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Sunspots are intense collections of magnetic fields that pierce through the Sun’s photosphere,

with their signatures extending upwards into the outermost extremities of the solar corona1.

Cutting-edge observations and simulations are providing insights into the underlying wave

generation2, configuration3, 4, and damping5 mechanisms found in sunspot atmospheres. How-

ever, the in-situ amplification of magnetohydrodynamic waves6, rising from a few hundreds

of m/s in the photosphere to several km/s in the chromosphere7, has, until now, proved dif-

ficult to explain. Theory predicts that the enhanced umbral wave power found at chromo-

spheric heights may come from the existence of an acoustic resonator8–10, which is created

due to the substantial temperature gradients experienced at photospheric and transition re-

gion heights11. Here we provide strong observational evidence of a resonance cavity existing

above a highly magnetic sunspot. Through a combination of spectropolarimetric inversions

and comparisons with high-resolution numerical simulations, we provide a new seismolog-

ical approach to map the geometry of the inherent temperature stratifications across the

diameter of the underlying sunspot, with the upper boundaries of the chromosphere ranging

between 1300 ± 200 km and 2300 ± 250 km. Our findings will allow the three-dimensional

structure of solar active regions to be conclusively determined from relatively commonplace

two-dimensional Fourier power spectra. The techniques presented are also readily suitable

for investigating temperature-dependent resonance effects in other areas of astrophysics, in-
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cluding the examination of Earth-ionosphere wave cavities12.

Spectropolarimetric observations, captured in the Si I 10827 Å and He I 10830 Å lines at

high spatial (110 km per pixel), temporal (14.6 s) and spectral (0.04 Å per pixel) resolution,

were acquired across the centre of a large sunspot on 14 July 2016 using the Facility Infrared

Spectropolarimeter13 (FIRS) at the Dunn Solar Telescope. Simultaneous contextual imaging is

provided by the Rapid Oscillations in the Solar Atmosphere14 (ROSA) and the Interferometric

BIdimensional Spectrometer15 (IBIS) instruments. Spatially resolved Doppler velocities are de-

rived as a function of time for the entire 86 minute data sequence, providing 35,350 individual ve-

locity measurements with amplitudes in the range of ±0.3 km/s and ±6 km/s for the photospheric

Si I 10827 Å and upper-chromospheric He I 10830 Å time series, respectively. The resulting im-

ages and spectra (Fig. 1) highlight the persistent and regular wave signatures manifesting in the

sunspot umbra.

A long-lived filamentary structure, consistent with previous observational studies16, 17, natu-

rally segregates the sunspot into two distinct umbrae (Fig. 1). The centres of gravity (or barycen-

ters) of each isolated umbra are calculated, allowing the wave characteristics to be studied as a

function of distance from their respective umbral core. Fourier spectral energies18 are computed

for each of the 101 spatial pixels crossing the sunspot umbrae (Fig. 2), revealing distinct differ-

ences between the upper-chromospheric He I 10830 Å spectra and their co-spatial photospheric Si I

10827 Å counterparts. Most notable is the fact that all of the He I 10830 Å spectral energies can be

categorised by three distinct regions: (region I; <5 mHz) the evanescent regime with frequencies
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below the acoustic cut-off, (region II; 6 − 17 mHz) the region where propagating waves become

permissible and demonstrate broad spectral peaks and strong spectral energies that are consistent

with previous observational findings19, and (region III; 18 − 27 mHz) the final regime where the

spectral energy demonstrates a steep power-law relationship with gradient α. It is region III that

acts as both an indicator for the presence of a resonant layer9, as well as the ability to use the

spectral slope, α, as a diagnostic tool for estimating the thickness of the temperature structuring of

the chromospheric resonance cavity11.

Fitting the He I 10830 Å spectral energy gradients for region III through maximum-likelihood

statistical approaches20 reveals a strong correspondence between the steepness of the slope and the

distance subtended from the corresponding umbral barycenter (Fig. 3). While the spectral gradients

for region II remain consistent across the entire extent of the sunspot (with characteristic spectral

gradients of −2.1± 0.2), the spectral slopes for region III vary as a function of distance from their

respective umbral barycenter, with gradients as shallow as −5.4 ± 0.6 at the core of the relevant

umbra, extending to gradients as steep as −7.8 ± 0.6 at maximal distances (∼3000 km) from

each barycenter. Spectral slopes of this magnitude closely resemble the strong dissipative ranges

previously documented in studies of the solar wind21.

To compare with the observational findings, the Lare2D22 numerical non-linear compress-

ible MHD code, which is employed in a 1.5D configuration, is driven by the photospheric velocity

profiles extracted from the observational Si I 10827 Å Doppler shifts and allowed to evolve in

time. The embedded atmospheric model is constrained by HAnle and Zeeman Light23 (HAZEL)
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inversions applied to the spectropolarimetric data products24, with the computed velocity signals

extracted with a cadence of 14.6 s (to match that of the FIRS observations) following propagation

of the wave signatures to the upper temperature gradient corresponding to the commencement of

the transition region, which is consistent with the predicted formation height of the He I 10830 Å

spectral line25. The velocity time series is cropped to 86 minutes in duration to match that of

the observations and converted into spectral energies (Fig. 2e,f). This process is repeated for in-

put atmospheres scaled to 80%, 90%, 110% and 120% of the original temperature stratification

height, providing resonance cavity depths (photosphere to the base of the transition region) span-

ning 1700 − 2545 km. The spectral energies computed for both the modelled and observed time

series show similar trends across regions I, II and III (Fig. 2). In particular, the modelled region III

demonstrates an identical rise in spectral energy at ∼20 mHz, before dropping off very rapidly

with increasing frequency. Importantly, re-running the numerical simulations for an atmospheric

profile devoid of the steep transition region temperature gradient produces spectral energies where

the secondary ∼20 mHz spectral peak is absent. This verifies that the steep temperature gradient

intrinsic to the solar transition region, which amplifies the spectral energies at ∼20 mHz, is re-

quired for the initiation of resonance behaviour. The maximum-likelihood fitted spectral slopes for

region III reveals that shallower spectral gradients correspond to inherently deeper chromospheric

cavities (Fig. 3b), allowing the observed spectral slopes for region III to unveil the cavity depths

of the local sunspot atmosphere. Importantly, a larger cavity depth introduces a greater resonant

energy content, hence providing more energy across the frequency range, and thus reducing the

steepness of the associated spectral slope11.
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The range of gradients measured for region III (18−27 mHz) of the sunspot spectral energies

span −5.4± 0.6 (close to the umbral barycenter) to −7.8± 0.6 (at the outermost extremities of the

umbra), suggesting that the chromospheric resonance cavity is thickest near the core of the umbra,

dropping to its thinnest depth at the penumbral boundary (Fig. 3). The upper geometric height of

the chromosphere, τchromo, which corresponds to the uppermost boundary of the resonance cavity

before the commencement of the transition region, can be defined (Fig. 3b) as,

τchromo (km) =
Region III spectral slope + 26.408

0.009131
cos θ , (1)

where θ is the inclination angle of the wave propagation path with respect to the normal to the

solar surface. Use of the inclination angle is important since the Lare2D numerical code simulates

the wave evolution along a given magnetic field line, which may be inclined with respect to the

solar normal. Hence, taking the magnetic field inclinations into consideration allows for the con-

version of a wave propagation distance into a true geometric height of the chromosphere for that

particular spatial location. Utilising the vector magnetic fields derived from HAZEL inversions24

yields inclination angles ranging from 0 degrees at the umbral barycenters, through to approxi-

mately 50 degrees towards the outer umbral boundaries, providing geometric heights for the upper

chromosphere on the order of 2300 ± 250 km and 1300 ± 200 km for the umbral cores and um-

bral/penumbral boundaries, respectively (Fig. 4).

Here, we show strong evidence substantiating the presence of a chromospheric resonance

cavity above a sunspot. We reveal how high resolution spectropolarimetric observations, when

combined with cutting-edge numerical MHD simulations, provide the spectral energy sensitivity

necessary to accurately measure the high-frequency spectral gradients that are modulated by the

6



depth of the chromospheric resonance cavity. Importantly, the variable cavity depths across the

diameter of the sunspot have important implications for atmospheric seismology, since the umbral

atmosphere can no longer be considered as a homogeneous slab environment. Instead, thicknesses

of the chromospheric resonance layer will need to be incorporated into seismological estimations

in order to improve the accuracy of such techniques. Looking ahead, fiber-fed spectrographs on

the upcoming 4m Daniel K. Inouye Solar Telescope will provide two-dimensional spectral energy

maps of sunspots with unprecedented resolving power, allowing revolutionary three-dimensional

atmospheric reconstructions to be uncovered.

Furthermore, the topic of resonance cavities is fundamentally important across a wide range

of ongoing astrophysical research including, but not limited to, the examination of near-Earth

ionospheric wave cavities12. As a result, understanding the physics responsible for the creation

of resonance cavities, along with their impact on the universe around us, is of paramount impor-

tance. Our results enable the astrophysical community to benchmark, through novel seismological

approaches, what atmospheric characteristics are required to form a stable resonance cavity (e.g.,

specific temperature stratifications), what impact this has on waveforms interacting with the cavity

structure (e.g., power enhancements at well-defined frequencies), and how cutting-edge numerical

simulations can be employed alongside high-precision spectropolarimetric data products to deduce

physical parameters corresponding to the local plasma conditions (e.g., cavity depth).
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Methods

Observations. The sunspot at the centre of the active region NOAA 12565 on 14 July 2016 was

the primary focus of the observing campaign. The image sequence duration was approximately

86 minutes, and was obtained during excellent seeing conditions between 13:42 – 15:08 UT with

the Dunn Solar Telescope at Sacramento Peak, New Mexico. The Hydrogen-Alpha Rapid Dy-

namics camera26 (HARDcam) and Rapid Oscillations in the Solar Atmosphere14 (ROSA) imaging

systems were simultaneously used to capture active region NOAA 12565 at G-band, blue con-

tinuum (4170 Å), Ca II K and Hα wavelengths, which was positioned at heliocentric co-ordinates

(−582′′, 30′′), providing a heliocentric viewing angle of 38◦ (µ ≃ 0.79). This location corresponds

to N05.2E38.1 in the conventional heliographic co-ordinate system. To complement the ROSA and

HARDcam data streams, the Facility Infrared Spectropolarimeter13 (FIRS) slit-based spectrograph

and Interferometric BIdimensional Spectrometer15 (IBIS) imaging spectrograph acquired contem-

poraneous observations of the same active region in the He I 10830 Å and Ca II 8542 Å spectral

lines, respectively.

The FIRS instrument was configured to obtain diffraction-limited spectropolarimetry of the

He I 10830 Å upper-chromospheric absorption lines by utilising a 75′′ slit length (providing a spa-

tial sampling of 0 .′′15 per pixel along the slit), combined with a 0 .′′225 slit width. A confined

five-step raster was obtained by moving the slit 0 .′′225 after each integration, providing a narrow

75′′×1 .′′125 slot-type field of view that passed through the centre of the umbral core. Each spectrum

obtained consisted of 12 consecutive additions of the modulation states to increase the signal-to-

noise of the relevant Stokes profiles, providing a final cadence equal to 14.6 s. The observations
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were reduced into science-ready data products using the publicly available National Solar Obser-

vatory FIRS pipeline27, ultimately providing a spectral sampling of 0.04 Å for the He I 10830 Å

spectra. To assist with the determination of the FIRS slit pointing and alignment, a slit-jaw camera

(in sync with the acquisition of each spectrum) was employed alongside the ROSA, HARDcam

and IBIS image sequences to allow the precise spatial location and orientation of the FIRS slit to

be mapped.

The IBIS system was deployed in imaging mode (i.e., no spectropolarimetric information

was retrieved) to increase the field of view captured and to decrease the time taken to acquire a

spectral scan. A total of 47 discrete, non-equidistant wavelength steps were utilised across the

Ca II 8542 Å line profile with a spatial sampling of 0 .′′098 per pixel, providing a circular field

of view with a diameter of 97′′ and a spectral coverage of 8540.82 − 8543.42 Å (i.e., line core

±1.3 Å). In total, 543 imaging spectral scans were completed, each with a cadence of 9.4 s. A

radial blueshift correction was performed to compensate for the classically mounted etalons28. A

whitelight camera, in sync with the IBIS narrowband sequences, was employed to de-stretch the

resulting spectral scans29, 30. Contextual ROSA 4170 Å continuum and IBIS Ca II 8542 Å line core

images are displayed in Fig. 1, alongside contours depicting the precise location of the FIRS slit.

Establishing the Doppler velocities. The orientation of the FIRS slit resulted in it crossing an

approximate 11 Mm (∼15′′) expanse of the sunspot umbra. This extent is highlighted by a solid

green line in Fig. 1b, with pixels beyond this corresponding to penumbral or quiet Sun locations.

Each Stokes I spectrum extracted from the sunspot umbra is normalised by its own respective

average continuum intensity, Ic (Extended Data Fig. 1a). When the time-spectral evolution of an
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umbral pixel is examined (see, e.g., Extended Data Fig. 1b), it is clear to see regular periodic wave

signals with a characteristic period on the order of 3 minutes.

It must be noted that the He I spectral window around 10830 Å is actually a collection of three

independent electron transitions:31 2s3S1 – 2p3P0 at 10829.09 Å, 2s3S1 – 2p3P1 at 10830.25 Å, and

2s3S1 – 2p3P2 at 10830.34 Å. Typically, under conditions where velocity signatures are signifi-

cantly subsonic,32, 33 the He I triplet is observed as two absorption features since the 10830.25 Å

and 10830.34 Å profiles are fully blended together (forming the deep “red” component), while

the more shallow “blue” component at 10829.09 Å remains isolated34. It is common practice to

perform spectropolarimetric inversions on the blue He I component since it has a higher effective

Landé g-factor (geff = 2.0 at 10829.09 Å, versus geff = 1.75 and geff = 1.25 at 10830.25 Å and

10830.34 Å, respectively) and potential blends do not need to be considered. Indeed, the HAZEL

inversions performed on this dataset were applied to the blue He I component24. On the other

hand, (subsonic) Doppler velocity measurements can be derived more reliably from the red He I

component due to its significantly larger line depth and intrinsically better signal-to-noise. For the

purpose of establishing Doppler maps of the sunspot umbra, we fit the red component of the He I

spectra since the resulting profiles are fully blended, with no evidence of supersonic flows (see,

e.g., Extended Data Fig. 1a).

By fitting all 35,350 (101 pixels across the 11 Mm umbral diameter and 350 acquisitions

in time) He I 10830 Å absorption lines with a Voigt profile35 (a combination of Gaussian and

Lorentzian profiles due to the Doppler and pressure broadening sensitivities, respectively, of the

He I 10830 Å line), the intrinsic Doppler velocities were mapped. Velocity oscillations with am-
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plitudes in the range of ±6 km s−1, were found to span the entire diameter of the chromospheric

sunspot umbra and last throughout the duration of the observing period (see, e.g., Extended Data

Fig. 1b).

Segregating the umbra into two distinct regions. Within the 11 Mm umbral region, there ex-

isted a persistent brightening that was only visible in the chromospheric image sequences obtained

by IBIS (Ca II 8542 Å) and HARDcam (Hα 6563 Å). The brightening, at approximately 5.6 Mm

(≈7.7′′) along the umbral portion of the FIRS slit, is highlighted with a pink cross in Fig. 1b

and in Extended Data Fig. 2a. Due to an absence of this feature in the photospheric observations

(see, e.g., the ROSA 4170 Å continuum image depicted in Fig. 1a), the chromospheric umbral

brightening is likely to be a long-lived filamentary structure16, 36. Indeed, from inspection of the

time-distance map of the fitted He I Doppler velocities in Extended Data Fig. 1b, the umbral bright-

ening (highlighted using a vertical dashed pink line) exhibits preferential red-shifted Doppler ve-

locities, a characteristic that is consistent with previous observational measurements17. Extended

Data Fig. 2b displays a magnified view of the chromospheric sunspot umbra, where the persistent

brightening is better revealed (and highlighted using a pink cross).

To focus our study purely on the umbral signatures, we decompose the umbral spectra into

two distinct regions that are isolated from one another by the long-lived chromospheric filamentary

structure crossing the FIRS slit. To do this, we extract a time-averaged Stokes I/Ic intensity along

the umbral portion of the FIRS slit (see, e.g., the solid green line in Extended Data Fig. 2b) that

corresponds to the He I 10830 Å line core. This intensity profile is plotted in Extended Data Fig. 2c,

where the vertical dashed pink line highlights the location of the persistent chromospheric umbral
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brightening, which demonstrates intensities considerably above the quiescent umbral background.

Next, the centres of gravity (or barycenter) for the intensity profile south (i.e., <5.6 Mm) and north

(i.e., >5.6 Mm) of the umbral brightening are calculated to be 2.8 Mm and 8.3 Mm, respectively,

which are represented by the vertical dashed red lines in Extended Data Fig. 2c. Thus, the green

and blue shaded regions in Extended Data Fig. 2c represent the southern and northern umbral

regions, respectively, which are isolated from one another by the persistent chromospheric umbral

brightening. Now, any signatures extracted from the data can be related directly to a particular

umbral region for further characterisation, in addition to the distance from their respective umbral

barycenter.

Regions present in the Fourier spectra. In accordance with recent theoretical work11, we isolate

the spectral energy plots into three distinct regions:

• Region I (<5 mHz) – Part of the spectral energy that is governed by the local acoustic cut-off

frequency, ωc, which only allows waves to propagate upwards providing,

ω > ωc =
cs
2H

√

1 + 2
δH

δz
,

where cs is the local sound speed, z is the atmospheric height and H = c2s/(γg) with γ the

adiabatic index and g the acceleration due to gravity37, 38. Due to the almost vertical nature

of the magnetic field lines at the core of the sunspot umbra24, we choose an upper limit for

region I at 5 mHz, which is consistent with other sunspot observations39.

• Region II (6 − 17 mHz) – Portion of the spectral energy where propagating waves become

permissible (i.e., >5 mHz) and demonstrate broad spectral peaks and strong spectral energies
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that are consistent with previous observational findings19, 40, 41. Here, region II continues from

6− 17 mHz (allowing for a buffer region between 5− 6 mHz to allow the overall spectrum

to reach a peak energy), revealing a gradual decrease in the spectral energy with frequency.

The upper boundary of region II is set at 17 mHz, since another peak at frequencies beyond

18 mHz commences the beginning of region III.

• Region III (18− 27 mHz) – The final regime of the spectral energy corresponds to the range

where steep spectral gradient declines are found. This is the region where the spectral energy

is proportional to a fα scaling, where f is the frequency and α is the linear gradient when

plotted on log–log axes11. Due to the 14.6 s cadence of the FIRS observations, the resulting

Nyquist frequency is 34 mHz. From examination of the individual spectral energies, white

noise fluctuations commence around 28 − 30 mHz, which was identified by the flattening

of the spectral energy beyond these frequencies (see Fig. 2d). As a result, we set the upper

boundary for region III at 27 mHz to avoid contamination from high-frequency white noise.

It is region III that acts as a diagnostic tool for estimating the thickness and temperature

structuring of the chromospheric resonance cavity.

It must be noted that the spectral frequency ranges for regions I (<5 mHz), II (6− 17 mHz) and III

(18− 27 mHz) remain fixed throughout the data analyses.

Features visible in the spectral energy maps. Fig. 2d displays the spectral energies for all 101

pixels across the sunspot using a graduated blue-to-pink colour scale. While there is scatter in the

spectral energy at each component frequency, the general trend remains the same across all umbral
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pixels, reiterating the usefulness of sub-dividing the spectral energy densities into their constituent

regions (i.e., regions I, II and III). The mean spectral energy is overplotted in Fig. 2d using a solid

black line, along with the maximum-likelihood fitted lines of best fit for regions II and III using

solid red lines. It is clear to see that, on average, the maximum-likelihood fitted spectral gradient

for region III is steeper than that for region II, as predicted in recent theoretical models11.

It is possible to re-display Fig. 2d, only now preserving the information along the spatial

diameter of the chromospheric sunspot umbra. Extended Data Fig. 3 displays a two-dimensional

map of the spectral energy, plotted as a function of frequency (x-axis) and distance across the

umbra (y-axis). As with the spectral energies plotted in Fig. 2d, it is clear to see a dominant broad

band of peak power at ≈5 mHz across the entirety of the umbra. From visual inspection, it is

also possible to identify wedge-shaped traces of peak power extending outwards from the north

and south umbral barycenters (identified by the horizontal dashed green lines). A black dotted

line in Extended Data Fig. 3 tracks the frequency corresponding to the weighted spectral energy

centroid (between frequencies of 3 − 17 mHz) across the entirety of the sunspot umbra. It can

be seen that at the north/south umbral barycenters correspond to the highest centroid frequency

(∼6.5 mHz or ∼155 s), while the furthest extremities of each umbral section demonstrate the

lowest centroid frequencies (∼5.0 mHz or ∼180 s). This type of behaviour is consistent with the

umbral barycenters displaying the most vertical magnetic fields, hence pushing the acoustic cut-

off frequency to higher values37. A similar phenomenon has also been observed in IBIS spectral

imaging observations of umbral oscillations39, and reiterates the appropriateness of defining the

start of region II at 6 mHz.
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From Extended Data Fig. 3, it is also possible to identify the second enhancement of spectral

energy corresponding to region III (≈18 mHz or 55 s). Here, there appears to be more pronounced

enhancements of spectral energy close to the north/south umbral barycenters (i.e., coincident with

the horizontal dashed green lines in Extended Data Fig. 3), when compared to similar frequencies

at the very extreme edges of the sunspot umbra (e.g., distances of approximately 0 Mm and 11 Mm

in Extended Data Fig. 3). The spectral energy associated with region III is much weaker than that

found in region II, often by 1− 2 orders of magnitude (also visible in Fig. 2d). As the spectral gra-

dient present in region III contains information related to the structuring of the underlying umbral

resonance cavity, it is important to calculate the spectral slope with a high degree of precision.

Fitting the spectral energy gradients. To calculate the spectral slopes corresponding to regions II

and III, maximum-likelihood fitted gradients are computed for each of the 101 spectral energies

across the chromospheric umbra. Often linear lines of best fit are established to determine the

spectral slopes of Fourier power spectra42. However, the weighted least-squares minimisation

process assumes that the data to be fitted are normally (Gaussian) distributed20, which may not

necessarily be the case, especially when the periodogram of a stationary, linear stochastic process

naturally follows a χ2
2 distribution43, 44. As a result, we apply the maximum-likelihood approach20,

which has recently been successfully applied to solar wave studies45, to calculate the spectral

gradients for regions II and III of the 101 spectral energies across the diameter of the sunspot umbra.

The spectral gradients for regions II and III, as a function of distance from their respective umbral

barycenter, are plotted in Fig. 3a. It is clear that the spectral slopes for region II are relatively

constant, with a slope of −2.1 ± 0.2. Contrarily, the spectral gradients for region III are seen to
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vary as a function of distance from their respective umbral barycenter, with gradients as shallow

as −5.4 ± 0.6 at the core of the relevant umbra, extending to gradients as steep as −7.8 ± 0.6 at

maximal distances (∼3000 km) from each barycenter.

We believe the gradients displayed for region II in Fig. 3a point towards a universal sunspot

characteristic for waves detected in chromospheric spectral lines. A recent observational exami-

nation of the spectral power slopes for an entirely different sunspot, using ground-based images

obtained in the Ca II K and Hα line cores, found similar spectral gradients (within the 6− 17 mHz

spectral range) to those presented here42. These gradients are steeper than both the f−1 and f−5/3

relationships that would be expected for granulation (i.e., pink) noise patterns46 and the Kolo-

mogorov inertial range47, respectively. Instead, they more closely resemble the f−2 red noise that

is linked to the strong viscous dissipative regimes associated with Brownian motion48. Region III,

on the other hand, has even steeper spectral gradients that more closely resemble the strong dissi-

pative ranges previously documented in studies of the solar wind21, 49. Importantly, the steepening

of the spectral slopes as one moves away from the umbral barycenters indicates a strong depen-

dency between the value of the spectral gradient and the characteristics of the underlying resonance

cavity in which the spectral signatures were generated.

Numerical magnetohydrodynamic simulations. The numerical code employed in the current

work is based on the well-documented Lare2D22 software. Here, a velocity driver is injected

into an atmospheric model, containing realistic temperature and density structuring, allowing the

Lare2D code to evolve the idealised non-linear compressible MHD equations to compute the ve-

locity signatures as a function of distance along the computational domain. The numerical domain
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covers the vertical range −21 Mm ≤ z ≤ 21 Mm and is resolved by 8192 grid cells. The up-

per convection zone is modelled by a polytropic temperature profile and situated at z < 0 Mm

in the domain. Above z = 0 Mm the temperature profile of sunspot model50 ‘M’ is used, which

connects smoothly at the transition region with a typical coronal temperature profile51. Near the

upper boundary the temperature profile is flattened (i.e., a constant value is used) to create an

open boundary at z = 21 Mm. An initial equilibrium is obtained by solving the pressure balance

equation, and the two horizontal directions of the computational domain are invariant, making the

resulting simulation 1.5D.

In order to make the numerical outputs as realistic as possible, we employ the HAZEL in-

versions of the umbral barycenter pixels (i.e., where the magnetic field inclination angles are ap-

proximately 0 degrees) of active region NOAA 12656 [ref. 24] to provide chromospheric plasma

constraints, which allow the sunspot model50 ‘M’ to be re-scaled across the rest of the computa-

tional grid. This re-sampled sunspot model formed the background atmosphere embedded within

the Lare2D code, with the temperature values plotted using a solid black line in Extended Data

Fig. 4. It must be noted that the sunspot under current investigation is slightly less magnetic and

fractionally hotter than the standard sunspot model50 ‘M’ atmosphere. Comparisons with the out-

puts of the Very Fast Inversion of the Stokes Vector52 (VFISV) algorithm, applied to co-temporal

SDO/HMI vector magnetogram data53 that have a formation height in the low photosphere, reveal

maximum umbral magnetic field strengths on the order of 2000 G, which is consistent with the

re-sampled sunspot models.

Previous theoretical work11 that studied the characteristics of sunspot resonance cavities em-
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ployed a variety of injected photospheric velocity drivers, including those corresponding to white

(f 0), pink (f−1) and red (f−2) noise signatures, which are believed to be representative of the

spectral signatures present in the Sun’s upper convection zone54. However, the spectroscopic ob-

servations of active region NOAA 12565 obtained by FIRS allows us to provide a better estimate of

the real underlying photospheric velocity signal. Extracting bisector velocities of the Si I 10827 Å

absorption feature at 20% of the maximum line depth provide photospheric velocities that corre-

spond to an optical depth of log(τ500nm) ∼ −0.65, or ∼50 km above the photospheric layer50, 55.

The extracted Si I 10827 Å velocity signatures have peak amplitudes on the order of 300 m/s (see

the Fig. 2a), which is consistent with previous sunspot oscillation studies56. These photospheric

velocity perturbations are re-scaled and applied at the lower (z = −21 Mm) boundary of the

Lare2D code and allowed to evolve. The re-scaling is to ensure that the wave root mean square

(rms) amplitudes produced by the simulations at z = 0 Mm (i.e., the photosphere) are consistent

with the observed Si I 10827 Å profile fluctuations.

Data interpretation The velocity outputs from the Lare2D simulation were extracted at a cadence

of 14.6 s (to match that of the FIRS observations) at an atmospheric height of 2120 km (vertical

dotted black line in Extended Data Fig. 4), which is consistent with the approximate formation

height of the He I 10830 Å spectral line25, 57. The velocity time series was then cropped to 86 min-

utes in duration (again, to match that of the observations) and converted into spectral energies by

following the same methodology applied to the FIRS He I 10830 Å data. There are a number

of distinct similarities between the observed and simulated velocity time series (Fig. 2c,e). First,

both the observed and simulated time series appear modulated by a long-term trend. Such long-
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period modulation has been extensively observed in magnetoacoustic wave studies58–60, which is

normally explained as a consequence of beat phenomena created by the superposition of a number

of closely spaced frequencies61. This observed phenomenon further supports the presence of a

chromospheric resonance cavity, since it has been theoretically shown62 that long-term modulating

periods can be created in the confines of resonant filters. Secondly, the velocity amplitudes corre-

sponding to the modelled (rms = 3.2 km/s) and observed (rms = 3.5 km/s) upper chromosphere

are very similar, demonstrating that the wave amplification process is accurately accounted for in

the Lare2D model. Finally, the spectral energies computed for both the modelled and observed

time series show similar trends across regions I, II and III. In particular, the modelled region I also

displays the relatively flat spectral energy that is consistent with the presence of evanescent waves.

Next, the modelled region II reveals a similar peak wave energy at ∼5 mHz, followed by a gradual

decline in spectral energy with a maximum-likelihood fitted gradient equal to −2.3 ± 0.3. As per

the observed spectral gradients for region II (see the magenta data points in Fig. 3a), the modelled

values also closely map to the presence of red noise (i.e., f−2). Lastly, the modelled region III

demonstrates an identical rise in spectral energy at ∼20 mHz (∼50 s), before dropping off very

rapidly with increasing frequency.

Importantly, however, is the fact that the blue data points in Fig. 3a indicate that the spectral

slope associated with region III varies as a function of distance away from the umbral barycenter.

Theoretical work11 has revealed that the thickness of the chromospheric resonance cavity has im-

plications for the steepness of the measured spectral gradient, with shallower resonance cavities

demonstrating steeper spectral slopes than their thicker cavity counterparts. To investigate this
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effect further, the thickness (i.e., atmospheric height span) of the resonance cavity was re-scaled

at 80%, 90%, 110% and 120% of the original depth (Extended Data Fig. 4), providing the at-

mospheric parameters detailed in Extended Data Fig. 5. For each resonance cavity thickness, the

numerical models were recomputed, with the spectral energies calculated and the corresponding

spectral gradients measured using an identical maximum-likelihood approach. Utilising the strati-

fied temperature profiles listed in Extended Data Fig. 5, the computed spectral slopes for region III

can be plotted as a function of the magnetoacoustic wave propagation distances (Extended Data

Fig. 6). It can be seen that larger wave propagation distances (i.e., increased cavity depths) intro-

duce a greater resonant energy content, hence providing more energy across the frequency range,

and thus reducing the steepness of the associated spectral slope.

The general trends depicted in Fig. 3 and Extended Data Fig. 6 are consistent with previ-

ous modelling efforts11, whereby deeper resonance cavities produce inherently shallower spectral

gradients in region III (18 − 27 mHz). Of course, it must be noted that Fig. 3 and Extended Data

Fig. 6 depict the variations in the spectral slopes as a function of the distance over which the mag-

netoacoustic waves propagate. In an idealised case, where the magnetic fields are aligned with the

normal to the solar surface, these propagation distances will be identical to the geometric height of

the upper chromosphere. On the other hand, if the magnetic field lines are inclined to the solar nor-

mal, then this angle will need to be incorporated into the calculation to estimate the true geometric

height of the upper chromosphere in that location. With this in mind, it becomes possible to esti-

mate the depth of the chromospheric resonance cavity for each location within the sunspot umbra

simply by comparing the measured spectral slope of region III to the reference spectral energies
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computed via the Lare2D numerical models.

Here, we have utilised the presence of a spectral energy peak at ∼20 mHz (i.e., region III;

see Fig. 2d) as an indicator of a resonance cavity existing in our observational and simulated data,

which is consistent with theoretical and numerical investigations documented in recent years9, 11.

However, to confirm that a resonance cavity is the mechanism responsible for the elevated spectral

energies in the range of 18−27 mHz, we create an independent numerical test whereby the Lare2D

simulations are re-run for a background atmosphere devoid of the steep transition region temper-

ature gradient. For this test, the temperature reaches the chromospheric plateau value (∼6000 K;

see Extended Data Fig. 4) at an atmospheric height of 0 km, then remains constant through to the

upper boundary of the simulation domain, hence removing the conditions necessary for an acoustic

resonator to operate (i.e., the temperature gradient synonymous with the transition region).

The resulting spectral energies (Extended Data Fig. 7) reveal how removing the transition

region entirely from the model atmosphere produces a shallower spectral gradient following the

∼5 mHz peak. This is likely a consequence of the flattened temperature profile modifying the

acoustic cut-off frequency with atmospheric height, hence resulting in a different distribution of

energies across the frequency spectrum63. Importantly, removing the steep temperature gradient

inherent to the solar transition region, which is believed to be required for the initiation of res-

onance behaviour9, 11, acts to alleviate the rise in spectral energies at ∼20 mHz. As a result, we

conclude that the heightened spectral energies contained within the observed and simulated re-

gion III (18 − 27 mHz; Fig. 2) are a direct consequence of the lower (photospheric) and upper

(transition region) temperature gradients intrinsic to the solar atmosphere, hence giving rise to the
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creation of a resonance cavity.

The range of gradients measured for region III (18−27 mHz) of the sunspot spectral energies

span −5.4± 0.6 (close to the umbral barycenter) to −7.8± 0.6 (at the outermost extremities of the

umbra). Immediately, this suggests that the chromospheric resonance cavity is thickest near the

core of the umbra, dropping to its thinnest depth at the penumbral boundary. Extended Data Fig. 6

allows the wave propagation distance, τprop, to be defined as,

τprop (km) =
Region III spectral slope + 26.408

0.009131
,

where 0.009131 is the gradient of the dashed black line and 26.408 is the intercept on the y axis

(Extended Data Fig. 6). The extreme values of the measured spectral slopes, −7.8 and −5.4,

provide wave propagation distances on the order of 2035 km and 2300 km, respectively (shaded

magenta and green regions in Extended Data Fig. 6).

However, the magnetic fields spanning the diameter of the sunspot umbral chromosphere are

not all vertical in nature (Extended Data Fig. 8). Examining the magnetic field inclination angles,

θ, derived from HAZEL inversions applied to the He I 10830 Å spectropolarimetric data reveals

that the umbral cores have the most vertical magnetic fields (approximately 0 degrees), while the

outermost extremities of the umbrae demonstrate the most inclined magnetic fields (approximately

35 − 50 degrees on average). Furthermore, the filamentary structure that segregates the sunspot

into two isolated umbrae displays increased inclination angles approaching 40 degrees (located at

approximately 5.6 Mm along the FIRS slit in Extended Data Fig. 8).

As a result, the stratified wave propagation path lengths (Extended Data Fig. 4) are tilted
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from the solar normal by the inclination angle, θ, which needs to be taken into consideration when

estimating the true atmospheric height of the upper chromospheric boundary. As such, the true

geometric height of the upper chromosphere, τchromo, can be defined as,

τchromo (km) =
Region III spectral slope + 26.408

0.009131
cos θ

= τprop cos θ .

Utilising the spatially-resolved inclination angles and spectral gradients provides true geometric

heights of the upper boundary of the umbral cavity spanning 1300 ± 200 km (spectral slope of

−7.8 ± 0.6 and an inclination angle of approximately 50 degrees; outer umbral edge) through to

2300± 250 km (spectral gradient of −5.4± 0.6 and a vertically-orientated magnetic field; umbral

barycenter). This can be visualised graphically in Fig. 4, where the pink isocontours represent the

geometric height of the upper chromospheric boundary across the diameter of the sunspot umbra.
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Data Availability The data used in this paper are from the observing campaign entitled “The influence of

Magnetism on Solar and Stellar Atmospheric Dynamics” (NSO-SP proposal T1081; Principle Investigator:

D. B. Jess), which employed the ground-based Dunn Solar Telescope, USA, during July 2016. Additional

supporting observations were obtained from the publicly available NASA’s Solar Dynamics Observatory

(https://sdo.gsfc.nasa.gov) data archive, which can be accessed via http://jsoc.stanford.edu/ajax/lookdata.html.

The data that support the plots within this paper and other findings of this study are available from the cor-

responding author upon reasonable request.
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features. Astronomische Nachrichten 337, 1057 (2016).

31
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Figure 1  

The velocity signatures of the magnetised sunspot atmosphere observed on 14 July 2016.  

(a & b) ROSA 4170 Å continuum (photosphere) and IBIS 8542 Å line core (chromosphere) images of 

the sunspot atmosphere at 13:42 UT on 14 July 2016, with the axes displaying the associated 

heliocentric co-ordinates. The solid red lines highlight the position of the FIRS slit, while the solid 

green line indicates the portion of the slit that clearly crosses the chromospheric umbra (i.e., not 

overlapping with penumbra or quiet Sun structures). The pink cross identifies a persistent umbral 

brightening that segregates the umbral spectra into two distinct regions.  

(c) A velocity-time image that documents the spectral and temporal evolution of the He I 10830 Å 

Stokes I line profile from a single umbral pixel. The black-to-white colour scale represents the 

inverted spectral intensities to assist with visual clarity, while the horizontal dashed red line 

indicates the rest position of the He I 10830 Å line core. 

 



 

 

Figure 2 

Doppler velocities and spectral energies of observed and simulated time series. 

(a & b) The Si I 10827 Å (photospheric) Doppler velocity signal for an umbral pixel, with its 

corresponding spectral energy displayed on log–log axes.  

(c) The co-spatial He I 10830 Å (upper chromospheric) Doppler velocity signal, where higher 

frequency waves are more readily visible when compared to panel (a).  

(d) The calculated He I 10830 Å spectral energies, where the graduated blue-to-pink coloured lines 

represent spectra derived across the entire sunspot umbral diameter. The solid black line represents 

the average umbral spectral energy.  

(e & f) The simulated velocity time series, which is extracted from the Lare2D computational domain 

at an atmospheric height that is compatible with the formation of the He I 10830 Å spectral line, 

along with its corresponding spectral energy. The dashed red lines, panels (a), (c) and (e), highlight a 

zero velocity for visual reference. Orange, green and blue shaded regions (bounded by black vertical 

dashed lines; panels (d) and (f) isolate the spectral energies into regions I (< 5 mHz), II (6 – 17 mHz) 

and III (18 – 27 mHz). The solid red lines, panels (d and (f), highlight the respective maximum-

likelihood fits spanning the frequency domains corresponding to regions II and III. 

 



 

 

Figure 3 

Spectral energy gradients of observed and simulated time series. 

(a) The spectral power gradients measured for each of the umbral Fourier energy densities, 

displayed as a function of distance from their associated umbral region barycenter. Here, the 

magenta and blue colours correspond to regions II (6 – 17 mHz) and III (18 – 27 mHz), while the circle 

and diamond symbols relate to the southward and northward locations in relation to the persistent 

umbral brightening, respectively. The vertical error bars placed on each data point correspond to the 

maximum-likelihood 1σ fitment uncertainties when measuring the spectral power-law gradients. 

The dashed magenta and blue lines highlight the linear lines of best fit associated with regions II and 

III, while the shaded magenta and blue regions identify the standard deviations for the lines of best 

fit, respectively.  

(b) The spectral slopes of region III (18 – 27 mHz), which are calculated from the maximum-likelihood 

fitments of the Fourier spectral energies produced by Lare2D numerical simulations, as a function of 

the variable resonance cavity depths imposed in the modelled atmospheres. The vertical error bars 

highlight the maximum-likelihood 1 fitment uncertainties achieved when measuring the 

corresponding spectral power-law gradients. The dashed black line maps the linear best-fit line 

through the data points, while the blue shaded region (bounded by the black dotted lines) highlights 

the 95% confidence level associated with the fitted line. 

 



 

 

Figure 4 

Three-dimensional visualisation of the geometric extent of the chromosphere above active region 

NOAA 12565. 

The geometric extent of the chromosphere, visualised here as the pink isocontours extending 

upwards from the photospheric (ROSA 4170 Å continuum) umbra and through the chromospheric 

(IBIS 8542 Å line core). It can be seen that the depth of the resonance cavity is suppressed in the 

immediate vicinity of the trans-umbral filamentary structure, providing geometric heights of 

approximately 1300 km, which is consistent with the depth measured at the outermost edges of the 

umbra. The cores of the umbrae display the largest resonance cavity depths, often with geometric 

heights on the order of 2300 km. An image of the Earth is added to provide a sense of scale.  

Note: The pink resonance cavity depth contours are not to scale. 
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