species range: the 
importance of soil data to predict distribution of Amazonian plant species. 
J. Biogeogr. 45, 190–200 (2018).

 135. Guisan, A., Graham, C. H., Elith, J. & Huettmann, F. Sensitivity of 
predictive species distribution models to change in grain size. Divers. 
Distrib. 13, 332–340 (2007).

 136. Sofaer, H. R., Jarnevich, C. S. & Flather, C. H. Misleading prioritizations 
from modelling range shifts under climate change. Glob. Ecol. Biogeogr. 27, 
658–666 (2018).

 137. Cooper, J. C. & Soberón, J. Creating individual accessible area hypotheses 
improves stacked species distribution model performance. Glob. Ecol. 
Biogeogr. 27, 156–165 (2018).

 138. Acevedo, P., Jiménez-Valverde, A., Lobo, J. M. & Real, R. Delimiting the 
geographical background in species distribution modelling. J. Biogeogr. 39, 
1383–1390 (2012).

 139. Qiao, H., Escobar, L. E. & Peterson, A. T. Accessible areas in ecological 
niche comparisons of invasive species: recognized but still overlooked. Sci. 
Rep. 7, 1213 (2017).

 140. Saupe, E. E. et al. Variation in niche and distribution model performance: 
the need for a priori assessment of key causal factors. Ecol. Model. 237–238, 
11–22 (2012).

 141. Hill, M. P., Gallardo, B. & Terblanche, J. S. A global assessment of climatic 
niche shifts and human influence in insect invasions. Glob. Ecol. Biogeogr. 
26, 679–689 (2017).

 142. Renner, I. W. & Warton, D. I. Equivalence of Maxent and Poisson point 
process models for species distribution modeling in ecology. Biometrics 69, 
274–281 (2013).

 143. Scofield, R. P. et al. The origin and phylogenetic relationships of the New 
Zealand ravens. Mol. Phylogen. Evol. 106, 136–143 (2017).

 144. Iturbide, M. et al. A framework for species distribution modelling  
with improved pseudo-absence generation. Ecol. Model. 312,  
166–174 (2015).

 145. Hertzog, L. R., Besnard, A. & Jay-Robert, P. Field validation shows 
bias-corrected pseudo-absence selection is the best method for predictive 
species-distribution modelling. Divers. Distrib. 20, 1403–1413 (2014).

 146. Warton, D. I. & Shepherd, L. C. Poisson point process models solve the 
‘pseudo-absence problem’ for presence-only data in ecology. Ann. Appl. 
Stat. 4, 1383–1402 (2010).

 147. Beyer, H. L. et al. The interpretation of habitat preference metrics under 
use-availability designs. Phil. Trans. R. Soc. Lond. B 365, 2245–2254 (2010).

 148. Petitpierre, B., Broennimann, O., Kueffer, C., Daehler, C. & Guisan, A. 
Selecting predictors to maximize the transferability of species distribution 
models: lessons from cross-continental plant invasions. Glob. Ecol. Biogeogr. 
26, 275–287 (2017).

 149. Sochor, M., Šarhanová, P., Pfanzelt, S. & Trávníček, B. Is evolution of 
apomicts driven by the phylogeography of the sexual ancestor? Insights 
from European and caucasian brambles (Rubus, Rosaceae). J. Biogeogr. 44, 
2717–2728 (2017).

 150. Derville, S., Torres, L. G., Iovan, C. & Garrigue, C. Finding the right fit: 
Comparative cetacean distribution models using multiple data sources and 
statistical approaches. Divers. Distrib. 24, 1657–1673 (2018).

 151. Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability  
and Distribution Models: With Applications in R (Cambridge Univ.  
Press, 2017).

 152. Qiao, H., Soberón, J. & Peterson, A. T. No silver bullets in correlative 
ecological niche modelling: insights from testing among many  
potential algorithms for niche estimation. Methods Ecol. Evol. 6,  
1126–1136 (2015).

 153. Herrera, J. P. et al. Estimating the population size of lemurs based on their 
mutualistic food trees. J. Biogeogr. 45, 2546–2563 (2018).

 154. Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: the 
importance of model complexity and the performance of model selection 
criteria. Ecol. Appl. 21, 335–342 (2011).

 155. Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression 
trees. J. Anim. Ecol. 77, 802–813 (2008).

 156. Anderson, R. P. & Gonzalez, I. Species-specific tuning increases robustness 
to sampling bias in models of species distributions: an implementation with 
Maxent. Ecol. Model. 222, 2796–2811 (2011).

NATurE ECology & EvoluTioN | VOL 3 | OCTOBER 2019 | 1382–1395 | www.nature.com/natecolevol1394

https://www.gbif.org/citation-guidelines
http://www.nature.com/natecolevol


PERSPECTIVENATURE ECOLOGY & EVOLUTION

Correspondence should be addressed to X.F.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s) 2019

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long 

as you give appropriate credit to the original author(s) and the source, provide a link to 
the Creative Commons license, and indicate if changes were made. The images or other 
third party material in this article are included in the article’s Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons license and your intended use is not permitted by statu-
tory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

Biodiversity and Conservation Science. C.M. acknowledges funding from NSF grants 
DBI-1913673 and DBI-1661510.

Author contributions
X.F. and D.S.P. conceived the idea that was refined by C.W., A.T.P., C.M. and M.P.; X.F., 
D.S.P. and C.W. conducted the literature review; X.F. conducted the analyses and drafted 
the manuscript. All authors contributed to the revision of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41559-019-0972-5.

Reprints and permissions information is available at www.nature.com/reprints.

NATurE ECology & EvoluTioN | VOL 3 | OCTOBER 2019 | 1382–1395 | www.nature.com/natecolevol 1395

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/s41559-019-0972-5
https://doi.org/10.1038/s41559-019-0972-5
http://www.nature.com/reprints
http://www.nature.com/natecolevol

	A checklist for maximizing reproducibility of ecological niche models
	Ecological niche modelling
	A checklist for ecological niche modelling
	Occurrence data (A). 
	Environmental data (B). 
	Model calibration (C). 
	Model transfer and evaluation (D). 

	Assessing the state of reproducibility in ENM research
	Lessons from ecological niche modelling
	Improving the reproducibility of ENM studies and beyond

	Improving reproducibility with software solutions
	Implications for other fields
	Closing remarks
	Acknowledgements
	Fig. 1 Completeness of checklist elements reported in the current literature.
	Table 1 Details of the ENM checklist and representation of its elements (percentage) in a review of recent ecology and evolution literature (2017–2018 163 papers).


