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Introduction

MicroRNAs (miRNAs) are small endogenous RNAs of  

22 nucleotides in length that posttranscriptionally regulate 

gene expression in several biological processes, including cell 

differentiation, proliferation, and survival (Bartel, 2004). miRNAs 

direct the RNA-induced silencing complex (RISC) to their  

target mRNAs to repress translation, degrade the transcript, or 

both (Wightman et al., 1993; Olsen and Ambros, 1999; Lim  

et al., 2005; Guo et al., 2010). Sequence-speci�c interactions 

between the target mRNA and a complementary “seed” within 

the 5 terminus of the miRNA determine target recognition (Lewis 

et al., 2003). Sequences encoding miRNAs are found in intergenic 

regions and within protein-coding genes (Grif�ths-Jones et al., 

2006). As a result, miRNA expression can be under the control 

of autonomous promoters or depend on the regulation of a neigh-

boring or host gene (Baskerville and Bartel, 2005). Transcription 

initially produces a larger miRNA precursor subsequently 

processed into a mature RNA duplex (miRNA–miRNA*) that gets 

loaded onto the RISC. The “passenger strand” (miRNA*) is re-

moved and degraded, freeing the “guide strand” (miRNA) for tran-

script targeting (Khvorova et al., 2003; Schwarz et al., 2003).

miRNAs have been linked to various cellular stresses, 

among them processes that impinge on the function of the ER 

(e.g., hypoxia, insulin secretion, and B cell differentiation; Poy 

et al., 2004; Vigorito et al., 2007; Huang et al., 2009a). ER stress 

stems from an imbalance of the ER’s protein-folding capacity, 

typically resulting from an increased protein load or expression 

of mutant proteins that cannot fold properly. Accumulation of 

mis- or unfolded proteins within the ER results in the activation 

of the unfolded protein response (UPR). In metazoans, three  

ER transmembrane sensors, inositol-requiring enzyme 1 (IRE1), 

activating transcription factor 6 (ATF6), and protein kinase RNA–

like ER kinase (PERK), initiate the UPR by sensing protein-

folding perturbations in the ER (Ron and Walter, 2007).  

Together, these sensors activate an adaptive transcriptional 
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changes of miR-708 or any other miRNA in 3T3 mouse �bro-

blasts in which we induced ER stress under identical con-

ditions (Fig. S1 A).

To validate our microarray data, we examined the expression 

of miR-708 using an RNase protection assay. The analysis con-

�rmed the ER stress-mediated regulation of miR-708 (Fig. 1 C). 

miR-708 expression increased 11-fold in MEFs treated with  

Tm and eightfold in MEFs treated with Tg. Interestingly, the  

increased expression of miR-708 was delayed compared with 

canonical markers of UPR activation, such as the induction of 

the ER chaperone Grp78 or the splicing of Xbp1 (Fig. S1 B).

TaqMan miRNA assays detected the mature form of  

miR-708 in Chop+/+ and Chop/ MEFs undergoing prolonged 

ER stress (Fig. 1 D). Corroborating the RNase protection data, 

we observed an 11-fold increase in miR-708 expression in Chop+/+ 

MEFs, whereas no such increase was observed in Chop/ MEFs. 

Detection of the mature form of the miRNA in Chop/ MEFs 

suggests that mechanisms independent of CHOP may be responsi-

ble for maintaining the basal levels of miR-708 observed in our 

experiments. Together, our data show that miR-708 is transcrip-

tionally regulated by CHOP during the ER stress response.

mir-708 is an intronic miRNA residing 

within the CHOP-inducible gene Odz4

The gene encoding miR-708 (mir-708) resides in intron 1 of Odz4, 

an evolutionarily conserved gene (Fig. 2 A). The encoded protein, 

ODZ4, is a vertebrate homologue of the teneurin family of devel-

opmental regulators essential for nervous system development 

(Ben-Zur et al., 2000). Odz4 was originally characterized as one of 

several genes regulated by CHOP (Wang et al., 1998). Conse-

quently, mir-708 may therefore be a transcriptional target of CHOP 

carved out of the Odz4 transcript produced during ER stress.

Bioinformatics analyses indicate mir-708 is conserved in 

mammals within the Odz4 intron, suggesting that mir-708 has 

co-opted the ER stress-dependent regulation of Odz4 (Fig. 2 A). 

Alluding to its functional relevance, the precursor miR-708 

stem loop is highly conserved, and more importantly, the guide 

strand (miR-708) is strictly conserved in mammals (Fig. 2 B). 

Although mir-708 appears to be more recently evolved, Odz4 

and its homologues exhibit broader conservation in bilateral an-

imals (Fig. 2 C). Therefore, we asked whether miR-708 is in-

deed coexpressed with its ancestral host gene, Odz4. RT-PCR 

analyses in Chop+/+ and Chop/ MEFs subjected to ER stress 

indicated a CHOP-dependent expression of Odz4 (Fig. 2 D) that 

mirrored the delayed kinetics of accumulation of miR-708 

(compare Figs. 1, C and D; and 2 D). As expected for CHOP-

regulated transcripts, the UPR-induced expression of both Odz4 

and miR-708 closely lagged behind Chop. Moreover, expres-

sion of miR-708 correlated well with the expression of Odz4 in 

adult mouse tissues (Fig. 2 E). Strikingly, we observed a signi�-

cant accumulation of both transcripts in the brain and eyes, 

strongly suggesting a physiological role for miR-708 in tissues 

in which Odz4 is expressed.

miR-708 is loaded on the RISC

If miR-708 is indeed functional, as suggested by sequence con-

servation, it should be loaded onto the RISC. To test this, we 

program that adjusts ER abundance and its protein-folding  

capacity according to need. The transcription factors XBP1, a 

downstream effector of IRE1, and ATF6 regulate the expression 

of genes, including chaperones and foldases (Okada et al., 2002; 

Lee et al., 2003). Likewise, the transcription factor ATF4, a 

downstream effector of PERK, activates genes involved in 

amino acid metabolism and redox homeostasis as well as the 

transcription factor CCAAT enhancer-binding protein homolo-

gous protein (CHOP; Harding et al., 2003).

Besides increasing the ER protein-folding capacity, the 

UPR sensors also minimize the protein load in the ER. IRE1, 

for example, engages in the degradation of ER-bound mRNAs 

through a process known as regulated IRE1-dependent decay 

(Hollien and Weissman, 2006; Han et al., 2009; Hollien et al., 

2009), and PERK reduces protein synthesis by the phosphory-

lation of the translation initiation factor eIF2- (Harding  

et al., 2000).

If ER stress remains unmitigated and homeostasis is not 

restored, the UPR switches from a cytoprotective to an apop-

totic role (Lin et al., 2007). CHOP expression is linked to ER 

stress-induced apoptosis (Zinszner et al., 1998), yet its role in 

the UPR extends beyond this function. For example, CHOP 

regulates transcription of GADD34, a component of a phospha-

tase acting on eIF2- to restore translation after PERK activa-

tion (Marciniak et al., 2004), as well as ODZ4, a plasma membrane 

protein essential in development (Wang et al., 1998).

With the discovery of a UPR-regulated miRNA, miR-708, 

we further our understanding of the mammalian UPR and ex-

pand the role of CHOP, the transcription factor controlling its 

expression. Our results suggest that miR-708 helps balance the 

ER protein-folding capacity with the load of newly synthesized 

rhodopsin molecules entering the ER in rod photoreceptor cells. 

This new level of control may tune the UPR to meet speci�c 

physiological demands of mammalian photoreceptors.

Results and discussion

CHOP controls miR-708 transcription 

during prolonged ER stress

To determine whether miRNAs are regulated during ER stress, 

we pro�led their expression levels in wild-type mouse embry-

onic �broblasts (MEFs) treated with the ER stress inducers  

tunicamycin (Tm) or thapsigargin (Tg) for 24 h. We found 11 

miRNAs differentially expressed greater than twofold during 

ER stress (Fig. 1 A, Chop+/+). Eight of these exhibited an in-

crease in expression 24 h after ER stress induction (miR-689,  

miR-708, miR-711, miR-1897-3p, miR-2137, miR-762, miR-712*,  

and miR-2132), whereas three showed a decrease in expression 

(miR-503, miR-351, and miR-322). Interestingly, analogous 

experiments in CHOP-de�cient MEFs showed that expres-

sion of only one of these, miR-708, was strictly dependent  

on CHOP (Fig. 1, A and B). miR-708 expression increased 

greater than threefold with the addition of either Tm or Tg in 

Chop+/+ MEFs, and this induction was not observed with either 

drug in Chop/ MEFs. Notably, the increased expression of 

miR-708 during ER stress was restricted to a late time point.  

Indeed, after only 10 h, we observed no signi�cant expression 

http://www.jcb.org/cgi/content/full/jcb.201010055/DC1
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complex (Fig. 3 B). In ER stress-induced cells, there was a 500-

fold enrichment in RISC-associated miR-708 as compared with 

the empty vector, indicating that the strong transcriptional  

induction of mir-708 upon ER stress results in a concomitant 

increase of miR-708 loaded onto the RISC (Fig. 3 B). Together, 

these results show that miR-708 is engaged with the cellular 

components expected for a functional miRNA.

performed immunoprecipitations in 3T3 cells stably expressing 

FLAG-tagged Argonaute 2 (Ago2; FLAG-Ago2), an essential 

component of the RISC, followed by TaqMan-based detection 

of miR-708 (Fig. 3 A). Analyses in untreated cells revealed a 

75-fold enrichment of miR-708 loaded onto the RISC compared 

with cells expressing the empty vector, indicating that even the 

low steady-state level of miR-708 is ef�ciently loaded onto the 

Figure 1. CHOP regulates miR-708 expression during ER stress. (A) Heat maps and Venn diagrams of miRNAs differentially regulated during ER stress 
in Chop+/+ and Chop/ MEFs. The applied criterium for differential expression was a more than twofold change in treated versus untreated conditions, 
represented as logarithmic values. Red, increase in differential expression during ER stress; Green, decrease in expression. miR-708 is indicated in bold. 
Cells were treated with 5 µg/ml tunicamycin (Tm) or 500 nM thapsigargin (Tg) for 24 h. UT, untreated. (B) Scatter plots illustrating the changes in expression 
of the miRNAs in A. (C) RNase protection assay in Chop+/+ MEFs treated with 5 µg/ml Tm or 500 nM Tg for 24 h. The loading control used was miR-16. 
(bottom) Quantification of the data (miR-708/miR-16). Error bars are SDs of two independent experiments. (D) TaqMan miRNA assay of miR-708 (normal-
ized to snoRNA 202) in Chop+/+ and Chop/ MEFs treated with 5 µg/ml Tm. Error bars are SDs of three independent experiments.
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Figure 2. miR-708 is a conserved intronic miRNA highly expressed in neuroectodermal tissues. (A) Schematic of the locus encoding Odz4 indi-
cating that mir-708 resides within its first intron. University of California, Santa Cruz Genome Browser conservation in mammals is shown. (B, top) Se-
quence alignment of the miR-708 stem loop in mammals (Mmu, Mus musculus; Rno, Rattus norvegicus; Hsa, Homo sapiens; Ppy, Pongo pygmaeus;  



923miR-708 controls rhodopsin expression • Behrman et al.

region (UTR) of rhodopsin, which, like miR-708 itself, is highly 

conserved among mammals (Fig. 4 A).

To test whether miR-708 regulates the expression of rhodop-

sin, we performed loss-of-function experiments by transiently 

transfecting 293T cells with a plasmid encoding full-length  

rhodopsin along with a single-stranded antisense inhibitor (an-

tagomir) of miR-708 or a scrambled control. In complementary 

gain-of-function experiments, we cotransfected the aforemen-

tioned rhodopsin-encoding plasmid with a double-stranded RNA 

miR-708 mimic designed to imitate the miR-708–miR-708* 

duplex or a scrambled control. In both types of experiments,  

a plasmid encoding GFP was used as a transfection control.  

Because 293T cells exhibit higher basal levels of miR-708 than 

MEFs (Fig. S2), we expected 293T cells would allow us to exam-

ine the effects of miR-708 on rhodopsin expression even in the 

absence of ER stress. Indeed, reducing the levels of endogenous 

Rhodopsin is a functional target  

of miR-708

To address the biological role of miR-708, we used the miRNA 

target prediction program TargetScan (Lewis et al., 2005; 

Friedman et al., 2009) to generate a list of candidate transcripts 

with putative miR-708 binding sites (Table S1). Gene ontology 

analyses on the predicted targets revealed the highest enrich-

ment of genes involved in vision (FOXJ3, RPGRIP1L, RHO, 

and RCVRN; P = 0.003) and phototransduction (RHO and 

RCVRN; P = 0.005). Because Odz4 and miR-708 show enhanced 

expression in the eyes (Fig. 2 E), we reasoned that genes in-

volved in vision may be targeted by miR-708. We focused on 

rhodopsin because its synthesis relies on ER function and its 

expression is correlated with CHOP induction (see following 

paragraphs). Moreover, bioinformatics analyses revealed a highly 

conserved putative miR-708 binding site in the 3 untranslated 

Cfa, Canis familiaris; and Eca, Equus caballus). The guide (miR-708) and passenger strands (miR-708*) are outlined in black boxes. (bottom left) Stem loop struc-
ture and mature duplex of murine miR-708. (C) Phylogenetic tree of bilateral animals in which Odz/Teneurin homologues are found. Chop homologues are 
found only in amphibians and mammals, and miR-708 homologues are found only in mammals (blue box). Bioinformatics analyses were performed using 
the HomoloGene database (National Center for Biotechnology Information). (D) RT-PCR analyses in Chop+/+ and Chop/ MEFs treated with 5 µg/ml Tm 
for 24 h. Grp78 mRNA indicates activation of the UPR. The loading control used was -actin (Actb). (E) Gene expression analyses of miR-708 (TaqMan 
miRNA assay) and Odz4 (qRT-PCR) in adult mouse tissues normalized to snoRNA 202 and Rps26, respectively. Variations in their relative expressions (rel. 
expression) can be attributed to (a) undetected Odz4 isoforms, (b) differential regulation of the miRNA and host gene, and/or (c) experimental variation 
between TaqMan and SYBR green–based assays. Error bars are SDs of two independent experiments. sk., skeletal; sm., small.

 

Figure 3. Mature miR-708 is loaded on the RISC.  
(A) Immunoprecipitation (IP) of FLAG-tagged Ago2 
(FLAG-Ago2) from 3T3 fibroblasts stably expressing 
it. (right) 3T3 cells transduced with an empty vector.  
FT, flow through. WB, Western blot. (B) TaqMan 
miRNA assay of miR-708 from FLAG-immunoprecipi-
tated fractions obtained from lysates of the cells in A. 
Error bars are SDs of two independent experiments. 
*, P < 0.0005; **, P < 0.008. P-values were derived 
from a t test for independent samples.

http://www.jcb.org/cgi/content/full/jcb.201010055/DC1
http://www.jcb.org/cgi/content/full/jcb.201010055/DC1
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Figure 4. miR-708 targets rhodopsin for posttranscriptional inhibition. (A, top) Schematic of full-length mouse rhodopsin mRNA. (bottom) Sequence 
alignment of the region containing the predicted conserved miR-708 site in mammals. The gray box represents the putative site complementary to the seed 
sequence; the black dotted line encircles the entire putative site. Mmu, M. musculus; Hsa, H. sapiens; Ptr, Pan troglodytes; Mml, Macaca mulatta; Rno,  
R. norvegicus; Ocu, Oryctolagus cuniculus; Cfa, C. familiaris; Fca, Felis catus; Bta, Bos taurus; and Dno, Dasypus novemcinctus. (B) Immunoblots of lysates 
from 293T cells transfected with plasmids encoding full-length mouse Rho or GFP along with an miR-708 antagomir (anta.) or mimic. Overexpression of 
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Indeed, increases in Grp78 and Chop are observed in the devel-

oping retinas of rats (Lin et al., 2007), indicating heightened ER 

function and activation of the UPR. This suggests that an up-

surge in Odz4 and mir-708 transcripts may also follow, although 

future experiments are required to test this prediction. Thus, it is 

plausible to assume that miR-708 may have evolved as an addi-

tional safeguard mechanism controlling the synthesis of rho-

dopsin, thereby balancing demand with the protein-folding 

capacity of the ER. In this way, miR-708 function would be 

conceptually similar to that of the regulated IRE1-dependent 

decay pathway, which reduces protein in�ux by degrading 

membrane-associated transcripts or eIF2- phosphorylation by 

PERK, which achieves the same goal by reducing translation.

Moreover, miR-708 may also play an important role in 

retinal degenerative diseases that lead to blindness (e.g., retini-

tis pigmentosa). In some cases of retinitis pigmentosa, single 

missense mutations compromise the folding and traf�cking of 

rhodopsin, leading to photoreceptor cell death (Anukanth and 

Khorana, 1994; Tam and Moritz, 2006). In such instances, UPR 

hyperactivation has been implicated in the apoptotic fate of the 

photoreceptor (Kosmaoglou et al., 2009). Indeed, genetic mod-

els of retinitis pigmentosa expressing constitutively misfolded 

rhodopsin show a late-phase burst of Chop expression (Lin  

et al., 2007), which may be coupled to increased miR-708 pro-

duction. It will be interesting to explore whether less severe 

folding mutations are silent only because miR-708 keeps mu-

tant rhodopsin expression levels low enough to prevent or delay 

cell death. Importantly, because miR-708 is also expressed out-

side the retina (Fig. 2 E), its role may extend beyond the control 

of rhodopsin to other gene expression programs involved in nor-

mal development or pathology (Tsang et al., 2010). Together, 

our data assign CHOP a cytoprotective function likely preced-

ing its well-characterized apoptotic role, thus adding a new 

level of control for the UPR.

Materials and methods

Cells, cell culture, and drug treatments
Human embryonic kidney cells 293T (gift from M. Bassik and J. Weissman, 
University of California, San Francisco [UCSF], San Francisco, CA), wild-
type MEFs (gift from L. Glimcher, Harvard University, Boston, MA), and 
MEFs derived from CHOP-deficient animals and their wild-type genetic 
counterparts (gift from D. Ron, New York University, New York, NY) were 
maintained in DME supplemented with 10% heat-inactivated FBS, 2 mM  
L-glutamine, and penicillin/streptomycin. For ER stress induction, cells were 
treated with Tg (Sigma-Aldrich) or Tm (EMD).

miRNA expression profiling
Total RNA was prepared using TRIZOL (Invitrogen) following the manufac-
turer’s recommendations. Sample preparation, labeling, and array hybridiza-
tions were performed according to standard protocols from the UCSF Shared 
Microarray Core Facilities and Agilent Technologies. Total RNA was la-
beled with Cy3-CTP using an miRNA power labeling kit (miRCURY LNA; 

miR-708 with the antagomir resulted in a 6.9-fold increase of 

steady-state levels of rhodopsin protein (Fig. 4 B, left). Further-

more, expression of a miR-708 mimic resulted in a 2.5-fold de-

crease in rhodopsin expression (Fig. 4 B, right). Notably, GFP 

levels were unaffected by either the miR-708 antagomir or 

mimic, indicating that the effects observed were speci�c to rho-

dopsin (Fig. 4 B, bottom). To study miR-708’s effect on newly 

synthesized rhodopsin, we performed a pulse-labeling experi-

ment in 293T cells transiently transfected with a plasmid encod-

ing the full-length rhodopsin along with either an antagomir or 

scrambled control. Consistent with our immunoblotting data, 

we observed a net increase of rhodopsin (threefold) in cells 

transfected with the antagomir (Fig. 4 C). However, no such  

effect was observed in cells expressing rhodopsin encoded by a 

mutant mRNA in which the putative miR-708 seed binding site 

was replaced with a scrambled sequence (Fig. 4 D and not 

depicted). Together, our results suggest that miR-708 targets 

rhodopsin mRNA, resulting in its decreased expression in mam-

malian cells.

Here, we show that the intronic miRNA miR-708 is regu-

lated by ER stress and provide evidence that one of its roles is 

to control expression of rhodopsin. mir-708 resides within the 

�rst intron of Odz4, a target of the UPR transcription factor 

CHOP (Wang et al., 1998). Odz4 and its paralogues (Odz1–3) 

are implicated in developmental processes, such as neurite 

growth, cell adhesion, and eye development (Zhou et al., 2003; 

Kinel-Tahan et al., 2007). Indeed, Odz4 is expressed in the devel-

oping eye (Ben-Zur et al., 2000) as well as in the adult brain and 

eyes (Fig. 2 E). Although little is known about the role of Odz4 

during ER stress, our data show that miR-708 and Odz4 are co-

regulated by CHOP, thereby linking its regulation to the UPR.

It is attractive to speculate that mir-708 acquired an ER 

stress-regulated expression of its own by hitchhiking with the 

CHOP-regulated Odz4. The coupled expression of miR-708 

and Odz4 in cells undergoing ER stress and their marked co-

expression in the brain and eyes suggest a physiological function 

of miR-708 in these tissues (Lutter et al., 2010). As such, 

miR-708 joins other miRNAs that reside in introns of pre-mRNAs, 

such as miR-33, which regulates cholesterol biogenesis along 

with its host gene, SREBP, in macrophages and hepatocytes 

(Marquart et al., 2010; Naja�-Shoushtari et al., 2010; Rayner  

et al., 2010). Similarly, the identi�cation of rhodopsin as a target 

of miR-708 links ER stress and the PERK pathway through 

CHOP to the regulation of rhodopsin biosynthesis.

Bioinformatics analyses suggest miR-708 targets several 

genes involved in vision. We focused on rhodopsin because this 

transmembrane protein must traverse the secretory pathway, re-

lying on ER function for its delivery to the membranes of outer 

segments in rod photoreceptor cells (Mendes et al., 2005).  

rhodopsin results in the expected aggregates observed when resolved by SDS-PAGE. GRP78 was used to show activation of the UPR. GFP was used as a 
control for transfection efficiency and off-target effects of the antagomir/mimic. The loading control used was GAPDH. Numbers indicate the fold change 
in expression normalized to GAPDH. (C) Autoradiograms of 239T cells transfected with a plasmid encoding full-length mouse Rho along with an antagomir 
or scrambled control and pulse labeled with [35S]methionine (35S-Met) for 1 h. (left) Lysates immunoprecipitated (IP) with an anti-RHO antibody. (right) Total 
lysates. Numbers indicate relative amounts of radiolabeled rhodopsin normalized to total lysate. (D) Same experiment as in C except the 239T cells were 
transfected with a plasmid encoding full-length mouse Rho in which the miR-708 seed in the 3UTR was replaced with a scrambled sequence (miR-708 
seed mutant).
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CTAGAGCC). For gain- and loss-of-function experiments, the plasmids 
were cotransfected with an miR-708 antagomir or mimic with Lipofectamine 
2000 (Invitrogen). miR-708 antagomir or mimic, including their respective 
scrambled controls, was purchased from Invitrogen: anti-miR inhibitor  
miR-708 (AM11161), Cy3-labeled anti-miR negative control (AM17011), pre-
miR miRNA precursor miR-708 (PM11161), and Cy3-labeled pre-miR nega-
tive control (AM17120). Immunodetection of rhodopsin was performed 36 h 
after transfection. Cells were lysed in radioimmunoprecipitation assay 
(RIPA) buffer (50 mM Tris-HCl, pH 8, 150 mM NaCl, 1% NP-40, 0.5%  
sodium deoxycholate, and 0.1% SDS) for 30 min at 4°C and clarified for  
5 min. Lysates were separated on 4–12% SDS-PAGE gels, and immuno-
blots were probed with 1D4 anti-RHO (Abcam), anti-GFP (Roche), anti–
glyceraldehyde 3-phosphate dehydrogenase (GAPDH; Abcam), or anti-GRP78 
(Cell Signaling Technology) antibodies. For pulse-labeling experiments, 
293T cells transfected with rhodopsin plasmid along with either the  
antagomir or scrambled control were pulsed labeled with [35S]methionine for 
1 h before lysis in RIPA buffer. 1D4 anti-RHO antibody was incubated with 
lysates for 2 h at 4°C followed by an additional 2-h incubation with protein 
A support (Affi-Prep; Bio-Rad Laboratories). Immune complexes were 
washed three times with RIPA buffer, boiled for 3 min, and resolved on a 
4–12% SDS-PAGE gel.

Functional classification of predicted miR-708 targets
The National Institutes of Health Database for Annotation, Visualization, 
and Integrated Discovery program (Dennis et al., 2003; Huang et al., 
2009b) was used to assign gene functional categories and to identify dif-
ferentially enriched gene ontology terms among the miR-708 targets pre-
dicted by TargetScan.

Online supplemental material
Fig. S1 shows the inconspicuous changes in the expression of miRNAs in 
3T3 fibroblasts exposed to ER stress for 10 h. Fig. S2 shows the expres-
sion of miR-708, Chop, and Odz4 in 293T cells compared with MEFs. 
Table S1 shows the top 30 candidate target genes of miR-708 defined 
by TargetScan. Online supplemental material is available at http://www.jcb 
.org/cgi/content/full/jcb.201010055/DC1.
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