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Opaque pricing is a form of pricing where certain characteristics of the product or 

service are hidden from the consumer until after purchase. In essence, opaque selling 

transforms a differentiated good into a commodity. Opaque pricing has become popular in 

service pricing as it allows firms to sell their differentiated product at higher prices to regular 

brand loyal customers while simultaneously selling to non-brand loyal customers at discounted 

prices. We use a nested logit model in combination with logistic regression and dynamic 

programming to illustrate how a service firm can optimally set prices on an opaque sales 

channel. The choice model allows the characterization of consumer trade-offs when purchasing 

opaque products while the dynamic programming approach allows the characterization of the 

optimal pricing policy as a function of inventory and time remaining. We compare optimal 

prices and expected revenues when dynamic pricing is restricted to daily price changes. We 

provide an illustrative example using data from an opaque selling mechanism (Hotwire.com) 

and a Washington DC-based hotel. 

Introduction 

Using opaque products allows firms to reach price-sensitive consumers by offering discounts 

given the uncertainty of the seller while simultaneously selling at higher prices to brand loyal consumers 

on regular non-opaque channels. While opaque selling is most commonly used in the selling of travel 

services and pioneered by Priceline.com, as discussed in Fay (2008) it offers opportunities for numerous 

retailers. The pricing of services (rooms, rental cars, airline seats, etc.) online has dramatically changed 

how service firms reach customers, with online travel sales now exceeding offline (or traditional sales 

channels). Initial thoughts about pricing online were very positive as firms had new channels to reach 

customers enabling increased opportunities for segmentation. Over time service providers have 



increased efforts to move customers back to company direct distribution channels (company websites 

and call centers) in an effort to control sales costs and commissions while maintaining direct contact 

with the customer to facilitate loyalty programs and other marketing efforts. Hotwire and Priceline, 

unlike other online travel sites such as Expedia, Travelocity, and Orbitz, offer customers opaque 

products (e.g., hotel rooms, flights, and rental cars) with aspects of the service provider concealed until 

the transaction has been completed. For instance a customer purchasing a hotel room through Hotwire 

can only specify check-in/out dates, a subarea within a city, and a star rating. Customers do not know 

the identity or exact location of their non-refundable choice property until after purchase. Opaque 

travel sites offer service providers a convenient channel to segment customers and distribute 

discounted products without cannibalizing or diluting full priced products. The opaque channels 

naturally segment customers as regular full price paying customers desiring to stay at the hotel of their 

choice with full cancelation flexibility are different from those willing to purchase the non-refundable 

opaque product at the unknown service provider. Therefore service providers need to understand 

better how to optimally set prices on opaque channels. This question is the focus of our study. 

In this study we develop a nested logit (NL) model of customer choice using data from 

transactions occurring at Hotwire.com. The choice model provides insight into the impact of property 

characteristics that customers can access before purchases (i.e., price, star rating, and neighborhood) on 

the market share. We also estimate a logistic regression model using data from a Washington DC-based 

hotel to determine whether or not a service firm is displayed at Hotwire. These two price-dependent 

models are then combined with dynamic programming to determine optimal prices for the service firm 

to post at Hotwire. 

There is a growing interest in modeling demand using discrete choice models to improve 

revenue management and pricing. Unlike most choice-based revenue management research, which uses 

an individual firm’s sales data for parameter estimation, our data includes market level purchase 

transaction information (purchases across all service providers, not a single provider) as well as records 

of the requests that did not induce an actual purchase. We solve a stochastic dynamic program to set 

optimal choice-based prices for a service provider to post on the intermediary. We characterize the 

structure of this optimal policy and benchmark optimal fixed price policies against dynamic pricing 

policies. 

In section 2 we briefly summarize the related literature, section 3 describes our data and 

estimation of the NL model as well as the logistic regression, with section 4 devoted to the development 

of the dynamic program for setting dynamic and daily fixed prices. A numerical example in section 5 is 



used to illustrate how pricing policies change with capacity and length of selling horizon. Finally, we 

provide some conclusions and possible future work in section 6. 

Literature Review 

Most of the early research on opaque pricing focusses on Priceline’s Name-Your-Own-Price 

mechanism or similar opaque bidding channels (e.g., Anderson 2009, Fay 2004, Hann and Terwiesch 

2003, Terwiesch et al. 2005, Wang et al. 2009). As we focus on the posted price opaque model of 

Hotwire versus the bidding format of Priceline we refer readers to Anderson (2009) for a review of this 

research stream. Here we summarize research on posted price opaque mechanisms. Fay (2008) is the 

first to investigate how product opacity affects the market. Fay studies two competing service providers 

selling products to two types of customers (business and leisure) on both an opaque posted price 

channel and a traditional distribution channel. Fay shows that opaque selling benefits the monopoly 

service provider when customers have heterogeneous values for products. Similar to Fay (2008), Jiang 

(2007) also considers heterogeneous customers and studies how online opaque selling, as a new price 

discrimination technique, improves profits for service providers. Jiang (2007) compares opaque selling 

and regular selling (selling full-information products), providing insight when to implement opaque 

selling. Jiang (2007) also investigates the impact of opaque selling on social welfare. Shapiro and Shi 

(2008) focus on providing a rationale for opaque selling. They explain why service providers are willing 

to distribute products through opaque travel sites such as Priceline and Hotwire and lose the advantage 

of product differentiation. Jerath et al. (2010) compare opaque selling with last-minute direct selling and 

obtain the conditions under which opaque selling is preferred. 

Research on the application of choice models is quite diverse in both the marketing as well as 

the operations literature. Discrete choice models have been employed to study consumer choice 

behavior and understand consumers’ brand preferences, market structure as well as product attributes. 

The study by Coretjens and Gautschi (1983) provides a general survey of discrete choice models in 

marketing and a systematic introduction to discrete choice modeling theory. During the past 40 years, 

the multinomial logit (MNL) model has been the most popular discrete choice model used by marketing 

researchers (e.g., Fader and Hardie 1996, Gӧnül and Srinivasan 1993, Guadagni and Little 1983, 

Krishnamurthi and Raj 1991). MNL models require alternatives to have the same relative probability of 

being selected independent of the choice set, the so-called Independence of Irrelevant Alternatives (IIA) 

property. The IIA property of the MNL model has given rise to the development of nested models. Dalal 

and Klein (1988) give several approaches to relax the IIA assumption and the nested logit model is one 



of them. Since the nested logit model is a natural generalization of the MNL model (Ben-Akiva and 

Lerman 1985, McFadden 1981) and it can be estimated easily, it has been commonly implemented by 

marketing researchers. 

By adding the customer’s decision on the selection of the category, Guadagni and Little (1998) 

extend the MNL formulation in Guadagni and Little (1983), which only models the brand choice for 

coffee purchase using an NL model that include both decision components (nested on categories). They 

demonstrate that the NL model allows a more accurate calculation of sales and a better forecasting of 

market response to store promotion. They use 32 weeks of coffee purchase panel data collected from 

four Kansas City stores, which contains information such as the date, the price, the item purchased, and 

the household buying for each coffee purchase. Similarly, our model is based on 6 weeks of booking and 

shopping data in Washington, DC, from Hotwire, which includes, for each purchase and search, the date, 

the property’s star rating, neighborhood, and price. Because the properties located in the same 

neighborhood share some characteristics, our NL model is nested on the neighborhood. Guadagni and 

Little (1998) use a sequential estimation technique (estimate separate levels of the NL tree in sequential 

order from the bottom to the top), similar to Dubin (1986) and Kannan and Wright (1991). However, we 

implement the full maximum likelihood estimation, that is, estimating all the levels of the NL 

simultaneously, as it can yield statistically consistent and asymptotically efficient estimates of the 

parameters that sequential estimation cannot (Ben-Akiva and Lerman 1985). 

Over the past decade, choice-based models have been introduced in the revenue management 

literature where both price and inventory decisions need to be made. Andersson (1998) using data from 

Scandinavian Airlines System uses a MNL model to estimate passenger preferences among buying up, 

being recaptured, and deviating to another airline. Talluri and van Ryzin (2004) study consumer choice 

behavior among multiple fare classes on a single-leg flight using a MNL model. They formulate the 

optimal seat allocation policy as a dynamic program (DP). This formulation is extended by Liu and van 

Ryzin (2008) to a network case, in which their DP problem is approximated by a deterministic linear 

programming problem. Similarly, Gallego et al. (2004) also use a deterministic approximation to solve a 

network RM problem where newly defined flexible products are chosen endogenously by customers. 

Zhang and Adelman (2009) also consider a network revenue management problem where consumer 

choice behavior is explicitly modeled by a MNL model. They claim that they provide a better 

approximation to the resulting DP model of Liu and van Ryzin. 

Our study is similar to Talluri and van Ryzin (2004), Liu and van Ryzin (2008), and Zhang and 

Adelman (2009) in that we all use a discrete choice model to characterize consumer choice behavior and 



formulate the revenue management problem as a dynamic programming problem. However, we solve 

the resulting stochastic DP problem versus assuming a priori optimal policy. This difference is due to the 

fact that we use price as the decision variable in the DP instead of deciding which subsets of fare classes 

to offer to customers. To our knowledge, this study is the first attempt in the literature to characterize 

customer choice behavior by using a NL model versus a MNL model. 

Zhang and Cooper (2005) study a seat allocation problem when customers dynamically choose 

among multiple parallel flights. Similar to our model setting, they also assume that there is at most one 

arrival in each period and the arrivals follow a non-homogeneous Poisson process. They do not model 

customer choice behavior in a discrete choice framework, similar to this study, they assume that 

customers choose products from different inventory resources. In contrast, other studies from the 

literature examine customer choice between products using a common pool of resources. 

More recently Vulcano et al. (2010) apply the simulation-based optimization approach used in 

van 

Ryzin and Vulcano (2008) to estimate optimal controls where passenger demand is estimated 

using choice-based models approximated with the expectation-maximization algorithm owing to their 

use of censored data. Gallego et al. (2009) use a choice-based model in conjunction with EMSR heuristic, 

see Belobaba (1987), to set leg level inventory controls. Similar to Andersson (1998) and Algers and 

Besser (2001), Vulcano et al. (2010) perform an empirical choice model study of estimation and 

optimization on actual airline data from a major US airline. Both the simulated and real data in all the 

work above use sales transactions from one service provider. In contrast, our data contain complete 

market level booking and shopping records, which allows us to use the traditional maximum likelihood 

method (MLE) estimation. These unique data also allow us to truly and better characterize the price 

competition, since the competitors’ prices are included in our data (not in one company’s sales data) 

and so were captured in the choice probability resulting from the choice model. As far as we know this 

work is also the first choice-based revenue management research applied to the hotel setting, whereas 

almost all prior literature focused on airline revenue management systems. 

Demand Models for Opaque Products 

In the following section we briefly describe our data set and outline the application of a nested 

logit choice model to this data set. 



Data 

Our data consist of daily data on all hotel booking requests and purchase transactions made 

through Hotwire in Washington, DC over an arrival period of 6 weeks. As the first request was made 321 

days before arrival (DBA), our data set extends beyond 1 year. Each data record consists of the date the 

request was made (date consumer shopped online); the check-in and check-out dates; and 

characteristics of the properties such as price, star rating, and neighborhood within DC. The data also 

contain information on whether a request led to a purchase transaction. 

There are 195,226 requests in total in the data set and 7509 of them lead to a reservation. 

Looking at 7505 reservations (we drop 4 of the 7509 as these are the only 4 reservations for 4.5 star 

properties) we get a feel for what sort of properties customers are booking and where they are located 

within DC. Table 1 displays the percent of reservations or market share on Hotwire by hotel star level. 

Table 2 shows a similar market share summary by geographic subarea (neighborhood) within 

Washington, DC. While requests were made as early as 321 DBA, over two-thirds of reservations are 

made within the last 10 DBA. 

 



From Tables 1 and 2 we see each star and area receiving some fraction of reservations with stars 

3, 3.5, and 4 dominating, and Dupont Circle-Embassy Row the most popular area. Figure 1 illustrates 

some of the price trade-offs customers are making when selecting hotel star levels. In Figure 1 the 

horizontal axis is a 4 star property’s price relative to the 3.5 star property’s prices in the same 

neighborhood. A relative price of 100% means that the 4 and 3.5 star property were priced the same, 

with 80% indicating the 4 star was 20% cheaper than the 3.5 star. The bars, the primary vertical axis, 

represent 4 star purchases at each price point as a percentage of all 4 star purchases. As shown in the 

graph, the majority of the purchases are made at properties with relative prices of 90% or less. The solid 

line (the secondary vertical axis) corresponds to the market share of 4 star properties at each discount. 

We see market share decrease with relative price increases. We note that even when the 4 star property 

is 30% cheaper than a 3.5 star (relative price of 70%), there are still sales made to other star qualities as 

market share is <1. Figure 1 indicates that while customers are making price trade-offs (price is a 

primary driver of the purchase decision) there must be other factors motivating purchase choice—

motivating our use of choice models for estimating market share or purchase probability. An interesting 

observation is the existence of price inversion where hotels of higher star rating are priced cheaper than 

lower rated hotels. Figure 1 shows that 4 star properties tend to have very high market share under 

price inversion, but that drastic price inversion does not occur that often as indicated by the height of 

the bars. 

The Nested Logit Model and Estimation 

A discrete choice model is designed to explain how an individual decision maker makes a choice 

among a feasible set of alternatives. In this case, the decision makers are the consumers who make 

requests and book a hotel located in Washington, DC through Hotwire.com. We represent the consumer 

choice behavior using the nested logit model. Although the MNL model is widely used in modeling 

choice behavior, it requires alternatives in the choice set to have the IIA property. The IIA property 

requires that changes in the choice set do not affect the ratio of choice probabilities of any two 

alternatives. Under this property, all alternatives should have the same measure of similarity. The IIA 

property is often violated when some alternatives share attributes (are similar), but some do not (are 

dissimilar). The nested logit model is an extension to the MNL model which was introduced to relax the 

IIA assumption by grouping similar alternatives. 



 

Specifically, consumer n is faced with a decision of booking a property at a star level j within a 

neighborhood i in Washington, DC. The universal choice set of alternatives denoted by C consists of all 

the properties identified by an (i,j) pair (neighborhood, star). Each consumer n has a corresponding 

choice set Cn ⊂ C. We partition the alternatives into 11 groups by neighborhood. In other words, the 

properties in each group are in the same neighborhood. We need to construct a nested logit model to 

avoid the violation of the IIA property as comparing a 3 star to a 4 star hotel in the same neighborhood 

is a different trade-off compared to choosing between a 3 star in one neighborhood over a 3 star hotel 

in another neighborhood. In our two-level NL model, neighborhood is the first-level feature i and star is 

the second-level feature j. The random utility that consumer n books a property of star quality j within 

neighborhood i is given by 

(1) 

 

where xnij = (xnijp, xnjs1, xnjs2, xnjs3, xnjs4, xnjs5)’ is the vector of attributes of a property at star level j in a 

neighborhood i. xnijp represents the price of alternative (i,j) and xnjsi are indicator variables for 5 star 

qualities (1, 2, 2.5, 3, and 3.5 [stars] with the reference a 4 star hotel). β = (βp, βs1, βs2,β s3, βs4, βs5)0 is the 

parameter vector that captures the consumer’s preferences for those attributes and it needs to be 

estimated. 



εnij is the random error term corresponding to the alternative (i,j) ∈ Cn, which follows a Gumbel 

distribution. εni is the random error term corresponding to neighborhood i and is distributed such that 𝑚𝑎𝑥𝑗∈𝐽𝑛𝑖  is Gumbel distributed with scale parameter µI, commonly known as the dissimilarity 

coefficient. Jni is defined as the set of all star qualities available for consumer n if he or she chose 

neighborhood i at the first level. 

The probability that consumer n chooses alternative (i,j) ∈ Cn is given by: 

(2) 

 

where, 

(3) 

 

is called the inclusive value and represents the scaled effect of the utilities in the second-level on the 

first-level’s utility. In is the set of all neighborhoods in Cn. 

We estimate the parameters βp, βsi for i = 1,2…,5 and obtain the choice probabilities by applying 

the maximum likelihood method using NLOGIT (Greene 2007). Table 3 summarizes parameter estimates. 

As shown in Table 3 all the estimates of the parameters are significant and have the expected sign. The 

parameters for price are negative, implying that consumers prefer properties with lower prices. The 

parameters for star rating’s indicator variables are all negative with βs1 < βs2 < … < βs5 indicating 

customers prefer higher quality hotels. The dissimilarity coefficients are all significantly different from 

zero and lie in the interval [0,1] consistent with random utility maximization. 



 

 

Table 4 summarizes model fit characteristics. The McFadden Pseudo R-squared is an indicator of 

the overall model fit, which is 

 

where LL is the log-likelihood of the test model and LL* is the log-likelihood for a reference model that is 

estimated with constant only, that is, the market shares predicted by the model are what are in the 

data. The NL model correctly classified 68.9% of choices with the modal category being a 4 star property 

in Dupont Circle (39%) of purchases resulting in a proportional reduction in classification error of 0.689−0.391−0.39 = 49.0% 

In addition to modeling consumer choices, the NL model can be used to determine consumer 

price sensitivity or elasticity as well as the monetary value of each star rating. Table 5 summarizes the 

average (across the 11 neighborhoods in DC) of own and cross price elasticities. Price elasticities from 

the NL model are the percent change in choice probability given a percent change in price. In Table 5 the 



diagonal (negative values) are the own price elasticities and the off diagonal (positive values) are the 

cross price elasticities. For example in the first row (1 star hotel) the choice probability decreases 1.36% 

for each 1% increase in the 1 star hotel’s price, whereas the 2 star property’s choice probability 

increases 0.02% with this same 1% increase. The higher star value properties tend to be more elastic 

with the 4 star’s price having the largest impact on the other star’s choice probabilities (largest cross 

price effects). The cells which are empty indicate that these two types of properties were never 

simultaneously listed, for example, a 4 star property was never displayed with a 1 star property. 

 

The choice model can also be used to quantify the financial impact of different star ratings. 

Focusing on the 7505 reservations in the data set, for each purchased property we can use the 

parameters from Table 3 to calculate the utility of the selected property. Then decrease the star rating 

of the selected property by one level (a 4 star becomes a 3.5 star) then we calculate the change in price 

needed such that this decreased quality property has the same utility as the higher quality property. 

Table 6 summaries these impacts, for example, if a 2 star was to change to a 1 star it would need to drop 

its price by $20.58 or 32% to have the same utility (and same market share or choice probability). The 

higher star ratings tend to have a higher marginal value. 

The NL estimates the probability of making a sale assuming the firm is displayed in the choice 

set, in the following section we estimate a logistic regression model that estimates the probability a firm 

is displayed. 

Probability of Display 

Figure 2 shows a subset of the information a hotel (or prospective consumer) would have 

available about its market for any future arrival date. The figure shows a set of prices for hotels by star 

class and location within Washington, DC. Figure 3 shows a map of the 11 neighborhoods within DC with 

each of these 11 neighborhoods potentially having one property at each star level displayed similar to 



those in Figure 2. Not all service providers releasing inventory to Hotwire will be displayed in Figure 2. 

For instance, there are 13 3.5 star properties in Dupont Circle in Washington, DC; all may release 

inventory to Hotwire, but given the opaque structure of Hotwire only one property is displayed, that is 

gets an opportunity at a sale on Hotwire. Hotwire provides a daily report to each property which can be 

used to determine its likelihood of being displayed in the future. A sample daily report is displayed in 

Figure 4. The report contains summaries on price (firm and competitors), the number of requests made, 

as well as the number of times the firm was displayed on that day. 

Figure 4 summarizes all Hotwire activity made the previous day for all future arrival dates, with 

each row in the report representing a future arrival date. The data in the middle block of columns (Your 

Hotel Data for Today) indicate for how many consumer searches the hotel had available inventory (# of 

Times Avail) as well as the number of times it was displayed (# of Times Disp) and the prices it had 

posted to Hotwire (Net rate). For example, for an arrival on Sunday, September 30th there were 94 

customer searches, of these 94 the hotel had rooms available 87 times, the hotel was displayed 75 

times, and 2 reservations were made. 

 

We use this data from 6 weeks of daily reports to estimate the probability that a hotel will be 

displayed on as a function of price using logistic regression. Let Pd(p(t)) represent the probability of 

display for a particular arrival date posting a price p(t) at t days prior to arrival, then 

(4) 

 

where g(p(t)) is a linear function of p(t). 

We transform price into relative price, a firm’s price divided by the displayed comparable price. 

The displayed price is the price of the currently displayed hotel of the same star level in the same 

neighborhood (e.g., 3 star hotel in Dupont Circle). As prices change the closer you book relative to the 

stay date we also include DBA, that is, days before arrival (stay date-search date) as an independent 



variable as well as an indicator variable for weekend vs. weekday as weekend prices tend to be lower 

than weekday. 

 

The model specification that we estimated from our data is, 

 

Therefore Pd(p(t)) = 

(5) 

 

Table 7 summarizes parameter estimates. Price ratio is the ratio of our price to the comparable 

price. Weekend is an indicator, a 1 if the date we are pricing is a weekend, 0 otherwise. 

Figure 5 shows a set of sample results using Equation (5) and the estimates in Table 7 for a firm 

posting prices for a weekend (Weekend = 1) arrival day (DBA = 0) with competitors posting a price of 

$150. 

Fraction of Customers Buying–Making a Sale on Hotwire 

Sections 3.2 and 3.3 outlined the estimated nested logit model and logistic regression models. 

The nested logit model determines the probability a firm makes a sale given a sale is made and the firm 



is displayed. The logistic regression estimates the probability a firm is displayed. Figure 6 shows a sample 

graph of the average number of requests made, referred to as looks, and the percentage of these 

requests making a reservation (book-to-look ratio). 

 

 

Figure 6, the nested logit and logistic regression models can be used together to develop a price-

dependent customer arrival process. We outline two forms of the arrival process in the following 

section, one assuming dynamic prices, another for daily fixed prices. 

Pricing Model Development 

We determine optimal prices under two separate frameworks, later comparing prices and 

expected revenues. In section 4.1 we assume dynamic pricing over the entire selling horizon. In section 



4.2 we assume the firm changes prices each day but that prices remain fixed throughout the day, for 

example a hotel accepting room reservations for a stay date 3 days from today would post at most four 

different prices for that room (potentially a different price on each of the arrival date and each day prior 

to arrival). We evaluate optimal prices under these two frameworks. Dynamic pricing provides increased 

revenues and allows a characterization of the optimal policy. By contrast firms traditionally use daily 

fixed prices largely as a result of reservation systems limitations. 

 

Dynamic Pricing 

Customers are assumed to arrive at Hotwire following a non-homogeneous Poisson process with 

an arrival rate λt, t days prior to arrival. We subdivide each day prior to arrival into ηt decision periods of 

equal lengths such that there is at most one arrival request in each period. More specifically, the value 

of ηt should be such that the length of each decision period is small enough to have negligible 

probability ε of more than one arrival. The arrivals for each decision period follow a Poisson process 

with rate λt/ηt and the probability of x arrivals in a decision period m is given by 

(6) 

 

where x = 0,1,2… and 1 - Pm(0) - Pm(1) - ε. For convenience, we denote the arrival probability of one 

request in decision period m by Pm as, 

(7) 

 



 

As not every arriving customer chooses to book on Hotwire, let Pb(m) be the probability that an 

arrival makes a reservation (the book-to-look ratio in Figure 6) in decision period m. Consider a property 

releasing r rooms over the next m periods at price p(m,r) who is displayed on Hotwire with choice 

probability Pc given by the nested logit model (2). 

 

The probability, denoted Ps, that a randomly selected customer will be willing to book a room is 

a function of its price p(m,r) and given by 



(8) 

 

The probability, fp(m,r), of making a sale at the price p(m,r) becomes 

(9)  

 

where Pd(p(m, r)) is given by Equation (4), Pc(p(m, r)) is given by Equation (2), and Pm is given by 

Equation (7) above. We can use this price-dependent probability of making a sale to determine the 

optimal price to post via dynamic programming. 

Let V*(m, r) denote the optimal total expected revenue, resulting from price p*(m, r), that can 

be generated from the remaining m periods given r remaining rooms, where m = {0,1,2…M} and r = 

{0,1,2…}. If a sale is made in period m, then V*(m, r) = p(m, r) + V*(m-1, r - 1). If there is no sale in that 

period, then the optimal total expected revenue is given by V*(m - 1, r). V*(m, r) is characterized by the 

following recursion, 

 

(10) 

 

where δ(m, r) = V*(m, r) -V*(m, r -1) is the expected marginal value of a room in decision period m given 

r rooms. The boundary conditions are V*(0,·) = 0, V*(·,0) = 0. We next describe characteristics of the 

optimal pricing policy. 

Optimal Dynamic Pricing Policy 

The optimal dynamic pricing policy is described by Theorem 1. Lemmas 1–4 are used in the 

proof of Theorem 1. Theorem 1 states that the optimal pricing policy is decreasing in capacity and 

increasing in time. Lemmas 1, 2, and 4 are similar in structure to Lemmas 4, 5, and 3 respectively in 

Talluri and van Ryzin (2004). We use price as our decision variable whereas Talluri and van Ryzin (2004) 

characterize an optimal nested inventory allocation policy. The Corollary and Lemma 3 are unique 



developments with the corollary naturally following Lemmas 1 and 2, and Lemma 4 dependent upon 

Lemma 3. 

LEMMA 1: The expected marginal value is decreasing in the remaining capacity, that is, δ(m, r) ≤ δ(m, r - 

1). 

PROOF: By induction on m. For m = 0 the boundary condition V*(0,·) = 0 gives us δ(0,r) = δ(0,r - 1) = 0, 

the lemma is trivially true for this case. 

We assume it is true for period m - 1. p*(m,r) denotes the optimal solution for Equation (10). 

From Equation (10) above, we get 

 

(11) 

 

Then Equations (10)–(11) gives 

 

(12) 

 

Similarly Equation (12)–(13) 



(14) 

 

The optimality of the price p*(m,·) implies the following inequalities: 

(15) 

 

(16) 

 

Substituting Equations (15) and (16) into Equation (14) we obtain 

 

 

(17) 

 

simplifying, 

(18) 

 



By induction, we know that δ(m - 1,r) - δ(m - 1, r - 1) ≤ 0 and δ(m - 1,r - 1) - δ(m - 1,r - 2)≤ 0. 

Therefore, we can conclude that δ(m,r) -δ(m - 1,r)≤_ 0.  

LEMMA 2: The marginal value is increasing in remaining time, that is, δ(m,r) ≥ δ(m - 1,r). 

PROOF: Recall from Equation (12), we have 

(19) 

 

As proved in Lemma 1, δ(m -1,r) ≤ δ(m - 1, r - 1). Therefore, the following inequality is always 

true for any value of the price p(m,r) for all m and r, 

 

Thus, 

(20) 

 

which implies δ(m,r) ≥ δ(m - 1,r).  

COROLLARY 1: The optimal total expected revenue V*(m,r) is increasing and concave in both the 

number of remaining periods m and rooms r. 

PROOF: V*(m,r) increases with m and r is obvious and straightforward, so we only focus on the 

concavity of the expected revenue. From Lemma 1 we know δ(m,r) ≤ δ(m,r-1), which implies 

 

Hence, V*(m,r) is concave in m. 

Also, 

 

and 



 

and Lemma 2 gives that δ(m - 1,r) ≥ δ(m - 2,r). Therefore, using the same argument as for proving 

Equation (20) we obtain 

 

This means V*(m,r) is concave in r as well. Lemma 4 shows that the optimal price in this period 

is positively related to the marginal value of the previous period. The following lemma is required in the 

development of Lemma 4.  

LEMMA 3: Assume the property’s display probability given by Equation (5) and choice probability given 

by Equation (2) are decreasing in price p(m,r). Then, the probability of making a sale fp(m,r) also decreases 

in price p(m,r). 

PROOF. From the expression of fp(m,r) in Equation (9), we have 

(21) 

 

It is straightforward to see that given Pb(m) and Pm do not depend on price p(m,r) as well as both 

Pd (p(m,r)) and Pc(p(m,r)) are decreasing in p(m,r), one can conclude that fp(m,r) also decreases in price 

p(m,r). 

LEMMA 4: The optimal price p*(m,r) increases with the marginal value δ(m - 1,r). 

PROOF: We prove this statement by using contradiction. For ease of notation, set δ = δ(m - 1,r) and p* = 

p*(m,r). Assume δ1 and δ2 are two marginal values that satisfy δ1 > δ2 ≥ 0. P*1 and p*2 are the optimal 

prices that maximize the term [p(m,r) δ(m -1,r)]fp(m,r) in Equation (10) when δ(m - 1,r) equals δ1 and δ2 

respectively. 𝑓𝑝𝑖∗, i = 1; 2 is the corresponding probability of making a sale at optimal prices 𝑝𝑖∗. 
Now suppose 𝑝1∗ < 𝑝2∗, we attempt to get a contradiction later. 

From Lemma 3, if 𝑝1∗ < 𝑝2∗ then 𝑓𝑝1∗ > 𝑓𝑝2∗ . 

On the other hand, the optimality of 𝑝1∗ implies 

 



then 

(22) 

 

Then . This inequality contradicts the optimality of 𝑝2∗. Therefore, 

we must have  𝑝1∗ < 𝑝2∗ if δ1 > δ2. 

By combining Lemmas 1, 2, and 4, we obtain the next theorem that characterizes the optimal 

pricing policy. 

THEOREM 1: Consider a property that releases r rooms over the next m periods at price p(m,r). Assume 

the property’s display probability given by Equation (5) and choice probability given by Equation (2) are 

decreasing in price p(m,r). Then, the optimal pricing policy for Equation (10), p*(m,r), is decreasing in 

the remaining number of rooms r and increasing in the remaining selling periods m. 

We next show an illustration using our data for which both Pd(p(m,r)) and Pc(p(m,r)) are 

decreasing in p(m,r). For ease of notation, we simply denote p(m,r) by p. 

Recall from Equation (5) that the display probability Pd(p) is given by 

 

Since the estimate for the price ratio’s coefficient α1 is negative, it is straightforward to see that 

the display probability Pd(p) decreases in price p. 

Recall from expression (2), the choice probability Pn(i,j) for property (i,j), that is, Pc, is 

 

where, 

 

For simplicity, we now define 

 



Hence, 

 

Take the derivative of the terms defined above with respect to the chosen property’s price 

variable xnijp and get, 

 

Following simplification, we further obtain the derivative of Pc with respect to xnijp is 

 

As shown in Table 3, βp is negative and the terms in the brackets are all positive. Negative first 

derivative with respect to price implies that the choice probability decreases with prices. Therefore, we 

conclude the assumption in Theorem 1 that the property’s display probability and choice probability are 

decreasing in price p(m,r) is satisfied based on our data set. 

We use Theorem 1 in the numerical implementation of Equation (10) as it reduces the set of 

prices that need to be searched over in the determination of p*. We illustrate a numerical example in 

subsequent sections. In the following section we restrict daily prices to be fixed vs. variable. 

4.2. Daily Fixed Pricing 

Similar to dynamic pricing we use Equation (8) to define the probability that a randomly selected 

customer will purchase a room, Ps: = Ps(p(t,r)) = Pd(p(t,r)) Pb(t)Pc(p(t,r)). We use t to represent days 

before arrival, with m used to define periods in the dynamic pricing formulation. If we assume N 

customers arrive over day t, then the number of people who will make a purchase at a firm with posted 

price p(t,r) follows a binomial probability distribution. We denote this number by a random variable 

Dn(p(t,r)) and, for 0 ≤ 𝑥 ≤ 𝑛, 
(23) 

 



As the number of arrivals n is unknown with probability P(N = n), the probability, fp(t,r), of the 

number of people willing to buy at the price p(t,r) equal to x becomes 

(24) 

 

As with dynamic pricing we assume customer arrivals follow a Poisson process then, 

(25) 

 

With daily fixed prices a property displayed releases r rooms over the next T days, t = 0,1,2,…,T. 

The firm changes its daily price with the remaining capacity in order to maximize the total expected 

revenue. Define V*(t,r) as the maximum achievable expected revenue with r rooms and t days remaining 

till the arrival day. Then V*(t,r) is characterized by the following recursion, 

(26) 

 

The boundary conditions are V*(0,·) = 0,V*(·,0) = 0. 

We can define the expected marginal value of a room at day t as the following 

𝛿𝑥(𝑡, 𝑟) = 1𝑥 [(𝑡, 𝑟)− 𝑉 ∗ (𝑡, 𝑟 − 𝑥)]. 



On each day, the property posts a price p(t,r) and sells x, up to r rooms. The following day the 

hotel updates its price, selling up to r - x rooms, until such a time as it has no rooms left to sell for that 

arrival day, V*(·,0) = 0, or the day has passed and the rooms are valueless, V*(0,·) = 0. 

Unlike dynamic pricing we cannot characterize all the properties of daily fixed pricing, but the 

following theorem greatly reduces the search space for finding optimal prices. The theorem is similar in 

nature to Theorem 3 from Lee and Hersh (1993). Lee and Hersh (1993) develop optimal booking limits in 

the presence of batch or group bookings. Lee and Hersh do not use price as a decision variable, but the 

sale of multiple items over a single decision period (batch bookings) is analogous to our daily fixed 

pricing policy. 

THEOREM 2: For fixed x and r, δx(t,r) increases in t. 

PROOF: We first show it is true for the case that x = 1, that is, δ1(t,r) ≥ δ1(t - 1,r). 

(27) 

 

where vt denotes the expected revenue that can be generated by selling one room over the remaining t 

days. It is obvious that the expected revenue that a room can generate in t days is no less than the 

expected revenue that a room can generate in t - 1 days. That means vt - vt - 1 ≥ 0. Therefore, it follows 

from Equation (27) that 

 

then, 

 

resulting in 

 

Then, when x > 1, we can write 



(28) 

 

From Equation (27) above we note that 

(29) 

 

Thus, combining Equations (28) and (29) gives 

 

that is δx(t,r) ≥ δx (t - 1,r) for any t given the fixed value of x and r. 

Note that given the positive relationship between the optimal price and the marginal value, we 

can characterize that the optimal pricing policy is also increasing in the remaining selling time. 

Numerical Example 

We next present a numerical example to illustrate the application of our choice-based dynamic 

programming model under both daily fixed pricing and dynamic pricing as well as the revenue gains 

from moving to dynamic pricing policies. In this example, we consider a 3 star hotel in Chantilly DC 

planning to sell five rooms over the last 3 days prior to a Monday arrival. 

Table 8 summarizes the average number of requests received by day before arrival, the book-

look ratios, and the number of subperiods for ε = 0.05 (probability of more than 1 request in a subperiod ≤ 0.05). 

We use the parameters from Table 3 to build the nested logit model for estimating the 

probability of sale Pc given display with parameters from Table 7 used for the logistic regression to 

estimate the probability of being displayed Pd. The book-to-look ratios in Table 8 provide estimates of Pb. 

For the dynamic pricing model of section 4.1 the average requests (from Table 8) divided by the number 



of subperiods provides the arrival rate for arrivals. The average requests provides the rate for the fixed 

daily prices of section 4.2. 

Table 9 displays optimal daily fixed prices. For example, the firm would post a price of $56 if it 

had five rooms to sell 3 days prior to arrival. If two reservations were accepted on the third day, they 

would increase prices to $62 with 2 days left (and three rooms remaining). Consistent with the 

properties of dynamic pricing, Table 9 shows that prices are decreasing with increasing capacity and 

with decreasing time. 

Figure 7 displays the same fixed prices as in Table 9 for the firm setting prices on the arrival date 

for one to five rooms with series labels F-1, F-2, F-3, F-4, and F-5 (F for fixed - number of rooms). The 

figure also displays optimal variable prices (in dollar price steps) throughout the arrival day, DBA 0 

(period 958 the start of the day, 0 the end). If we look at the series for 1 room (F-1 for fixed and D-1 for 

dynamic) we see the dynamic price starts higher than the fixed decreasing gradually below the fixed 

price. For situations with more than one room the prices behave differently, with the dynamic price 

always less than the fixed. 

 

 

Figure 8 shows the fixed price for the arrival day with five rooms to sell (F-5). The figure also 

displays five separate series for the dynamic pricing. Series D-5 assumes dynamic pricing at the start of 



the day with five rooms with D-4 assuming a room is reserved at the start of subperiod 750. The 

remaining series assume another reservation is accepted every 200 subperiods. Unlike daily fixed 

pricing, dynamic pricing sets prices knowing the firm will react to future sales, potentially raising prices 

as capacity is decreased. 

Dynamic pricing offers increased revenue opportunities. As an estimate of these revenue gains 

we simply evaluate Equation (10) using optimal fixed daily prices vs. optimal dynamic prices resulting in 

revenue gains of 5.0% from dynamic pricing. 

Summary 

Incorporating customer choice behavior into revenue management has been an active research 

area over the past several years. In this study, we estimate a nested logit model on data from firms 

selling hotel rooms at Hotwire.com to understand the customers’ choice preferences on hotels located 

in Washington, DC. Our study is unique in that it is the first choice-based revenue management model 

that uses market level demand data (vs. a single firm’s sales data) to estimate the underlying demand 

models. 

We model demand as a function of a property’s prices using the result from the nested logit 

model and develop a choice-based dynamic programming model with pricing as the decision variable. 

We propose two stochastic dynamic programming formulations, one with daily fixed prices and one with 

fully dynamic prices. We provide a complete characterization of optimal dynamic prices and a partial 

characterization for optimal daily fixed prices. We show numerically that optimal fixed prices are 

consistent with the properties of dynamic prices. We then use these two characterizations to estimate 

revenue impacts from daily fixed vs. fully dynamic pricing policies. 

Currently our formulation considers the firm selling capacity at the opaque reseller, ignoring the 

fact that they may simultaneously release inventory across numerous channels—both opaque like 

Hotwire (e.g., Priceline’s Name-Your-Own-Price) and fully transparent (e.g., Expedia or Marriott.com). 

While our formulation can be extended to incorporate the opportunity cost of releasing rooms on other 

channels by including dual prices from standard revenue management models as in Anderson (2009), it 

currently does not directly include consumer channel choice behavior. An interesting direction for future 

research is to consider consumer choice behavior both across service providers as well as channel 

selection. 
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