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Abstract—Ciphertext-Policy Attribute-Based Proxy Re-
Encryption (CP-ABPRE) extends the traditional Proxy Re-
Encryption (PRE) by allowing a semi-trusted proxy to trans-
form a ciphertext under an access policy to the one with
the same plaintext under another access policy (i.e.attribute-
based re-encryption). The proxy, however, learns nothing about
the underlying plaintext. CP-ABPRE has many real world
applications, such as fine-grained access control in cloud
storage systems and medical records sharing among different
hospitals. Previous CP-ABPRE schemes leave how to be secure
against Chosen-Ciphertext Attacks (CCA) as an open problem.
This paper, for the first time, proposes a new CP-ABPRE to
tackle the problem. The new scheme supports attribute-based
re-encryption with any monotonic access structures. Despite
our scheme is constructed in the random oracle model, it can
be proved CCA secure under the decisional q-parallel bilinear
Diffie-Hellman exponent assumption.

Keywords-Proxy Re-Encryption, Ciphertext-Policy Attribute-
Based Proxy Re-Encryption, Chosen-Ciphertext Security.

I. INTRODUCTION

Introduced by Sahai and Waters [1], Attribute-Based En-
cryption (ABE), which is a generalization of Identity-Based
Encryption (IBE), can effectively increase the flexibility of
data sharing such that only parties satisfying specific policy
are allowed to access the data. It comes in two flavors:
one is the Key-Policy ABE (KP-ABE), and the other is the
Ciphertext-Policy ABE (CP-ABE). In the former, ciphertexts
are labeled with attribute sets and private keys are associated
with access structures that specify which kinds of ciphertexts
the receiver is able to decrypt. In the latter, however, the case
is complementary. That is, ciphertexts are related to access
structures, and attribute sets are assigned to private keys.
ABE is applicable to many network applications, such as
targeted broadcast and audit log applications [2].

We use medical data sharing as an example to illustrate
the usage of CP-ABE and motivate our work. Suppose a
heart-disease patient Alice would like to find a clinic for
regular medical examination via an on-line medical service
agent (e.g., healthgrades1). The clinic must be within 10
km of Campbelltown, the doctors (assigned to her) of the

1http://www.healthgrades.com/.

clinic must be the senior attending doctors and be expert
at cardiology. For convenience, we denote the requirements
as I1 = {Cardiology ∧ Senior Attending Doctor ∧
Location : within 10 km of Campbelltown}. Without
loss of confidentiality, Alice prefers to encrypt the record
under I1 (i.e. Enc(I1,mAlice)) before sending to the on-line
agent. The agent (that knows I1) then searches candidates
satisfying I1 in its database. Suppose there is a clinic
matching I1. The agent forwards the ciphertext to the clinic.
Here the agent cannot access the medical data without
knowledge of the private key corresponding to the ciphertext.

Upon receiving the ciphertext, the clinic satisfying I1
can access Alice’s record using its private key. To main-
tain the record, the clinic may back up the ciphertext
locally. Suppose some medical cooperation is required in
the process of the treatment, Alice’s record has to be
transferred to hospitals with the following requirements.
The hospitals have to be within 15 km of Hurstville, and
the doctors (assigned to the cooperation) of the hospitals
should be the attending or chief doctors and must be expert
at cardiology as well. Denote the requirements as I2 =
{Cardiology ∧ (Attending Doctor ∨ Chief Doctor) ∧
Location : within 15 km of Hurstville}. Suppose there
are two hospitals, say A and B, which satisfy I2.

Traditionally, sharing Alice’s medical record with A and
B (without losing confidentiality), the clinic has to first
recover mAlice and further encrypt the record under I2 (i.e.
Enc(I2,mAlice)) before sending to hospitals. However, if
there are N patients who need to be cooperatively treated,
the clinic suffers from N pairs of encryption and decryption
for the patients’ records (See Fig. 1). This might be unde-
sirable in practice due to high computational complexity.

To make data sharing be more efficiently, Proxy Re-
Encryption (PRE) is proposed. Defined by Blaze, Bleumer
and Strauss [3], PRE supports the delegation of decryption
rights. It allows a semi-trusted party called proxy to trans-
form a ciphertext intended for Alice into another ciphertext
of the same plaintext intended for Bob. The proxy, however,
learns neither the decryption keys nor the underlying plain-
text. PRE is applicable to many applications, such as secure



Figure 1. Traditional Attribute-Based Encryption Data Sharing

distributed files systems [4] and email forwarding [3].
To date, PRE has been extended to adapt the context

of ABE. Liang et al. [5] proposed the first Ciphertext-
Policy Attribute-Based PRE (CP-ABPRE) scheme, in which
a proxy is allowed to transform a ciphertext under a specified
access policy into the one under another access policy (i.e.
attribute-based re-encryption).

Using CP-ABPRE the medical records sharing can be
efficiently fulfilled (See Fig. 2). The clinic, acting as a
delegator, notifies a cloud server (acting as the proxy)
that the hospitals satisfying I2 (i.e., delegatees), should be
granted the decryption rights of the ciphertexts under I1.
The server will then transform the ciphertexts under I1 to
the ones under I2 using a re-encryption key (e.g., rkI1→I2
generated by the clinic), such that A and B (satisfying I2)
can access the records. Note that the server does not learn
the contents (of the medical records).

Previous CP-ABPRE schemes (e.g., [5], [6], [7]), how-
ever, are only secure against Chosen-Plaintext Attacks
(CPA). CPA security might be not sufficient in practice as
it only achieves the very basic security requirement, i.e.
secrecy against “passive” eavesdroppers. When CP-ABPRE
is implemented in a large system, a much wider array
of attacks are possible. For example, an adversary may
have control over ciphertexts so as to affect decryption
values or learn some partial information from decryption.
Therefore, it is desirable to propose CCA secure CP-ABPRE
in practice. However, the existence of CP-ABPRE with
chosen-ciphertext security has been open.

Another open problem left by previous CP-ABPRE
schemes (such as [5]), which only support AND-gates over
attributes, is how to support any monotonic access policy.
In practical use, it is desirable to enable a CP-ABPRE to
support expressive and flexible realization for access policy.
This paper also deals with this problem.

A. Our Contributions

In this work we formalize the definition for CP-ABPRE.
Specifically, in our definition an attribute set and an access
structure are required as auxiliary input to the re-encryption

key algorithm; meanwhile, an attribute set is required in
the input to the private key generation and decryption
algorithms.

Regarding to the security models, we propose the selective
access structure and chosen ciphertext security (IND-sAS-
CCA) notion for CP-ABPRE. Note that it is the first time to
define chosen ciphertext security model for CP-ABPRE in
the literature. We consider the IND-sAS-CCA game into two
different aspects: one is to allow the adversary to achieve an
original ciphertext as the challenge ciphertext; the other is
to allow the adversary to achieve a re-encrypted ciphertext
as challenge. We refer to the security of the former and
the latter as IND-sAS-CCA security at original ciphertext
(i.e. IND-sAS-CCA-Or) and IND-sAS-CCA security at re-
encrypted ciphertext (i.e. IND-sAS-CCA-Re), respectively.
We also show that the IND-sAS-CCA-Or security implies
selective collusion resistance, which is also named as selec-
tive master key security in [6].

As previously mentioned, the construction of a CP-
ABPRE with CCA security remains open. This paper pro-
poses the first single-hop unidirectional CP-ABPRE to tackle
the problem. It is worth mentioning that the existing CP-
ABPRE schemes (e.g., [5]) only support AND-gates on
(multi-valued) positive and negative attributes, while our
scheme provides any monotonic access formula. Despite our
scheme is constructed in the random oracle model, it can be
proved collusion resistant and IND-sAS-CCA secure under
the decisional q-parallel bilinear Diffie-Hellman exponent
(q-parallel BDHE) assumption.

Difficulty of Converting Previous CPA-Secure CP-
ABPRE to Be Secure against CCA. As stated in [5], the
CCA security construction for CP-ABPRE is a challenging
open problem. One might think that some cryptographic
primitives could help, such as the CHK transformation [8].
Despite the well-known CHK transformation can be used
to convert a CPA-secure PKE scheme to be secure against
CCA, it cannot be trivially employed in the PRE setting.
It is used to prevent ciphertext from being mutated, but
meanwhile, PRE allows transformation among ciphertexts. If
an encryptor uses the CHK transformation to guarantee the



Figure 2. Ciphertext-policy attribute-based proxy re-encryption

validity of ciphertexts, it will easily incur that the validity
of re-encryption results cannot be ensured. Thus, trivially
employ the transformation in a PRE scheme that often
results in Replayable CCA (RCCA) security [9]. The classic
examples are [10], [11].

Therefore, using the CHK transformation as a black box
to turn the existing CPA-secure CP-ABPRE schemes to be
secure against CCA that is not trivial. In section IV, we
show an efficient solution to address the difficulty.

B. Related Work

Please refer to our full paper [12] for the related work of
ABE, PRE and CP-ABPRE.

We compare our scheme with [5], [6], [7] in terms of
public/private key size, ciphertext/re-encryption key size,
re-encryption cost and properties (see Table 1). Let f be
the size of access formula, A be the number of attributes
on user’s private key, U be the number of all attributes
used in system, mv,+,− be multi-valued, positive and
negative attribute, respectively. Besides, denote ce and cp as
the computational cost of an exponentiation and a bilinear
pairing. To the best of our knowledge, our scheme is the
first of its kind to achieve CCA security and to support any
monotonic access formula (over attributes).

C. Organization

The remaining paper is organized as follows. In section II,
we introduce some basic definitions and security models for
CP-ABPRE. In section III, we review some primitives and
complexity assumption which are used in our scheme. In
section IV we propose an efficient CCA-secure CP-ABPRE
scheme. Finally, we conclude our work and discuss some
open problems in section V.

II. DEFINITIONS AND SECURITY MODELS

Definition 1: Access Structure [13]. Let
P = {P1, P2, ..., Pn} be a set of parties. A collection
AS ⊆ 2P is monotone if ∀B,C: if B ∈ AS and B ⊆ C
then C ∈ AS. An access structure (resp., monotonic access
structure) is a collection (resp., monotone collection) AS

of non-empty subsets of P , i.e., AS ⊆ 2P \ {∅}. The sets
in AS are called the authorized sets, and the sets not in AS
are called the unauthorized sets.

In this paper the role of the parties is taken by the
attributes. The access structure AS contains all authorized
sets of attributes. In this paper we work on monotone access
structures. As shown in [13], any monotone access structure
can be represented by a linear secret sharing scheme.

Definition 2: Linear Secret Sharing Schemes
(LSSS) [14]. A secret-sharing scheme Π over a set
of parties P is called linear (over Zp) if
• The shares for each party form a vector over Zp.
• There exists a matrix an M with l rows and n columns

called the share-generating matrix for Π. For all i =
1, ..., l, the ith row of M is labeled by a party ρ(i),
where ρ is a function from {1, ..., l} to P . When we
consider the column vector v = (s, r2, ..., rn), where
s ∈ Zp is the secret to be shared, and r2, ..., rn ∈
Zp are randomly chosen, then M · v is the vector of l
shares of the secret s according to Π. The share (M ·
v)i belongs to party ρ(i). For any unauthorized set, no
such constants exist. We use LSSS matrix (M,ρ) to
represent an access policy in this paper.

Every LSSS according to the definition achieves the linear
reconstruction property [13]. Suppose that Π is an LSSS for
the access structure AS. Let S ∈ AS (that is, S satisfies the
access structure; we also denote this case as S |= (M,ρ))
be any authorized set, and let I ⊂ {1, 2, ..., l} be defined as
I = {i : ρ(i) ∈ S}. There will exist constants {wi ∈ Zp}i∈I
such that

∑
i∈I wi · λi = s if {λi} are valid shares of any

secret s according to Π. Note that as shown in [13] {wi} can
be found (with knowledge of M and I) in time polynomial
in the size of the share-generating matrix M .

A. Definition of CP-ABPRE

Definition 3: A Single-Hop Unidirectional Ciphertext-
Policy Attribute-Based Proxy Re-Encryption (CP-ABPRE)
scheme consists of the following seven algorithms:

1) (param,msk) ← Setup(1k,U): on input a security



Table I
COMPARISON WITH [5], [6], [7]

Schemes Public/Private Ciphertext/ Re-Encryption Selective Model Attributes Expression
Key Size ReKey Size Cost /CCA Security

CP-ABPRE [5] O(U)/O(U) O(U)/O(U) O(U) · cp ! /# AND gates on + and −
CP-ABPRE [6] O(U2)/O(U) O(U)/O(U) O(U) · cp ! /# AND gates on mv and −
CP-ABPRE [7] O(U)/O(U) O(U)/O(U) O(1) · ce +O(U) · cp ! /# AND gates on + and −

Our CP-ABPRE O(1)/O(A) O(f)/O(A) O(A) · ce +O(A) · cp ! /! Any monotonic access formula

parameter k ∈ N and an attribute universe U , output a
public parameter param and a master secret key msk.

2) skS ← KeyGen(param,msk, S): on input param,
msk and an attribute set S that describes the key, output
a private key skS . Like traditional CP-ABE each private
key skS is associated with an attribute set S.

3) rkS→(M ′,ρ′) ← ReKeyGen(param, skS , S, (M
′, ρ′)):

on input param, a private key skS and the
corresponding attribute set S, and an access structure
(M ′, ρ′) for attributes over U , output a re-encryption
key rkS→(M ′,ρ′) that can be used to transform a
ciphertext under (M,ρ) to the one under (M ′, ρ′),
where S |= (M,ρ), (M,ρ) and (M ′, ρ′) are disjoint2.

4) C(M,ρ) ← Enc(param, (M,ρ),m): on input param,
an access structure (M,ρ) for attributes over U , and
a plaintext m ∈ {0, 1}k, output an original ciphertext
C(M,ρ) which can be further re-encrypted. Suppose the
access structure is implicitly included in the ciphertext.

5) CR(M ′,ρ′) ← ReEnc(param, rkS→(M ′,ρ′), C(M,ρ)): on
input param, a re-encryption key rkS→(M ′,ρ′), and
an original ciphertext C(M,ρ), output a re-encrypted
ciphertext CR(M ′,ρ′) if S |= (M,ρ) or a symbol ⊥
indicating either C(M,ρ) is invalid or S 2 (M,ρ). Note
that CR(M ′,ρ′) cannot be further re-encrypted.

6) m ← Dec(param, S, skS , C(M,ρ)): on input param,
an attribute set S and its corresponding private key skS ,
and an original ciphertext C(M,ρ), output a plaintext m
if S |= (M,ρ) or a symbol ⊥ indicating either C(M,ρ)

is invalid or S 2 (M,ρ).
7) m ← DecR(param, S′, skS′ , C

R
(M ′,ρ′)): on input

param, an attribute set S′ and its corresponding private
key skS′ , and a re-encrypted ciphertext CR(M ′,ρ′), output
a plaintext m if S′ |= (M ′, ρ′) or a symbol ⊥ indicating
either CR(M ′,ρ′) is invalid or S′ 2 (M ′, ρ′).

For simplicity, we omit param in the expression of the
algorithm inputs in the rest of the paper.

Correctness: For any k ∈ N, any attribute set S
(S ⊆ U) with its cardinality polynomial to k, any access

2Suppose (M,ρ) and (M ′, ρ′) are two access structures. For any attribute
x satisfies (M,ρ), x does not satisfy (M ′, ρ′). For such a case, from now
on, we say that (M,ρ) and (M ′, ρ′) are disjoint.

structure (M,ρ) for attributes over U and any message
m ∈ {0, 1}k, if (param,msk) ← Setup(1k,U), skS ←
KeyGen(msk, S), for all S used in the system, we have

Dec(S, skS , Enc((M,ρ),m)) = m;

DecR(S′, skS′ , ReEnc(ReKeyGen(skS , S, (M
′, ρ′)),

Enc((M,ρ),m))) = m,

where S |= (M,ρ) and S′ |= (M ′, ρ′).

B. Security Models

Definition 4: A single-hop unidirectional CP-ABPRE
scheme is IND-sAS-CCA secure at original ciphertext if no
probabilistic polynomial time (PPT) adversaryA can win the
game below with non-negligible advantage. In the game, C
is the game challenger, k and U are the security parameter
and attribute universe.

1) Initialization. A outputs a challenge access structure
(M∗, ρ∗) to C.

2) Setup. C runs Setup(1k,U) and sends param to A.
3) Phase I. A is given access to the following oracles.

a) Private key extraction oracle Osk(S): on input an
attribute set S, C returns skS ← KeyGen(msk, S)
to A.

b) Re-encryption key extraction oracle Ork(S, (M ′,
ρ′)): on input an attribute set S, and an ac-
cess structure (M ′, ρ′), C returns rkS→(M ′,ρ′) ←
ReKeyGen(skS , S, (M ′, ρ′)) to A, where skS ←
KeyGen(msk, S).

c) Re-encryption oracle Ore(S, (M ′, ρ′), C(M,ρ)):
on input an attribute set S, an access
structure (M ′, ρ′), and an original
ciphertext C(M,ρ), C returns CR(M ′,ρ′) ←
ReEnc(rkS→(M ′,ρ′), C(M,ρ)) to A, where
rkS→(M ′,ρ′) ← ReKeyGen(skS , S, (M

′, ρ′)),
skS ← KeyGen(msk, S) and S |= (M,ρ).

d) Original ciphertext decryption oracle
Od2(S,C(M,ρ)): on input an attribute set S and an
original ciphertext C(M,ρ), C returns m ← Dec(S,
skS , C(M,ρ)) to A, where skS ← KeyGen(msk, S)
and S |= (M,ρ).

e) Re-encrypted ciphertext decryption oracle Od1(S′,
CR(M ′,ρ′)): on input an attribute set S′ and



a re-encrypted ciphertext CR(M ′,ρ′), C returns
m ← DecR(S′, skS′ , CR(M ′,ρ′)), where skS′ ←
KeyGen(msk, S′) and S′ |= (M ′, ρ′).

Note that if the ciphertexts queried to oracles Ore, Od2
and Od1 are invalid, C simply outputs ⊥. In this phase
the following queries are forbidden to issue:
• Osk(S) for any S |= (M∗, ρ∗); and
• Ork(S, (M ′, ρ′)) for any S |= (M∗, ρ∗), and
Osk(S′) for any S′ |= (M ′, ρ′).

4) Challenge. A outputs two equal length messages m0

and m1 to C. C returns C∗(M∗,ρ∗) ← Enc((M∗, ρ∗),
mb) to A, where b ∈R {0, 1}.

5) Phase II. A makes further queries except the following:
a) Osk(S) for any S |= (M∗, ρ∗);
b) Ork(S, (M ′, ρ′)) for any S |= (M∗, ρ∗), and
Osk(S′) for any S′ |= (M ′, ρ′);

c) Ore(S, (M ′, ρ′), C∗(M∗,ρ∗)) for any S |= (M∗, ρ∗),
and Osk(S′) for any S′ |= (M ′, ρ′);

d) Od2(S,C∗(M∗,ρ∗)) for any S |= (M∗, ρ∗); and
e) Od1(S′, CR(M ′,ρ′)) for any CR(M ′,ρ′), S

′ |= (M ′, ρ′),
where CR(M ′,ρ′) is a derivative of C∗(M∗,ρ∗). As
of [15], the derivative of C∗(M∗,ρ∗) is defined below.

i. C∗(M∗,ρ∗) is a derivative of itself.
ii. If A has issued a re-encryption key query

on (S, (M ′, ρ′)) to obtain the re-encryption
key rkS→(M ′,ρ′), and achieved CR(M ′,ρ′) ←
ReEnc(rkS→(M ′,ρ′), C

∗
(M∗,ρ∗)), then CR(M ′,ρ′)

is a derivative of C∗(M∗,ρ∗), where S |=
(M∗, ρ∗).

iii. If A has issued a re-encryption query on
(S, (M ′, ρ′), C∗(M∗,ρ∗)) and obtained the re-
encrypted ciphertext CR(M ′,ρ′), then CR(M ′,ρ′) is
a derivative of C∗(M∗,ρ∗), where S |= (M∗, ρ∗).

6) Guess. A outputs a guess bit b′ ∈ {0, 1}.
The advantage of A is defined as ε1 =
AdvIND−sAS−CCA−OrCP−ABPRE,A (1k,U) = |Pr[b′ = b]− 1

2 |.
Definition 5: A single-hop unidirectional CP-ABPRE

scheme is IND-sAS-CCA secure at re-encrypted ciphertext if
the advantage ε2 = AdvIND−sAS−CCA−ReCP−ABPRE,A (1k,U) is negli-
gible for any PPT adversary A in the following experiment.
Set O1 = {Osk, Ork, Ore, Od2, Od1}.

ε2 = |Pr[b′ = b : ((M∗, ρ∗), State1)← A(1k); (param,

msk)← Setup(1k,U); (m0,m1, (M,ρ), State2)← AO1

(param, State1); b ∈R {0, 1};CR∗(M∗,ρ∗) ← ReEnc(

rkS→(M∗,ρ∗), C(M,ρ)); b
′ ← AO1(CR∗(M∗,ρ∗), State2)]− 1

2
|,

where State1 and State2 are the state information,
(M,ρ) and (M∗, ρ∗) are disjoint, (M∗, ρ∗) is the chal-
lenge access structure, S |= (M,ρ), rkS→(M∗,ρ∗) ←
ReKeyGen(skS , S, (M

∗, ρ∗)), C(M,ρ) ← Enc((M , ρ),

mb), Osk,Ork,Ore,Od2,Od1 are the oracles defined in
Definition 4 (but) with the following constraints. For Osk,
the query on S is forbidden to issue for any S |= (M∗, ρ∗).
For Ork, it works as in the IND-sAS-CCA-Or game. Ore
will output ⊥ if A queries invalid original ciphertexts or
re-encrypted ciphertexts. There is no restriction for Od2
except that the oracle will reject invalid original ciphertexts.
If A queries to Od1 on (S,CR∗(M∗,ρ∗)) or invalid re-encrypted
ciphertexts, the oracle outputs ⊥, where S |= (M∗, ρ∗).

We now proceed to the selective collusion resistance for
CP-ABPRE. Like collusion resistance defined in traditional
PRE, this security notion also guarantees that a dishonest
proxy cannot compromise the entire private key of the
delegator even it colludes with the corresponding delegatee.
However, an adversary is required to output an attribute
set that it wishes to attack before the setup phase. The
selective collusion resistance model can be defined via the
identical manner introduced in [5], [6], we hence omit the
details. Instead, we prefer to show that the IND-sAS-CCA-
Or security already implies selective collusion resistance.

Theorem 1: Suppose a single-hop unidirectional CP-
ABPRE scheme is IND-sAS-CCA-Or secure, then it is
selective collusion resistant as well.

Please refer to [12] for the proof of Theorem 1.

III. PRELIMINARIES

Bilinear Maps. Let BSetup denote an algorithm that,
on input the security parameter 1k, outputs the parame-
ters for a bilinear map as (p, g,G,GT , e), where G and
GT are two multiplicative cyclic groups with prime order
p ∈ Θ(2k) and g is a generator of G. The efficient mapping
e : G × G → GT has three properties: (1) Bilinearity: for
all g ∈ G and a, b ∈R Z∗p, e(ga, gb) = e(g, g)ab; (2) Non-
degeneracy: e(g, g) 6= 1GT , where 1GT is the unit of GT ;
(3) Computability: e can be efficiently computed.

Complexity Assumption.
Definition 6: Decisional q-parallel BDHE

Assumption [14]. Given a tuple y=

g, gs, ga, ..., ga
q

, ga
q+2

, ..., ga
2q

∀1≤j≤q gs·bj , ga/bj , ..., ga
q/bj , ga

q+2/bj , ..., ga
2q/bj

∀1≤j,k≤q,k 6=j ga·s·bk/bj , ..., ga
q·s·bk/bj ,

the decisional q-parallel BDHE problem is to decide whether
T = e(g, g)a

q+1·s, where a, s, b1, ..., bq ∈R Zp, T ∈R GT
and g is a generator of G. Define AdvD−q−parallelBDHEA =

|Pr[A(y, e(g, g)a
q+1·s) = 0] − Pr[A(y, T ) = 0]| as the

advantage of adversary A in winning the decisional q-
parallel BDHE problem. We say that the decisional q-parallel
BDHE assumption holds in (G,GT ) if no PPT algorithm has
non-negligible advantage.

Target Collision Resistant (TCR) Hash Function. The
definition of TCR hash function can be found in [16] we
hence omit the details.



IV. A NEW CP-ABPRE WITH CCA SECURITY

In this section we propose a new CP-ABPRE in the
random oracle model with CCA security. Prior to describing
the scheme, we introduce some intuition behind our con-
struction. We choose Waters ABE [14] as a basic building
block due to the following reasons. Waters ABE utilizes
LSSS to support any monotonic access formula that is a
desirable and practical property for our system. Besides,
the construction technique for ciphertexts, which ensures
ciphertext size to be linear in the size of formula other than
all system attributes, enables us to relieve the communication
cost incurred by re-encrypted ciphertext and re-encryption
key.

Our CP-ABPRE works as follows. Unless stated other-
wise, we let U be the attribute universe in the system, and
S be an attribute set, S ⊆ U .

1) Setup(1k,U). Given a security parameter k and the at-
tribute universe U , run (p, g,G,GT , e)← BSetup(1k).
Choose two random values a, α ∈ Z∗p, a random
generator g1 ∈ G, and set the following TCR hash
functions H1 : {0, 1}2k → Z∗p, H2 : GT → {0, 1}2k,
H3 : {0, 1}∗ → G, H4 : {0, 1}∗ → G, H5 : {0, 1}k →
Z∗p, H6 : {0, 1}∗ → G. The public parameters are
param = (p, g, G, GT , e, g1, ga, e(g, g)α, H1,
H2, H3, H4, H5, H6), and the master secret key is
msk = gα.

2) KeyGen(msk, S). Given a master secret key msk and
an attribute set S, choose t ∈R Z∗p, and set the private
key skS as

K = ga·t · gα, L = gt,∀x ∈ S Kx = H3(x)t.

3) Enc((M,ρ),m). Taking an LSSS access structure
(M,ρ) (M is an l × n matrix, and the function ρ
associates rows of M to attributes) and a message
m ∈ {0, 1}k as input, the encryption algorithm works
as follows.

a) Choose β ∈R {0, 1}k, set s = H1(m,β) and a ran-
dom vector v = (s, y2, ..., yn), where y2, ..., yn ∈R
Z∗p.

b) For i = 1 to l, set λi = v ·Mi, where Mi is the
vector corresponding to the ith row of M .

c) Choose r1, ..., rl ∈R Z∗p, set A1 =
(m||β) ⊕ H2(e(g, g)α·s), A2 = gs, A3 = gs1,
B1 = (ga)λ1 · H3(ρ(1))

−r1 , C1 = gr1 ,
..., Bl = (ga)λl · H3(ρ(l))

−rl , Cl = grl ,
D = H4(A1, A3, (B1, C1), ..., (Bl, Cl), (M,ρ))s,
and output the original ciphertext C(M,ρ) = ((M,ρ),
A1, A2, A3, (B1, C1), ..., (Bl, Cl), D). Note that
{ρ(i)|1 ≤ i ≤ l} are the attributes used in the access
structure (M,ρ). Like [14], we allow an attribute to
be associated with multiple rows of matrix M , i.e.
the function ρ is not injective.

4) ReKeyGen(skS , S, (M
′, ρ′)). Given a private key

skS = (K,L,Kx) and the corresponding attribute
set S, and an LSSS access structure (M ′, ρ′), the re-
encryption key is generated as follows, where x ∈ S,
M ′ is an l′ × n′ matrix, and the function ρ′ associates
rows of M ′ to attributes.

a) Choose β′, δ ∈R {0, 1}k, set s′ = H1(δ, β′)
and a random vector v′ = (s′, y′2, ..., y

′
n′), where

y′2, ..., y
′
n′ ∈R Z∗p.

b) For i = 1 to l′, set λ′i = v′ ·M ′i , where M ′i is the
vector corresponding to the ith row of M ′.

c) Choose r′1, ..., r′l′ ∈R Z∗p, compute
A′1 = (δ||β′) ⊕ H2(e(g, g)α·s

′
), A′2 = gs

′
,

B′1 = (ga)λ
′
1 · H3(ρ′(1))

−r′1 , C ′1 = gr
′
1 , ...,

B′l′ = (ga)λ
′
l′ · H3(ρ′(l′))

−r′
l′ , C ′l′ = gr

′
l′ , D′ =

H6(A′1, A
′
2, (B

′
1, C

′
1), ..., (B′l′ , C

′
l′), S, (M

′, ρ′))s
′
,

and output C(M ′,ρ′) = ((M ′, ρ′), A′1, A′2, (B′1, C
′
1),

..., (B′l′ , C
′
l′), D′).

d) Choose θ ∈R Z∗p, and set rk1 = KH5(δ) · gθ1 , rk2 =

gθ, rk3 = LH5(δ), ∀x ∈ S Rx = K
H5(δ)
x , rk4 =

C(M ′,ρ′), and output the re-encryption key
rkS→(M ′,ρ′) = (S, rk1, rk2, rk3, rk4, Rx).

5) ReEnc(rkS→(M ′,ρ′), C(M,ρ)). Parse the original ci-
phertext C(M,ρ) as ((M,ρ), A1, A2, A3, (B1, C1), ...,
(Bl, Cl), D), and the re-encryption key rkS→(M ′,ρ′) as
(S, rk1, rk2, rk3, rk4, Rx). Recall that M is an l × n
matrix. Let I ⊂ {1, ..., l} be defined as I = {i :
ρ(i) ∈ S}, {wi ∈ Z∗p}i∈I be a set of constants such
that

∑
i∈I wi · λi = s if {λi} are valid shares of any

secret s according to M and S |= (M,ρ)3.
a) Verify whether the re-encryption key rkS→(M ′,ρ′)

contains valid S and (M ′, ρ′) or not

e(A′2, H6(A
′
1, A

′
2, (B

′
1, C

′
1), ..., (B

′
l′ , C

′
l′), S, (M

′, ρ′)))
?
= e(g,D′).

b) Verify the validity of the original ciphertext

e(A2, g1)
?
= e(g,A3), e(A3, H4(A1, A3, (B1, C1), ...,

(Bl, Cl), (M,ρ)))
?
= e(g1, D), S

?

|= (M,ρ),

e(
∏
i∈I

Bwii , g)
?
= e(A2, g

a) ·
∏
i∈I

(e(C−1
i , H3(ρ(i))

wi)).

(1)

If Eq. (1) does not hold, output ⊥. Otherwise,
proceed.

c) Compute A4 = e(A2,rk1)/e(A3,rk2)
(
∏
i∈I(e(Bi,rk3)·e(Ci,Rρ(i)))wi )

, and
output the re-encrypted ciphertext CR(M ′,ρ′) = (S,
(M,ρ), A1, A3, (B1, C1), ..., (Bl, Cl), D, A4, rk4).

6) Dec(S, skS , C(M,ρ)). Parse the original ciphertext
C(M,ρ) as ((M,ρ), A1, A2, A3, (B1, C1), ..., (Bl, Cl),

3As stated in [13], [14], with knowledge of M and I one can find the
values wi satisfying

∑
i∈I wi · λi = s.



D), and the private key skS (for an attribute set S)
as (K,L,Kx) (x ∈ S). Note that let I ⊂ {1, ..., l} be
defined as I = {i : ρ(i) ∈ S}, {wi ∈ Z∗p}i∈I be a set
of constants such that

∑
i∈I wi · λi = s.

a) Verify Eq. (1). If Eq. (1) does not hold, output ⊥.
Otherwise, proceed.

b) Compute Z = e(A2,K)/(
∏
i∈I(e(Bi, L) ·

e(Ci,Kρ(i)))
wi) and m||β = H2(Z) ⊕ A1, output

m if A3 = g
H1(m,β)
1 , and output ⊥ otherwise.

7) DecR(S′, skS′ , C
R
(M ′,ρ′)). Parse the re-encrypted ci-

phertext CR(M ′,ρ′) as (S, (M,ρ), A1, A3, (B1, C1), ...,
(Bl, Cl), D, A4, rk4), and the private key skS′ (for an
attribute set S′) as (K ′, L′,K ′x) (x ∈ S′).

a) Recover δ||β′ as follows. Let I ′ ⊂ {1, ..., l′} be
defined as I ′ = {i : ρ′(i) ∈ S′}, {w′i ∈ Z∗p}i∈I′
be a set of constants such that

∑
i∈I′ w

′
i · λ′i = s′ if

{λ′i} are valid shares of any secret s′ according to
M ′ and S′ |= (M ′, ρ′).
i) Verify the validity of rk4

e(A′2, H6(A
′
1, A

′
2, (B

′
1, C

′
1), ..., (B

′
l′ , C

′
l′), S,

(M ′, ρ′)))
?
= e(g,D′), S′

?

|= (M ′, ρ′).
(2)

If Eq. (2) does not hold, output ⊥. Otherwise,
proceed.

ii) Compute Z ′ = e(A′2,K
′)/(

∏
i∈I′(e(B

′
i, L
′) ·

e(C ′i,K
′
ρ′(i)))

w′i) and δ||β′ = H2(Z ′)⊕A′1, pro-
ceed if A′2 = gH1(δ,β

′), and output ⊥ otherwise.

b) Compute m||β = H2(A
1

H5(δ)

4 ) ⊕ A1, output m if
A3 = g

H1(m,β)
1 , D = H4(A1, A3, (B1, C1), ...,

(Bl, Cl), (M,ρ))H1(m,β) and S |= (M,ρ), and
output ⊥ otherwise.

• Correctness for Original Ciphertext.

Z = e(A2,K)/(
∏
i∈I

(e(Bi, L) · e(Ci,Kρ(i)))
wi)

=
e(gs, ga·t · gα)

(
∏
i∈I(e(g

a·λi ·H3(ρ(i))−ri , gt) · e(gri , H3(ρ(i))t))wi)

=
e(gs, ga·t · gα)

e(g, ga·t)
∑
i∈I λi·wi

= e(gs, gα),

then H2(Z) ⊕ A1 = H2(e(gs, gα)) ⊕ (m||β) ⊕
H2(e(g, g)α·s) = m||β.

• Correctness for Re-Encrypted Ciphertext.

A4 =
e(A2, rk1)/e(A3, rk2)

(
∏
i∈I(e(Bi, rk3) · e(Ci, Rρ(i)))wi)

=
e(gs, gα·H5(δ)) · e(gs, ga·t·H5(δ))

e(g, ga·t·H5(δ))
∑
i∈I λi·wi

= e(gs, gα·H5(δ)),

then H2(A
1

H5(δ)

4 ) ⊕ A1 = H2(e(g, g)α·s·H5(δ))
1

H5(δ) ⊕
(m||β)⊕H2(e(g, g)α·s) = m||β.

Before giving the formal security analysis, we first give
some intuition as to why the scheme is secure against

CCA. For the CCA security of original ciphertext, we let
C∗(M∗,ρ∗) = ((M∗, ρ∗), A∗1, A∗2, A∗3, (B∗1 , C

∗
1 ), ..., (B∗l , C

∗
l ),

D∗) be the challenge ciphertext of mb. Suppose an adversary
A who follows the constraints defined in Definition 4 will
try to get extra advantage in guessing b by using Ore and
Od2. Specifically, A might mutate the challenge ciphertext,
and submit the resulting ciphertext to Ore and Od2. From
Eq. (1), the challenger can tell the change. This is so because
A∗1, A∗3, (B∗1 , C

∗
1 ), ..., (B∗l , C

∗
l ) are bound by D∗ as well

as the description of (M∗, ρ∗), where D∗ is a “signature”
for the components. Besides, the integrity of A∗2 is bound
by A∗3. If the ciphertext is mutated, Eq. (1) will not hold.
Therefore, no extra advantage in guessing b leaks to A.

For the CCA security of re-encrypted ciphertext, we let
CR∗(M∗,ρ∗) = (S, (M,ρ), A∗1, A∗3, (B∗1 , C

∗
1 ), ..., (B∗l , C

∗
l ),

D∗, A∗4, rk∗4) be the challenge ciphertext of mb. Following
Definition 5, A will try to gain extra advantage in winning
the game with the help of Od1. Note that here given Ore A
cannot achieve extra advantage as our scheme is single-hop,
i.e. re-encrypted ciphertexts cannot be further converted.

Given CR∗(M∗,ρ∗) A cannot mutate the ciphertext and issue
the resulting ciphertext to Od1 such that the oracle outputs a
valid decryption value without any rejection. This is because
A∗1, A∗3, (B∗1 , C

∗
1 ), ..., (B∗l , C

∗
l ) and (M,ρ) are bound by

D∗; meanwhile, S and (M∗, ρ∗) are bound by rk∗4 , where
rk∗4 is secure against CCA4. The only consideration left is
the integrity of A∗4. We state that if A∗4 is mutated, the chal-
lenger can tell the change with non-negligible probability.
Please refer to the proof for details. Hence A cannot acquire
extra advantage by using Od1.

Therefore we have the following theorems.
Theorem 2: Suppose the decisional q-parallel BDHE as-

sumption holds in (G,GT ), and H1, H2, H3, H4, H5, H6

are the TCR hash functions, our CP-ABPRE scheme is IND-
sAS-CCA-Or secure in the random oracle model.

Theorem 3: Suppose the decisional q-parallel BDHE as-
sumption holds in (G,GT ), and H1, H2, H3, H4, H5, H6

are the TCR hash functions, our CP-ABPRE scheme is IND-
sAS-CCA-Re secure in the random oracle model.

Please refer to [12] for the proof of Theorem 2 and
Theorem 3.

V. CONCLUSION

In this work we proposed a new single-hop unidirec-
tional CP-ABPRE scheme, which supports attribute-based
re-encryption with any monotonic access structure, to tackle
the open problems left by the existing CP-ABPRE schemes.
We also proved our scheme to be collusion resistant and
IND-sAS-CCA secure in the random oracle model assuming
the decisional q-parallel BDHE assumption holds.

4It can be seen that D′ is a “signature” for all the components contained
in rk∗4 (except D′ itself) and S, and A′2 is the “verification key”.



Removing the ROM. The technique introduced in [17],
[18] might be a possible approach to remove random oracles.
We leave this as our future work.

This paper also motivates some interesting open problems,
for example, how to construct a CCA secure CP-ABPRE
scheme in the adaptive access structure model, i.e. achieving
IND-aAS-CCA security.
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