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A novel Chern–Simons E8 gauge theory of gravity in D = 15 based on an octic E8

invariant expression in D = 16 (recently constructed by Cederwall and Palmkvist) is
developed. A grand unification model of gravity with the other forces is very plausible
within the framework of a supersymmetric extension (to incorporate spacetime fermions)
of this Chern–Simons E8 gauge theory. We review the construction showing why the
ordinary 11D Chern–Simons gravity theory (based on the Anti de Sitter group) can be
embedded into a Clifford-algebra valued gauge theory and that an E8 Yang–Mills field
theory is a small sector of a Clifford (16) algebra gauge theory. An E8 gauge bundle for-
mulation was instrumental in understanding the topological part of the 11-dim M-theory

partition function. The nature of this 11-dim E8 gauge theory remains unknown. We
hope that the Chern–Simons E8 gauge theory of gravity in D = 15 advanced in this
work may shed some light into solving this problem after a dimensional reduction.
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extended relativity in Clifford spaces.

1. Introduction

Exceptional, Jordan, Division and Clifford algebras are deeply related and essen-
tial tools in many aspects of Physics [3, 5, 8, 9, 14–20]. Ever since the discovery
[1] that 11D supergravity, when dimensionally reduced to an n-dim torus led to
maximal supergravity theories with hidden exceptional symmetries En for n ≤ 8, it
has prompted intensive research to explain the higher dimensional origins of these
hidden exceptional En symmetries [2, 6]. More recently, there has been a lot of
interest in the infinite-dim hyperbolic Kac–Moody E10 and nonlinearly realized
E11 algebras arising in the asymptotic chaotic oscillatory solutions of supergravity
fields close to cosmological singularities [1, 2].

The classification of symmetric spaces associated with the scalars of N extended
supergravity theories, emerging from compactifications of 11D supergravity to lower
dimensions, and the construction of the U -duality groups as spectrum-generating
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symmetries for four-dimensional BPS black holes [6] also involved exceptional sym-
metries associated with the exceptional magic Jordan algebras J3[R, C, H, O]. The
discovery of the anomaly free 10-dim heterotic string for the algebra E8 × E8 was
another hallmark of the importance of exceptional Lie groups in Physics.

The E8 group was proposed long ago [24] as a candidate for a grand unification
model building in D = 4. An extensive review of the E6 grand unified models may
be found in [26]. The supersymmetric E8 model has more recently been studied as a
fermion family and grand unification model [25] under the assumption that there is
a vacuum gluino condensate but this condensate is not accompanied by a dynamical
generation of a mass gap in the pure E8 gauge sector. A study of the interplay among
exceptional groups, del Pezzo surfaces and the extra massless particles arising from
rational double point singularities can be found in [38]. Clifford algebras and E8 are
key ingredients in Smith’s D4−D5−E6−E7−E8 grand unified model in D = 8 [6].

An E8 gauge bundle was instrumental in the understanding the topological
part of the M-theory partition function [27, 32]. A mysterious E8 bundle which
restricts from 12-dim to the 11-dim bulk of M theory can be compatible with 11-dim
supersymmetry. The nature of this 11-dim E8 gauge theory remains unknown. We
hope that the Chern–Simons E8 gauge theory of gravity in D = 15 advanced in
this work may shed some light into solving this question.

E8 Yang–Mills theory can naturally be embedded into a Cl(16) algebra gauge
theory [33] and the 11D Chern–Simons (super) gravity [4] is a very small sector of
a more fundamental polyvector-valued gauge theory in Clifford spaces. Polyvector-
valued supersymmetries [11] in Clifford-spaces [3] turned out to be more fundamen-
tal than the supersymmetries associated with M, F theory superalgebras [7, 10]. For
this reason, we believe that Clifford structures may shed some light into the origins
behind the hidden E8 symmetry of 11D supergravity and reveal more important
features underlying M, F theory.

The main purpose of this work is to develop a Chern–Simons E8 gauge theory
of gravity in D = 15 based on an octic E8 invariant expression in D = 16 recently
constructed by [23], and to propose a grand unification of gravity with all the
other forces within the framework of a supersymmetric extension (to incorporate
spacetime fermions) of the Chern–Simons E8 gauge theory. Our octic E8 invariant
action has 37 terms and contains: (i) the Lanczos–Lovelock gravitational action
associated with the 15-dim boundary ∂M16 of the 16-dim manifold; (ii) five terms
with the same structure as the Pontryagin p4(F IJ) 16-form associated with the
SO(16) spin connection ΩIJ

µ where the indices I, J run from 1, 2, . . . , 16; (iii) the
fourth power of the standard quadratic E8 invariant [I2]4; (iv) plus 30 additional
terms involving powers of the E8-valued F IJ

µν and Fα
µν field-strength (two-forms).

In the final section, we explain how a Clifford algebra gauge theory (that
includes the Chern–Simons gravity action) can itself be embedded into a more
fundamental polyvector-valued gauge theory in Clifford spaces involving ten-
sorial coordinates xµ1µ2 , xµ1µ2µ3 , . . . in addition to antisymmetric tensor gauge
fields Aµ1µ2 , Aµ1µ2µ3 , . . . . The polyvector–valued supersymmetric extension of this
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polyvector valued bosonic gauge theory in Clifford spaces may reveal more impor-
tant features of a Clifford-algebraic structure underlying M, F, S theory in D =
11, 12, 13 dimensions. An overview of the basic features of the extended relativity
in Clifford spaces can be found in [3] and a polyvector-valued generalized super-
symmetry algebra in Clifford spaces was presented in [11].

2. A Chern–Simons E8 Gauge Theory of Gravity

2.1. E8 Yang–Mills in D = 4 and Clifford-algebra-valued

gauge theories

It is well known among the experts that the E8 algebra admits the SO(16) decom-
position 248 → 120⊕ 128. The E8 admits also a SL(8, R) decomposition [6]. Due
to the triality property, the SO(8) admits the vector 8v and spinor representa-
tions 8s,8c. After a triality rotation, the SO(16) vector and spinor representations
decompose as [6]

16 → 8s ⊕ 8c. (2.1a)

128s → 8v ⊕ 56v ⊕ 1 ⊕ 28⊕ 35v. (2.1b)

128c → 8s ⊕ 56s ⊕ 8c ⊕ 56c. (2.1c)

To connect with (real) Clifford algebras [8], i.e. how to fit E8 into a Clifford struc-
ture, start with the 248-dim fundamental representation E8 that admits a SO(16)
decomposition given by the 120-dim bivector representation plus the 128-dim chiral-
spinor representations of SO(16). From the modulo eight periodicity of Clifford alge-
bras over the reals one has Cl(16) = Cl(2 × 8) = Cl(8) ⊗ Cl(8), meaning, roughly,
that the 216 = 256 × 256 Cl(16)-algebra matrices can be obtained effectively by
replacing each one of the entries of the 28 = 256 = 16 × 16 Cl(8)-algebra matri-
ces by the 16 × 16 matrices of the second copy of the Cl(8) algebra. In particular,
120 = 1×28+8×8+28×1 and 128 = 8+56+8+56, hence the 248-dim E8 algebra
decomposes into a 120+ 128 dim structure such that E8 can be represented indeed
within a tensor product of Cl(8) algebras.

At the E8 Lie algebra level, the E8 gauge connection decomposes into the SO(16)
vector I, J = 1, 2, . . . , 16 and (chiral) spinor A = 1, 2, . . . , 128 indices as follows

Aµ = AIJ
µ XIJ + AA

µ YA, XIJ = −XJI ,
(2.2)

I, J = 1, 2, 3, . . . , 16, A = 1, 2, . . . , 128,

where XIJ , YA are the E8 generators. The Clifford algebra (Cl(8)⊗Cl(8)) structure
behind the SO(16) decomposition of the E8 gauge field AIJ

µ XIJ + AA
µ YA can be

deduced from the expansion of the generators XIJ , YA in terms of the Cl(16) algebra
generators. The Cl(16) bivector basis admits the decomposition

XIJ = aIJ
ij (γij ⊗ 1) + bIJ

ij (1 ⊗ γij) + cIJ
ij (γi ⊗ γj), (2.3)

where γi, are the Clifford algebra generators of the Cl(8) algebra present in Cl(16) =
Cl(8)⊗Cl(8); 1 is the unit Cl(8) algebra element that can be represented by a unit
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16×16 diagonal matrix. The tensor products ⊗ of the 16×16 Cl(8)-algebra matrices,
like γi ⊗ 1, γi ⊗ γj , . . . furnish a 256 × 256 Cl(16)-algebra matrix, as expected.
Therefore, the decomposition in (2.3) yields the 28+28+8×8 = 56+64 = 120-dim
bivector representation of SO(16); i.e. for each fixed values of IJ there are 120 terms
in the right-hand side of (2.3), that match the number of independent components
of the E8 generators XIJ = −XJI , given by 1

2 (16 × 15) = 120. The decomposition
of YA is more subtle. A spinor Ψ in 16D has 28 = 256 components and can be
decomposed into a 128 component left-handed spinor ΨA and a 128 component
right-handed spinor ΨȦ; the 256 spinor indices are α = A, Ȧ; β = B, Ḃ, . . . with
A, B = 1, 2, . . . , 128 and Ȧ · Ḃ = 1, 2, . . . , 128, respectively.

Spinors are elements of right (left) ideals of the Cl(16) algebra and admit the
expansion Ψ = Ψαξα in a 256-dim spinor basis ξα which in turn can be expanded as
sums of Clifford polyvectors of mixed grade; i.e. into a sum of scalars, vectors, bivec-
tors, trivectors, . . .Minimal left/right ideals elements of Clifford algebras may be
systematically constructed by means of idempotents e2 = e such that the geometric
product of Cl(p, q)e generates the ideal [22].

The commutation relations of E8 are [6]

[XIJ , XKL] = 4(δIKXLJ − δILXKJ + δJKXIL − δJLXIK),
(2.4)

[XIJ , Y α] = −1
2
Γαβ

IJ Yβ ; [Y α, Y β] =
1
4
Γαβ

IJ XIJ , Γαβ
IJ = [ΓI , ΓJ ]αβ .

The combined E8 indices are denoted by A ≡ [IJ ], α (120 + 128 = 248 indices in
total) that yield the Killing metric and the structure constants

ηAB =
1
60

TrTATB = − 1
60

fA
CDfBCD, (2.5a)

f IJ,KL,MN = −8δIKδLJ
MN + permutations; f IJ

αβ = −1
2
ΓIJ

αβ ; (2.5b)

ηIJKL = − 1
60

f IJ
CDfKL,CD.

We shall proceed with the Cl(16) gauge theory that encodes the exceptional Lie
algebra E8 symmetry from the start. The E8 gauge theory in D = 4 is based on
the E8-valued field strengths

F IJ
µν XIJ = (∂µAIJ

ν − ∂νAIJ
µ )XIJ + AKL

µ AMN
ν [XKL, XMN ] + Aα

µAβ
ν [Yα, Yβ ], (2.6)

FA
µνYα = (∂µAα

ν − ∂νAα
µ)Yα + Aα

µAIJ
ν [Yα, XIJ ]. (2.7)

The E8 actions are

STopological[E8] =
∫

d4x
1
60

Tr[FA
µνFB

ρτTATB]εµνρτ =
∫

d4xFA
µνFB

ρτηABεµνρτ

=
∫

d4x[F IJ
µν FKL

ρτ ηIJKL + Fα
µνF β

ρτ ηαβ + 2F IJ
µν F β

ρτηIJβ ]εµνρτ ,

(2.8)
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where εµνρτ is the covariantized permutation symbol and

SY M [E8] =
∫

d4x
√

g
1
60

Tr[FA
µνFB

ρτTATB]gµρgντ =
∫

d4x
√

gFA
µνFB

ρτ ηABgµρgντ

=
∫

d4x
√

g[F IJ
µν FKL

ρτ ηIJKL + Fα
µνF β

ρτ ηαβ + 2F IJ
µν F β

ρτηIJβ ]gµρgντ . (2.9)

The above E8 actions (are part of) can be embedded onto more general Cl(16)
actions with a much larger number of terms given by

STopological[Cl(16)] =
∫

d4x〈FM
µν FN

ρτ ΓMΓN 〉εµνρτ

=
∫

d4xFM
µν FN

ρτ GMN εµνρτ , (2.10)

and

SY M [Cl(16)] =
∫

d4x
√

g〈FM
µν FN

ρτ ΓMΓN 〉gµρgντ

=
∫

d4x
√

gFM
µν FN

ρτ GMN gµρgντ , (2.11)

where 〈ΓMΓN 〉 = GMN1 denotes the scalar part of the Clifford geometric product
of the gammas. Notice that there are a total of 65536 terms in

FM
µν FN

ρτ GMN = FµνFρτ + F I
µνF I

ρτ + F I1I2
µν F I1I2

ρτ

+ · · · + F I1I2...I16
µν F I1I2...I16

ρτ , (2.12)

where the indices run as I = 1, 2, . . . , 16. The Clifford algebra Cl(16) has the graded
structure (scalars, bivectors, trivectors, . . . , pseudoscalar) given by

1 16 120 560 1820 4368 8008 11440 12870

11440 8008 4368 1820 560 120 16 1
, (2.13)

consistent with the dimension of the Cl(16) algebra 216 = 256 × 256 = 65536.
The possibility that one can accommodate another copy of the E8 algebra

within the Cl(16) algebraic structure warrants further investigation by working
with the duals of the bivectors XIJ and recurring to the remaining YȦ genera-
tors. The motivation is to understand the full symmetry of the E8 × E8 heterotic
string from this Clifford algebraic perspective. A clear embedding is, of course,
the following

E8 × E8 ⊂ Cl(8) ⊗ Cl(8) ⊗ Cl(8) ⊗ Cl(8) ⊂ Cl(16) ⊗ Cl(16) = Cl(32), (2.14)
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where SO(32) ⊂ Cl(32) and SO(32) is also an anomaly free group of the heterotic
string that has the same dimension and rank as E8 × E8.

2.2. An E8 gauge theory of gravity based on an octic invariant

The action that defines a Chern–Simons E8 gauge theory of gravity in 15-dim is

S =
∫
M16

〈FF . . . F 〉E8

=
∫
M16

(FM1 ∧ FM2 ∧ · · · ∧ FM8)ΥM1M2M3···M8

=
∫

∂M16
L(15)

CS (A,F). (2.15)

The E8 Lie-algebra-valued 16-form 〈F 8〉 is closed : d(〈FM1TM1 ∧ FM2TM2 ∧ · · · ∧
FM8TM8〉) = 0 and locally can always be written as an exact form in terms of
an E8-valued Chern–Simons 15-form as I16 = dL(15)

CS (A,F). For instance, when
M16 = S16 the 15-dim boundary integral (2.15) is evaluated in the two coordinate
patches of the equator S15 = ∂M16 of S16 leading to the integral of tr(g−1dg)15 (up
to numerical factors) when the gauge potential A is written locally as A = g−1dg
and g belongs to the E8 Lie-algebra. The integral is characterized by the elements of
the homotopy group π15(E8). S16 can also be represented in terms of quaternionic
and octonionic projectives spaces as HP 4, OP 2, respectively.

In order to evaluate the operation 〈· · ·〉E8 in the action it involves the exis-
tence of an octic E8 group invariant tensor ΥM1M2...M8 that was recently con-
structed by Cederwall and Palmkvist [23] using the Mathematica package GAMMA
based on the full machinery of the Fierz identities. The entire octic E8 invari-
ant contains powers of the SO(16) bivector XIJ and spinorial Y α generators
X8, X6Y 2, X4Y 4, X2Y 6, Y 8. The corresponding number of terms is 6, 11, 12, 5, 2,
respectively, giving a total of 36 terms for the octic E8 invariant involving 36
numerical coefficients multiplying the corresponding powers of the E8 generators.
There is an extra term (giving a total of 37 terms) with an arbitrary constant
multiplying the fourth power of the quadratic invariant I2 = − 1

2 tr[(F IJ
µν XJ)2+

(Fα
µνYα)2].
The Euler-density in 16D corresponds to the Pfaffian associated with the 16×16

antisymmetric matrix F IJ where the components F IJ can be read from Eq. (2.6).
The Euler (Born–Infled) action density is

Pfaffian(F) ≡
√

detF = LEuler = F I1J1F I2J2F I3J3 . . . F I8J8εI1J1I2J2...I8J8 ,

(2.16)

such that the exterior derivative of the gravitational 15-dim Lanczos–Lovelock
(LL) action L(15)

LL corresponding to the 15-dim boundary Σ = ∂M16 yields
the Euler-density 16-form dLLL = LEuler . Upon inserting the spacetime indices
µ1, µ2, . . . , µ16, the Euler characteristic class invariant e(T M) of the SO(16)
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tangent bundle associated with M16 is given by

SEuler =
∫
M16

εµ1µ2...µ16F I1J1
µ1µ2

F I2J2
µ3µ4

. . . F I8J8
µ15µ16

εI1J1I2J2...I8J8

=
∫
M16

dL(15)
LL

=
∫

Σ∂M16
L(15)

LL (2.17)

Despite the higher powers of the curvature (after eliminating the spin connection
ωab

µ in terms of the ea
µ field) the L(15)

Lovelock furnishes equations of motion for the ea
µ

field containing at most derivatives of second order, and not higher, due to the
Topological property of the Lovelock terms

d(L(15)
Lovelock) = εa1a2...a16

(
Ra1a2 +

ea1ea2

l2

)
. . .

(
Ra13a14 +

ea13ea14

l2

)
T a15

= Euler density in 16D. (2.18)

The exterior derivative of the Lovelock terms can be rewritten compactly as

d(L15
Lovelock) = εI1I2...I16F

I1I2 . . . F I15I16 , (2.19)

where F I1I2 is the curvature field strength associated with the SO(14, 2) connection
ΩI1I2

µ in 16D and which can be decomposed in terms of the fields ea
µ, ωab

µ , a, b =
1, 2, . . . , 15 by identifying ΩaD

µ = 1
l e

a
µ and Ωab

µ = ωab
µ so that the Torsion and

Lorenz curvature two-forms are

T a(ω, e) = F aD = dΩaD + Ωa
b ∧ ΩbD =

1
l
(dea − ωa

b ∧ eb),

F ab = (dΩab + Ωa
c ∧ Ωcb) + (Ωa

D ∧ ΩDb) = Rab(ω) +
1
l2

ea ∧ eb, (2.20)

Rab(ω) = dωab + ωa
c ∧ ωcb,

where a length parameter l must be introduced to match dimensions since the
connection has units of 1/l. This l parameter is related to the cosmological constant.

Another invariant is the L15
CS(ΩIJ

µ ) Chern–Simons 15-form associated with the
SO(16) spin connection whose exterior derivative

d(LCS)(ΩIJ
µ ) = F I1

I2
F I2

I3
. . . F I7

I8
F I8

I1

⇒
∫

∂M16
(LCS)(ΩIJ

µ )

=
∫
M16

F I1
I2

F I2
I3

. . . F I7
I8

F I8
I1

(2.21)

is one of the five terms contained in the definition of the Pontryagin p4(F IJ ) invari-
ant 16-form (up to numerical factors) for the SO(14, 2) gauge connection in 16D.
As mentioned above, the SO(14, 2) connection ΩIJ

µ can be broken into the ea
µ field
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which gauges translations along the 15-dim boundary ∂M16 and the SO(14, 1)
spin connection ωab

µ which gauges the Lorentz group SO(14, 1) associated with the
tangent space of the 15-dim boundary ∂M16 and such that the net number of
components is 15 + 1

2 (15 × 14) = 120 = 1
2 (16 × 15).

The relevant five terms contained in the octic E8 invariant found by [23] and
related to the five terms comprising the Pontryagin p4(F IJ) invariant 16-form (but
with different numerical factors) are of the form

tr[(F IJXIJ)8] ⇒ εµ1µ2...µ16F I1I2
µ1µ2

F I2I3
µ3µ4

F I3I4
µ5µ6

F I4I5
µ7µ8

F I5I6
µ9µ10

F I6I7
µ11µ12

F I7I8
µ13µ14

F I8I1
µ15µ16

,

(2.22)

which is the same term as (2.21), plus the other terms of the Pontryagin p4(F IJ )
invariant 16-form given by

tr[(F IJXIJ)2]4 ⇒ εµ1µ2...µ16
(
F I1I2

µ1µ2
F I2I1

µ3µ4

)(
F J1J2

µ5µ6
F J2J1

µ7µ8

)
×

(
FK1K2

µ9µ10
FK2K1

µ11µ12

)(
FL1L2

µ13µ14
FL2L1

µ15µ16

)
, (2.23)

tr[(F IJXIJ)4]2 ⇒ εµ1µ2...µ16
(
F I1I2

µ1µ2
F I2I3

µ3µ4
F I3I4

µ5µ6
F I4I1

µ7µ8

)
×

(
F J1J2

µ9µ10
F J2J3

µ11µ12
F J3J4

µ13µ14
F J4J1

µ15µ16

)
, (2.24)

and similar expressions for the remaining two terms

tr[(F IJXIJ)6]tr[(F IJXIJ)2], tr[(F IJXIJ)4]tr[(F IJXIJ)2]2.

The terms involving the fermionic generators Fα
µν (where the components Fα

µν

are given by Eq. (2.7)) in the octic E8 invariant are

tr[(FαYα)8] ⇒ εµ1µ2...µ16εI1I2...I16
(
Fα1

µ1µ2
Γα1β1

I1I2I3I4
F β1

µ3µ4

)
. . .

(
Fα4

µ13µ14
Γα4β4

I13I14I15I16
F β4

µ15µ16

)
, (2.25)

tr[(FαYα)2]4 ⇒ εµ1µ2...µ16
(
Fα1

µ1µ2
Fα1

µ3µ4

)
. . .

(
Fα4

µ13µ14
Fα4

µ15µ16

)
, . . . (2.26)

The terms involving both fermionic and bivector generators in the octic E8 invari-
ant are

tr[(F IJXIJ)6(FαYα)2] ⇒ εµ1µ2...µ16
(
F I1J1

µ1µ2
F I2J2

µ3µ4
. . . F I6J6

µ11µ12

)
×

(
Fα

µ13µ14
Γαβ

I1J1I2J2...I6J6
F β

µ15µ16

)
. (2.27)

tr[(F IJXIJ)4(FαYα)4] ⇒ εµ1µ2...µ16
(
F I1J1

µ1µ2
F I2J2

µ3µ4
F I3J4

µ5µ6
F I4J4

µ7µ8

)
×

(
Fα1

µ9µ10
Γα1β1

I1J1I2J2
F β1

µ11µ12

)(
Fα2

µ13µ14
Γα2β2

I3J3I4J4
F β2

µ15µ16

)
;

(2.28)

εµ1µ2...µ16
(
F I1J1

µ1µ2
F I2J2

µ3µ4
F I3J4

µ5µ6
F I4J4

µ7µ8

)
(
Fα1

µ9µ10
Γα1β1

I1J1I2J2I3J3I4J4
F β1

µ11µ12

)(
Fα2

µ13µ14
Fα2

µ15µ16

)
; . . . (2.29)
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tr[(F IJXIJ)6]tr[(FαYα)2] ⇒ εµ1µ2...µ16
(
F I1I2

µ1µ2
F I2I3

µ3µ4
F I3I4

µ5µ6
F I4I5

µ7µ8
F I5I6

µ9µ10
F I6I1

µ11µ12

)
×

(
Fα1

µ13µ14
Fα1

µ15µ16

)
. (2.30)

tr[(F IJXIJ)4]tr[(FαYα)4] ⇒ εµ1µ2...µ16
(
F I1I2

µ1µ2
F I2I3

µ3µ4
F I3I4

µ5µ6
F I4I1

µ7µ8

)
×

(
Fα1

µ9µ10
Γα1β1

J1J2J3J4
F β1

µ11µ12

)(
Fα2

µ13µ14
Γα2β2

J3J4J1J2
F β2

µ15µ16

)
.

(2.31)

tr[(F IJXIJ)2]tr[(FαYα)6] ⇒ εµ1µ2...µ16
(
F I1I2

µ1µ2
F I2I1

µ3µ4

)(
Fα1

µ5µ6
Γα1β1

J1J2J3J4
F β1

µ7µ8

)
×

(
Fα2

µ9µ10
Γα2β2

J3J4J5J6
F β2

µ11µ12

)
×

(
Fα3

µ13µ14
Γα3β3

J5J6J1J2
F β3

µ15µ16

)
. . . (2.32)

Therefore, the E8 invariant octic action in 16D given by Eq. (2.15) with 36 +
1 = 37 terms contains: (i) the Lanczos–Lovelock gravitational action (2.17), (2.18)
associated with the 15-dim boundary ∂M16; (ii) five terms with the same structure
as the Pontryagin p4(F IJ) 16-form associated with the SO(16) spin connection ΩIJ

µ ;
(iii) the fourth power of the quadratic invariant [I2]4; (iv) plus 30 additional terms
involving powers of the E8-valued F IJ

µν and Fα
µν field-strength (two-forms) as shown

in Eqs. (2.22)–(2.32).
The impending project is the supersymmetric version of the octic E8 invariant

action (2.15). A vector supermultiplet [24, 25] involves Am
µ , λm with 248 spacetime

fermions λm in the fundamental 248-dim representation of E8 (m = 1, 2, . . . , 248)
and 248 spacetime vectors (gluons) Am

µ in the 248-dim adjoint representation. The
fermions are the gluinos in this very special case because the 248-dim fundamen-
tal and 248-dim adjoint representations of the exceptional E8 group coincide. The
exceptional group E8 is unique in this respect. In ordinary supersymmetric Yang–
Mills the superpartners of the fermions are scalars, however, in the supersymmet-
ric E8 Yang–Mills case, the fermions λm (gluinos) and the vectors Am

µ (gluons)
comprise the vector supermultiplet. For a thorough discussion of the unique phe-
nomenological features of the E8 group as a candidate for a (supersymmetric) grand
unification model of all fermion families in D = 4 see [24, 25]. An extensive review
of the E6 grand unified models may be found in [26].

A generalized Yang–Mills action in D = 16 involving the E8-valued two-form
field strength F = F IJXIJ + FαYα is

SGY M (E8) =
∫
M16

tr[(F ∧ F ∧ F ∧ F) ∧∗ (F ∧ F ∧ F ∧ F)]. (2.33)

The analog of a theta term in D = 16 is

Stheta(E8) =
∫
M16

tr[F8]. (2.34)

Self dual configurations, E8 instantons in D = 16 obey G(8) =∗ G(8) and turn
the action (2.33) into (2.34) when the self dual eight-form is defined by G(8) =
F ∧F ∧ F ∧ F.
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Related to the construction of instantons in higher dimensions, a SO(8) ×
SO(7) ⊂ SO(16) invariant self-duality equation for a three-form in D = 16 was
studied by [29] who built Topological QFT on 8-dim manifolds with holonomy
group smaller than or equal to Spin(7) after a dimensional reduction from D = 16
to D = 8. A further dimensional reduction to D = 4 furnished new supersymmetric
theories in D = 4. The inclusion of gravitational interactions in D = 8 allowed the
construction of a D = 8 topological gravity and its correspondence with supergrav-
ity via an octonionic self duality equation for the spin connection [29].

A topologically nontrivial gauging of N = 16 supergravity in D = 3 based on
an N = 16 supersymmetric 3-dim nonlinear sigma model valued on the exceptional
coset E8/SO(16) (128-dimensional) including a combination of a BF and Chern–
Simons term for an SO(16) gauge field was provided by [30]. It remains an open
problem to see if the supersymmetric version of the octic E8 invariant action (2.15)
upon dimensional reduction to D = 3 bears a relationship to the topological gaug-
ing of N = 16 supergravity in D = 3. The 128 scalars parametrizing the coset
E8/SO(16) fit into 16 copies of 128 scalars resulting from the decomposition of the
E8-valued gauge field Aα

µYα, µ = 1, 2, . . . , 16 and α = 1, 2, . . . , 128 where Yα are
the the SO(16) chiral spinorial generators of the E8 algebra.

Another dimensional reduction that is warranted to study is from D = 16 to
D = 11 because D = 11 supergravity with a local SO(16) invariance permits the
bosonic fields to be assigned to a representation of E8 [31]. The D = 11 supergravity
four-form determines an E8 gauge bundle which was instrumental in understand-
ing the topological part of the M-theory partition function [27, 32]. A mysterious
E8 bundle which restricts from 12-dim to 11-dim bulk of M-theory can be com-
patible with 11-dim supersymmetry. When M-theory is compactified on a man-
ifold with boundary the anomalies caused by the chiral gauginos and gravitinos
on each 10-dim boundary component cancels the anomalies in the 11-dim bulk if
each 10-dim boundary component supports 248 vector multiplets transforming in
the adjoint representation of E8. The Casimir effect between the M-theory ana-
log of a D-brane/anti-D-brane system exhibiting an E8 × E8 symmetry living at
the 10-dim boundaries of the 11-dim bulk has been studied by [28]. The nature
of this bulk 11-dim E8 gauge theory remains unknown. We hope that the Chern–
Simons E8 gauge theory of gravity in D = 15 advanced in this work may shed
some light into solving this question. Another interpretation is to view the 10-dim
boundary component of the 11-dim bulk of M-theory as a topological defect in
12-dimensions.

The action for D = 4 Einstein gravity has been attained from a generalized
dimensional reduction of a Chern–Simons gravity action in higher D = 2n + 1
dimensions by Nastase [34]. This occurs after imposing a very strong constraint
which in the Schwarzschild space time case is tantamount of setting the ADM mass
to zero [37]. Hence, we may follow such generalized dimensional reduction of our
D = 15 Lanczos–Lovelock gravitational action (2.17), (2.18) to lower dimensions.
For example, the reduction of the D = 6 action (integral of the Euler density
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in D = 6)∫
M6

d(L(5)
Lovelock) =

∫
M6

εa1a2...a6

(
Ra1a2 +

ea1ea2

l2

)(
Ra3a4 +

ea3ea4

l2

)
T a5 , (2.35)

to D = 4 leads to the standard action for Einstein gravity with the cosmological
constant (1/l2) plus the Gauss–Bonnet topological invariant in D = 4 that coincides
with the MacDowell–Mansouri–Chamseddine–West (anti de Sitter group) SO(3, 2)
gauge formulation of gravity:∫

M4
εa1a2a3a4

(
Ra1a2 +

ea1ea2

l2

) (
Ra3a4 +

ea3ea4

l2

)
. (2.36)

The so-called Born–Infield gravity in Eq. (2.41) is not invariant under SO(3, 2)
unless one imposes the torsionless condition (the action is not off-shell invari-
ant) [37].

D = 4 Einstein gravity was shown by [35] to arise from a 6-dim gauge the-
ory of the conformal group SO(4, 2) where the 4-dim spacetime was interpreted
as a 4-dim topological defect in D = 6 and obtained from a topological dimen-
sional reduction of the Euler density in D = 6. In view of these latest findings of
how to perform generalized and topological dimensional reductions [34, 35], it is
no longer implausible to propose a grand unification of gravity with all the other
forces within the framework of a supersymmetric extension (to incorporate the 248
spacetime fermions λm) of our Chern–Simons E8 gauge theory in D = 15 based on
the octic E8 invariant action (2.15) after a judicious dimensional reduction. Work-
ing in particular with S16 and whose equator is S15 is very appealing since it allows
to accommodate quaternions and octonions into the picture HP 4 ∼ OP 2 ∼ S16;
HP 2 ∼ OP 1 ∼ S8 and HP 1 ∼ S4. The four nonassociative (not Lie) supercon-
formal algebras with N = 5, 6, 7, 8 supersymmetries all share interesting properties
with the Cayley (octonions), covariant derivation of spinors on round and squashed
S7 and torsion on supercoset manifolds [36].

To finalize this section, we simply recall that in odd dimensions D = 2n−1, the
Lanczos–Lovelock gravitational Lagrangian is

LD
Lovelock =

n−1∑
p=0

apLp(D), ap = κ
(±1)p+1l2p−D

(D − 2p)
Cn−1

p , p = 1, 2, . . . , n − 1

(2.37)

Cn−1
p is the binomial coefficient. The constants κ, l are related to the Newton’s

constant G and to the cosmological constant Λ through κ−1 = 2(D − 2)ΩD−2G

where ΩD−2 is the area of the D−2-dim unit sphere and Λ = ±(D−1)(D−2)/2l2

for de Sitter (anti de Sitter) spaces [4].
The terms inside the summand of (2.42) are

Lp(D) = εa1a2...aDRa1a2Ra3a4 . . . Ra2p−1a2pea2p+1 . . . eaD , (2.38)

where we have omitted the space-time indices µ1, µ2, . . . . Despite the higher pow-
ers of the curvature (after eliminating the spin connection ωab

µ in terms of the
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ea
µ field) the LD

Lovelock furnishes equations of motion for the ea
µ field containing at

most derivatives of second order, and not higher, due to the topological property
of the Lovelock terms

d(L2n−1
Lovelock) = εa1a2...a2n

(
Ra1a2 +

ea1ea2

l2

)

. . .

(
Ra2n−3a2n−2 +

ea2n−3ea2n−2

l2

)
T a2n−1

= Euler density. (2.39)

Therefore, the exterior derivative of the Lovelock terms can be rewritten com-
pactly as

d(L2n−1
Lovelock) = εI1I2...I2nF I1I2 . . . F I2n−1I2n , (2.40)

where F I1I2 is the curvature field strength associated with the SO(2n − 2, 2) con-
nection ΩI1I2

µ in 2n-dim and which can be decomposed in terms of the fields
ea

µ, ωab
µ , a, b = 1, 2, . . . , 2n− 1 as shown in Eqs. (2.19), (2.20). Gauge theories based

on the Anti de Sitter group allowed us to derive the vacuum energy density of Anti
de Sitter space (de Sitter) as the geometric mean between an upper and lower scale
[17] based on a BF–Chern–Simons–Higgs theory. Upon setting the lower scale to
the Planck scale LP and the upper scale to the Hubble radius (today) RH , it yields
the observed value of the cosmological constant ρ = L−2

P R−2
H = L−4

P (LP /RH)2 ∼
10−120M4

Planck.

3. On Chern–Simons–Clifford Gravity

We end this work by reviewing Chern–Simons gravitational actions in Clifford
spaces [33] in order to point its relevance to future research related to E8 gauge
theories of gravity. The 11D Chern–Simons supergravity action is based on the
smallest Anti de Sitter OSp(32|1) superalgebra. The Anti de Sitter group SO(10, 2)
must be embedded into a larger group Sp(32, R) to accommodate the fermionic
degrees of freedom associated with the superalgebra OSp(32|1). The bosonic sector
involves the connection [4]:

Aµ = Aa
µΓa + Aab

µ Γab + Aa1a2...a5
µ Γa1a2...a5 = ea

µΓa + ωab
µ Γab + Aa1a2...a5

µ Γa1a2...a5

(3.1)

with 11 + 55 + 462 = 528 generators. A Hermitian complex 32 × 32 matrix has a
total of 32+2(32×31

2 ) = 992+32 = 1024 = 322 = 210 independent real components
(parameters), the same number as the real parameters of the anti-symmetric and
symmetric real 32 × 32 matrices, respectively, 496 + 528 = 1024. The dimension
of Sp(32) = (1/2)(32 × 33) = 528. Notice that 210 = 1024 is also the number of
independent generators of the Cl(11) algebra since out of the 211 generators, only



December 6, 2007 19:13 WSPC/IJGMMP-J043 00254

A Chern–Simons E8 Gauge Theory of Gravity 1251

half of them 210, are truly independent due to the duality conditions valid in odd

dimensions only:

εa1a2...a2n+1Γa1 ∧ Γa2 ∧ · · · ∧ Γap ∼ Γap+1 ∧ Γap+2 ∧ · · · ∧ Γa2n+1 . (3.2)

This counting of components is the underlying reason why the Cl(11) algebra
appears in this section. The generators of the Cl(11) algebra {Γa, Γb} = 2ηab1
and the unit element 1 generate the Clifford polyvectors (including a scalar, pseu-
doscalar) of different grading

ΓA = 1, Γa, Γa1 ∧ Γa2 , Γa1 ∧ Γa2 ∧ Γa3 , . . . , Γa1 ∧ Γa2 ∧ · · · ∧ Γa11 . (3.3)

obeying the conditions (3.2). The commutation relations (see Eq. (3.4) below)
involving the generators Γa, Γab, Γa1a2...a5 do in fact close due to the duality condi-
tions (3.2). The Cl(11) algebra commutators, up to numerical factors, are

[Γa, Γb] = Γab, [Γa, Γbc] = 2ηabΓc − 2ηacΓb, (3.4a)

[Γa1a2 , Γb1b2 ] = −ηa1b1Γa2b2 + ηa1b2Γa2b1 − · · · , (3.4b)

[Γa1a2a3 , Γb1b2b3 ] = Γa1a2a3b1b2b3 − (ηa1b1a2b2Γa3b3 + · · ·), (3.4c)

[Γa1a2a3a4 , Γb1b2b3b4 ] = −(ηa1b1Γa2a3a4b2b3b4 + · · ·) − (ηa1b1a2b2a3b3Γa4b4 + · · ·),
(3.4d)

[Γa1a2 , Γb1b2b3b4 ] = −ηa1b1Γa2b2b3b4 + · · · , (3.4e)

[Γa1 , Γb1b2b3 ] = Γa1b1b2b3 , [Γa1a2 , Γb1b2b3 ] = −2ηa1b1Γa2b2b3 + · · · , (3.4f)

[Γa1 , Γb1b2b3b4 ] = −ηa1b1Γb2b3b4 + · · · , (3.4g)

[Γa1a2...a5 , Γb1b2...b5 ] = Γa1a2...a5b1b2...b5 + (ηa1b1a2b2Γa3a4a5b3b4b5 + · · ·)

+ (ηa1b1a2b2a3b3a4b4Γa5b5 + · · ·)

= εa1a2...a5b1b2...b5cΓc

+ (ηa1b1a2b2εa3a4a5b3b4b5c1c2...c5Γc1c2...c5 + · · ·)

+ (ηa1b1a2b2a3b3a4b4Γa5b5 + · · ·), etc (3.4h)

with

ηa1b1a2b2 = ηa1b1ηa2b2 − ηa2b1ηa1b2 , (3.5a)

ηa1b1a2b2a3b3 = ηa1b1ηa2b2ηa3b3 − ηa1b2ηa2b1ηa3b3 + · · · , (3.5b)

ηa1b1a2b2...anbn =
1
n!

εi1i2...inεj1j2...jnηai1bj1
ηai2bj2

. . . ηain bjn
. (3.5c)

The Cl(11) algebra gauge field is

Aµ = AA
µ = Aµ1 + Aa

µΓa + Aa1a2
µ Γa1a2 + Aa1a2a3

µ Γa1a2a3

+ · · · + Aa1a2...a11
µ Γa1a2...a11 . (3.6)
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and the Cl(11)-algebra-valued field strength

FA
µνΓA = ∂[µAν]1 + [∂[µAa

ν] + Ab2
[µAb1a

ν] ηb1b2 + · · ·]Γa + [∂[µAab
ν]

+ Aa
[µAb

ν] − Aa1a
[µ Ab1b

ν] ηa1b1 − Aa1a2a
[µ Ab1b2b

ν] ηa1b1a2b2

−Aa1a2a3a
[µ Aa1b2b3b

ν] ηa1b1a2b2a3b3 + · · ·]Γab + [∂[µAabc
ν]

+ Aa1a
[µ Ab1bc

ν] ηa1b1 + · · ·]Γabc + [∂[µAabcd
ν]

−Aa1a
[µ Ab1bcd

ν] ηa1b1 + · · ·]Γabcd + · · · [∂[µAa1a2...a5b1b2...b5
ν]

+ Aa1a2...a5
[µ Ab1b2...b5

ν] + · · ·]Γa1a2...a5b1b2...b5 + · · · (3.7)

The Chern–Simons actions corresponding to the Clifford group rely on Stokes
theorem ∫

M12
d(LClifford) =

∫
∂M12=Σ11

(LClifford), (3.8)

which in our case reads

d(LClifford) = 〈F ∧F ∧ · · · ∧F〉 = 〈FA1 ∧FA2 ∧ · · · ∧FA6ΓA1ΓA2 . . . ΓA6〉, (3.9)

where the bracket 〈· · ·〉 means taking the scalar part of the Clifford geometric
product among the gammas. It involves products of the dABC , fABC structure
constants corresponding to the (anti) commutators {ΓA, ΓB} = dABCΓC and
[ΓA, ΓB] = fABCΓC .

One of the main results of [33] was that the Cl(11) algebra-based action (3.9)
contains a vast number of terms among which is the Chern–Simons action of [4]
L11

CS(e, ω, A5)

LClifford(AA
µ ΓA) = L11

CS(ω, e, A5) + Extra Terms. (3.10)

SCS(ω, e, A5) =
∫

∂M12
L11

CS =
∫

Σ11
L11

CS. (3.11)

The Cl(11) algebra-based action (3.9), (3.10) can in turn be embedded into a
more general expression in C-space (Clifford space) which is a generalized tenso-
rial spacetime of coordinates X = σ, xµ, xµν , xµνρ, . . . [3] involving a scalar Φ(X)
and antisymmetric tensor gauge fields Aµ(X), Aµν(X), Aµνρ(X), . . . of higher rank
(higher spin theories) [13]. The most general action onto which the action (3.9),
(3.10) itself can be embedded requires a tensorial gauge field theory [13] (general-
ized Yang–Mills theories) and an integration with respect to all the Clifford-valued
coordinates X = XMΓM corresponding to the 2D-dim C-space associated with the
underlying Cl(2n)-algebra in D = 2n dimensions

S =
∫

[d2n

X ]〈(F ∧ F ∧ · · · ∧ F)〉, [d2n

X ] = (dσ)(dxµ)(dxµν)(dxµνρ) . . . . (3.12)

A different sort of generalized Yang–Mills theories have been studied by [12] without
the Clifford algebraic structure. Given a Lie algebra G like E8 with generators Ta for
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a = 1, 2, 3, . . . , dim G, it has for commutators [Ta, Tb] = f c
abTc and whose structure

constants fabc are fully antisymmetric in their indices. The Lie-algebra-valued one-
form is A = (Aa

M (X)Ta)dXM and its generalized Lie-algebra valued field strength

F = [F c
MN (X)Tc]dXM ∧ dXN

= [∂[MAc
N ](X)Tc + gAa

M (X)Ab
N (X)f c

abTc]dXM ∧ dXN (3.13)

has for components

F c
[[µ1µ2...µm][ν1ν2...νn]] = ∂x[µ1µ2...µm ]Ac

[ν1ν2...νn] − ∂x[ν1ν2...νn]Ac
[µ1µ2...µm]

+ gAa
[µ1µ2...µm]A

b
[ν1ν2...νn]f

c
ab. (3.14)

The remaining components are of the form

F c
[0N ] = F c

[0[ν1ν2...νn]] = ∂σAc
[ν1ν2...νn] − ∂x[ν1ν2...νn]Ac

0 + gAa
0A

b
[ν1ν2...νn]f

c
ab.

(3.15)

where Ac
0 is the Clifford-scalar part Φ(X) of the Lie-algebra-valued Clifford-

polyvector, and in general, we must consider the m = n and m = n cases resulting
from the mixing of different grades (ranks). The antisymmetry with respect to the
collective indices MN is explicit.

In order to raise, lower and contract polyvector indices in C-space it requires a
generalized metric GMN . In flat C-space it is defined by the components:

Gµν = ηµν , Gµ1µ2ν1ν2 = ηµ1ν1ηµ2ν2 − ηµ1ν2ηµ2ν1 etc., (3.16a)

in addition to the scalar–scalar component Gσσ = 1. It can be recast as

Gµ1µ2...µmν1ν2...νm = det GµIνJ =
1
m!

εi1i2...imεj1j2...jmηµi1νj1 ηµi2νj2 . . . ηµim νjm ,

(3.16b)

where GµIνJ is an m×m matrix whose entries are ηµiνj for i, j = 1, 2, 3, . . . , m ≤ D

and µ, ν = 1, 2, 3, . . . , D.
As a result of the expression for the flat C-space metric, given by sums of

antisymmetrized products of ηµν , the Clifford-space generalized Yang–Mills action
is of the form

SY M = −1
2

∫
[DX ]

∑
trace[F a

[[µ1µ2...µm][ν1ν2...νm]]F
[[µ1µ2...µm][ν1ν2....νm]]bTaTb]

− 1
2

∫
[DX ]

∑
trace[F a

[0[ν1ν2...νm]]F
[[0[ν1ν2...νm]]bTaTb], (3.17)

where the C-space 2D-dim measure associated with a Clifford algebra in D-dim is

[DX ] = [dσ][Πdxµ][Πdxµ1µ2 ][Πdxµ1µ2µ3 ] . . . [dxµ1µ2...µd ] (3.18)

and the indices are ordered as µ1 < µ2 < µ3 · · · < µm, etc.
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The action (3.17) is invariant under the infinitesimal gauge transformations

δξA
c
M = ∂Mξc + gf c

abA
a
Mξb; δξA

c
µ1µ2...µn

= ∂xµ1µ2...µn
ξc + gf c

abA
a
µ1µ2...µn

ξb.

(3.19)

associated with a Lie-algebra-valued Clifford-scalar parameter ξ(X) = ξa(X)Ta.
In [3] it was explained why another alternative to define the transformations in

C-space was by writing the generators of polyrotations as R = exp(ΩAB[EA, EB ])
where the commutator [EA, EB] = FC

ABEC is the C-space analog of the i[γµ, γν ]
commutator which is the generator of the Lorentz algebra, and the parameters ΩAB

are the C-space analogs of the rotation/boots parameters. This last alternative
seems to be more physical because a polyrotation should map the EA direction
into the EB direction in C-spaces, hence the meaning of the generator [EA, EB]
which is the generalization of the ordinary i[γµ, γν ]Lorentz generator.

Therefore, when we recast the generators of polyrotations as JAB = [ΓA, ΓB],
an action of the form

S(Cspace) =
∫

[DX ]FA1B1
M1N1

FA2B2
M2N2

. . . F
A2d−1B2d−1

M2d−1N2d−1

× εA1B1A2B2...A2d−1B2d−1 εM1N1M2N2...M2d−1N2d−1 (3.20)

is the natural generalization of the Euler density types of the D-dim (D = 2n)
actions in C-space. In particular, when D = 16, the action (3.20) is the C-space
generalization of the action (2.22). This action S(Cspace) (3.20) is more general
than the action SClifford(AA

µ ΓA) of Eq. (3.10), and which in turn, is more general
than the Chern–Simons gravitational action SCS(ω, e, A5) given in [4]. Therefore,
we have the inclusions

SCS(ω, e, A5) ⊂ SCl(11)[AA
µ (xµ)ΓA]

⊂ S(Cspace)[AAB
M (σ, xµ, xµ1µ2 , xµ1µ2µ3 , . . .)JAB ] (3.21)

and similarly one would expect the Cl(16) algebra gauge theory case in C-spaces
to includes the E8 Chern–Simons gauge theory formulated in the previous section

SCS(A,F) ⊂ SCl(16)[AA
µ (xµ)ΓA]

⊂ S(Cspace)[AAB
M (σ, xµ, xµ1µ2 , xµ1µ2µ3 , . . .)JAB], (3.22)

which should be very relevant in future developments of M, F theory upon the intro-
duction of polyvector-valued supersymmetries in C-spaces [11]. These generalized
supersymmetries deserve to be investigated further since they are more fundamen-
tal than the supersymmetries associated with M, F theory superalgebras and also
span well beyond the N -extended supersymmetric field theories involving super-
algebras, like OSp(32|N) for example, which are related to a SO(N) gauge theory
coupled to matter fermions (besides the gravitinos). It is these polyvector-valued
supersymmetries in C-spaces [11] that will permit the supersymmetrization of the
most general action in C-spaces S(Cspace) given by (3.20).
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Finally, the results of this work may shed some light into the origins behind
the hidden E8 symmetry of 11D supergravity, the hyperbolic Kac–Moody algebra
E10 and the nonlinearly realized E11 algebra related to chaos in M theory and
oscillatory solutions close to cosmological singularities [1, 2, 6].
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