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Abstract

A circle packing is a configuratioR of circles realizing a specified pattern of tangencies. Radii of packings in
the euclidean and hyperbolic planes may be computed using an iterative process suggested by William Thurston.
We describe an efficient implementation, discuss its performance, and illustrate recent applications. A central role
is played by new and subtle monotonicity results for “flowers” of circles.
0 2003 Elsevier Science B.V. All rights reserved.
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Introduction

A circle packing is a configuratio® of circles realizing a specified pattern of tangencies. As such,
it enjoys dual natures-eembinatoricin the pattern of tangencies, encoded in an abstract “com@ex”
andgeometricin the radii of the circles, represented by a radius “lall’As an early example, Fig. 1
displays a simple complek and a circle packing having its combinatorics. More substantial packings
involve several hundred thousand circles.

Our problem. Given a complexk and appropriate “boundary conditions”, compute the radii of the
corresponding circle packing fdg.
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Fig. 1. A simple packing example.

There now exists a rather complete theory covering the existence and uniqueness of these radii. In this
paper we describe an efficient algorithm for numerically approximating them in euclidean and hyperbolic
geometry.

Though circle packings appear first with Koebe [23], they were rediscovered by William Thurston
in [34]. (Important note: our circle packings are NOT those in the extensive “sphere packing” literature.)
Thurston conjectured in 1985 [35] that maps between circle packings could be used in the approximation
of classical conformal (analytic) mappings. His conjecture was confirmed by Rodin and Sullivan [29].
Since then, many additional uses of circle packings, both practical and theoretical have emerged: discrete
conformal mapping [16-19,33], analytic function theory [13-15,27,28,31], graph embedding [24,25],
discrete potential theory [4,32], conformal tilings [9], and Riemann surface theory [1,6,7,10,37,38]. There
is a significant experimental component to circle packing, so both theory and applications benefit from
an efficient implementation.

In computing packing label®R, one faces large, highly nonlinear, nonstructured, heterogeneous
systems of equations. The underlying geometry plays a central role, with a mixture of local and global
considerations which reflects the “discrete conformal” nature of circle packings; in particular, the system
displays certain characteristics of classical discrete Laplace equations, including conserved geometric
quantities. The global strategy in our packing algorithm, akin to “relaxation”, was suggested by Thurston.
Alternate approaches involving energy minimization and convexity [11] and random walks [32] have
been suggested, but to our knowledge, not implemented on a significant scale.

The key implementation issues in our iterative approach are local in nature, depending heavily on the
special properties of circles, and in particular, on a new “monotonicity” result of independent geometrical
interest. We describe our algorithm in the context of the simplest Dirichlet-type problem; however, the
implementation handles much more general situations and is now incorporated in the software package
Gi r cl ePack developed by the second author.

In the next section we start with definitions and notation and describe the basic Dirichlet problem.
In Section 2 we give the monotonicity properties of local circle patterns which are key both in theory
and practice. The global iterative strategy is described in Section 3, with emphasis on the local/global
interaction. In Section 4 we lay out our implementation and discuss rates of convergence, stability,
and speed, and provide sample run data. The final section concerns more general circle packings, opel
guestions, and selected applications.
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1. Definitions and notation

The principal objects of concern are circle packingstheir complexesk, and their associated
labels (putative radii)R. In fact, the numerical manipulations involve onky and R: one solves for
the labelR satisfying desired boundary conditions and meeting numerical “packing” conditions which
reflect local geometric compatibility. The circle packing itself results from a simple laying-out process
and in particular, circle centers play a purely secondary role.

Geometries. Our algorithm applies in both the euclidean and hyperbolic settings. The euclidean plane is
the familiar complex plan€. The hyperbolic plane will be represented in the Poincare disc model: that is,
it consists of the open unit dif2 = {|z| < 1} equipped with the Riemannian metric of constant curvature
—1 having length eIemerﬁ%. Note that hyperbolic circles iD are also euclidean circles, though with
hyperbolic centers and radii. Horocycles, circles internally tangedDtanay be consistently treated as
circles of infinite hyperbolic radius with centers at their points of tangency.

Complexes. Packing combinatorics are encoded in abstract simplicial 2-compléxesich triangulate
oriented topological surfacedVe restrict to the case in whicK is a finite triangulation of a closed
topological dis¢ so we have a finite number of vertices (0-simplices), edges (1-simplices), and faces
(oriented 2-simplices). (See the concluding section for comments on the more general cases.)

The vertices ofK are of two types, interior and boundary..fand v are neighboring vertices (i.e.,
(u,v) is an edge ofK) we write u ~ v. A vertexv and its neighbors form a (combinatorial) flower,
F, ={v;vq,..., v} the petalsy; are listed in counterclockwise order abautvith v;.1 ~ v;; k is the
degree ofv, degv). Whenv is interior, the list of petals is closed; writing_.1; = vy, v belongs to th&
faces{(v,v;,vj11): j=1,...,k}. To avoid minor pathologies, we assume that the set of interior vertices
of K is edge-connected and that every boundary vertex has an interior neighbor.

Packings. A configurationP of circles in the (euclidean or hyperbolic) plane isigcle packingfor K
if it has a circlec, associated with each vertexof K so that the following conditions hold: (1) {i, v)
is an edge oK, thenc, andc, are (externally) tangent, and (2)(if, v, w) is a positively oriented face
of K, then{(c,, ¢,, c,,) iS @ positively oriented triple of mutually tangent circles.

We emphasize that there m® univalencecondition (as occurs in certain parts of the circle packing
literature); that is, when verticasandu are not neighbors, then there is no guarantee that their circles
andc, have mutually disjoint interiors.

Labels. A label for K is a functionR : K@ — (0, o] assigning an (extended) positive value to each
vertex of K; write K(R) for the labeled complex. The archetype, of course, is the “radius label” taken
from a packingP for K, wherein R(v) = radiugc,). In this case we writeK (R) <> P to indicate

the association. (Note that the label is permitted only in the hyperbolic setting, and then only for
boundary vertices.) The collection of all labétsfor K will be denotedR. Of course, in general a label
represents only putative radii; it could not be associated with a coherent configuration of circles unless
rigid compatibility conditions were satisfied.
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Fig. 2. Triples in the euclidean and hyperbolic planes.

Angle sums. Those all-important compatibility conditions on labels are entirely local in our setting.
Local compatibility at a vertex involves the labels of the floweF, and is expressed in terms of an
angle sung.

We describe the euclidean case first. Given labels z € (0, 00), lay out a mutually tangent triple
(cx, ¢y, c;) Of circles in the plane with radi, y, z and connect the circle centers with geodesic segments
to form a triangleT, as in Fig. 2(a). The triangl& is unique up to rigid motions and the angleTfat
the center ot,, denoted by (x; y, z), can be computed from the labels using the law of cosines:

x+y)2+@x+22%—( +z)2}
2x + y)(x +2) '

Consider a vertex and its flowerF, = {v; vy, ..., v} in K. The sum of angles associated witln the
various facesv, u, w) € K is termed theangle sumat v for label R, denoted

6(; R)= ) a(R@); Rw), Rw)),
(v,u,w)

where the sum is over fac€s, u, w) € K. If {r;r1,...,r;} denotes the labels fromk for F,, then
the angle sum depends only on these labels. Assumisgnterior, it belongs td faces and, abusing
notation, we writed (v; R) =0 (r;r1, ..., 1) = Y5y a(r; 7}, rj4).

An elementary but crucial observatiof:set of circles,, c,,, ..., ¢,, with the labels fromR as radii
will fit together coherently in the plane if and onlyifv; R) = 2w n for some integer > 1. In this case,
the petal circles will wrap precisely times around:,. A nine-petal flower is shown in Fig. 3: in (a)
the petals wrap once,= 1; in (b), petals of the same radii wrap twice around the smaller center circle,
n = 2. Angle sums are defined similarly at boundary verticglsut since their petals are not required to
form a closed chain, a coherent open flower exists irrespective of the angle sum.

The totality of angle sums for the vertices of a labeled com@é®) may be treated as a point in
angle spaceA. Thusé is a map from label space to angle spateR — A.

Moving to hyperbolic geometry, similar local considerations apply; recall that in our disc model,
hyperbolic geodesics are arcs of euclidean circles which intef&eit right angles. See Fig. 2(b) and

a(x;y,z) =arcco (1.2)
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Fig. 3. Nine-petal flowers.

(c) for sample triples, the latter having a vertex at the ideal boundary. As in the euclidean case, any
triple of labelsx, y, z € (0, oo] determines a geodesic trianglein the hyperbolic plane, unique up to
rigid motions (i.e., Mdbius transformations DBf), and it determines an angdgx; y, z) at the center of
the circle of radiusc. The formula fore, to be given later, involves now the hyperbolic cosine law and
must accommodate infinite radii. The angle stim R) is defined as before and has the same geometric
implications.

Now for the result which motivates our computational effort:

Definition 1.1. Given a complexX, a labelR is said to satisfy theacking conditiorat an interior vertex
v € R if 6(v; R) = 2rn for some integer > 1. The labelR is said to be gacking labelif the packing
condition is satisfied at every interior vertex.

The next theorem says that under our assumption Kha&iiangulates a closed topological disc, the
local compatibility conditions are enough to ensure a circle packing. For the proof of the theorem see [3].
(In more general multiply-connected cases, global compatibility conditions also enter.)

Theorem 1.2. Given a labeled compleX (R), a necessary and sufficient condition for existence of a
circle packingP with P <~ K (R) is that R be a packing label. In this cas®, is uniquely determined up
to rigid motions(isometrie% of the euclidean or hyperbolic plane, as appropriate.

The angle sum mag is nonnegative (positive in the euclidean case) and its value at a wergex
bounded byr degv). If v is interior,0(v; R) = 27 n, andn > 2, then the label is said to havebeanch
point of ordern — 1 atv; a packing label with one or more branch points is calldatanchedpacking
label. In computing packing labels, the branch structure (branch points and their orders) is specified in
advance.

Definition 1.3. Given the complexX, an angle suntarget function A assigns to each interior vertex
a valueA(v) = 2nn, wheren — 1 is the desirearder of branching at vertex. Thedefaulttarget is no
branching, = 1.
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References to the target angle sums will generally be suppressed until they arise in actual
computations. Dubejko [12] has established the following necessary and sufficient conditiofis for
The functionA can be the target function for a circle packing &fif and only if, for any simple closed
edge-pathy in K,

Y (A) —271) < (k=

vey°

where the sum is over verticesnterior to y andk is the number of edges in. We assume henceforth
that A satisfies these (purely combinatorial) conditions. Nothing will be lost if the reader assumes the
default target, which is always legal.

The packings we intend to compute are guaranteed by the following fundamental existence and
uniqueness result:

Theorem 1.4 (The Dirichlet Problem)Let K be a complex triangulating a closed topological disc, let
A be an angle sum target function &f, and assume tha: 9K @ — (0, co) (respectively(0, oc]) is

a function defined on the boundary verticeskbf Then there exists a unique euclide@aspectively
hyperbolig packing labelrR for K with the property thaR(w;) = g(w;) for each boundary vertex ;.

More explicitly, the solutionr satisfies the following nonlinear system Sfequations, one for each
interior vertexu ;.

{ > oz(R(uj);R(v),R(w)):A(uj):jzl,...,N}.

(uj,v,w)

We say that the solution lab@ “solves the Dirichlet problem”, since the theorem statement and proof
both parallel the classical Dirichlet problem for harmonic functions.

2. Local geometry

Circles have been objects of study for well over two thousand years. The dynamics associated with
small configurations of circles—triples and flowers—underly both the theoretical and practical solution
of the Dirichlet problem. We refer to these lemmas collectively as “monotonicity” results.

Lemma2.1. Letx, y, z denote euclidean or hyperbolic radii in the configurations of AgThe angles
a, B, andy and AredT) are differentiable functions of for 0 < x < co. Moreover,

(a) « is decreasing inx,

(b) B andy are increasing inx,
(c) AreaT) is increasing inx,

(d) lim,_oa(x;y,z)=m,and

(e) lim,_alx;y,z)=0.

Monotonicity is strict(except for the hyperbolic case (i§) wheny (respectively) is infinite).



C.R. Collins, K. Stephenson / Computational Geometry 25 (2003) 233—-256 239

Lemma2.2. Let F, = {v; vy, ..., v;} denote a closed flowelr; r1, .. ., i} the corresponding euclidean
or hyperbolic labels, and(r;ry, ..., r,) the angle sum fop. Thené is a differentiable function of its
(finite) labels. Moreover,

(a) @ is strictly decreasing i,

(b) 6 is strictly increasing inrj, j=1,...,k,
(©) lim,_ o0 =k, and

(d) lim,_ o6 =0.

In particular, givena with O < a < km, there exists a unique label=ry so thatf (ro; r1, ..., ) = a.

The previous results are standard in the circle packing literature (see [3]) and as we see in the next
section, suggest the numerical approach to solving the Dirichlet problem. Later, Lemma 3.1 introduces a
new, more subtle monotonicity, which largely accounts for the efficiency of our implementation.

3. Thepacking algorithm
3.1. The Perron method

The basis for packing algorithms lies with the Perron method; we describe the hyperbolic, “upper”
version of Bowers [5]. We will say that a lab&l for K is asuperpacking labefor the boundary value
problem in Theorem 1.4 if two conditions hold: (R(w) > g(w) for every boundary vertew, and (2)

6(v; R) < A(v), the target angle sum, for every interior vertexTogether, these imply that the labRl
is too large.

The collection® c R of all superpacking labels forms what is known @earon family In particular,

@ is nonempty, since in hyperbolic geometry a lal®gl satisfying (1) and having sufficiently large
interior labels will have small interior angle sums. By monotonicRy, R, € ® = min{R4, R,} € ®.

This suggests consideration Ef:Ainfd,{R}. If Ris nonvanishing, continuity of angle sums with respect
to their labels easily implies that will lie in @. Monotonicity tells us that it must be a solution and
elementary hyperbolic area computations give uniqueness. The argumeﬁtddneﬂ; not vanish requires

a little more work, using hyperbolic areas, the Gauss—Bonet Theorem, the Euler charactekistandf

the necessary conditions on the target functior(The solution of euclidean boundary value problems
may be inferred from the hyperbolic case because hyperbolic quantities are infinitesimally euclidean.)

3.2. The Uniform Neighbor Model (UNM)

One could implement the Perron method numerically. In fact, however, the geometric stability is such
that more direct relaxation methods suffice. We now describe the basic model we use in our calculations.
Focusing on the flower fow, we treat the labet as a variable, and the petal labejs. . ., r; as fixed
parameters. For a given value= rq, the associated “reference” label is the numbdor which the
following equality holds:
k

e~ A R
O@o;r1, ..., 1) =0(@ro; 7, ..., F)=:0(r; 7). (3.2)
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In other words, laying out a flower with petal circles of the uniform radiwsould yield the same angle
sum as with the original petal radi, . .., r, when the center circle has radits

Lemma3.l Letf(r) =0(r;ry,....rn) andd(r) = 6(r:#) = 0(r; 7,...,7), as above, witlf chosen so
that(rq) = 6 (ro) for somerg > 0. Assuming the labels, ..., r; are not all equal, then

dd do
50 < 5 (0, (3-2)

Moreover,d(r) < 6(r) for 0 < r < roandé(r) > 6(r) for r > ro.

Proof. The last inequalities follow easily from (3.2), sinéeandd intersect at the reference labglby
definition.

The proof of (3.2) is complicated first by the presencekqgbarameters, but more subtly by the
dependence dof onr, ..., r, through#, which is suppressed in the notation. Our strategy is to adjust
the petal labels in pairs, moving the largest and smallest towards one another in such a way that the
reference labef does not change, and watching the derivative .ofVe work in the euclidean setting.
Circles in the Poincaré disc model of the hyperbolic plane are also euclidean circles; a hyperbolic flower
with central circle at the origin is simultaneously a euclidean flower with the same angle sum, and the
euclidean radii are monotone increasing in hyperbolic radii. In other words, the hyperbolic result follows
from the euclidean.

Suppose thaf < L, whereS denotes the smallest of the petal labsls. .., r, while L denotes the
largest. By monotonicityS < 7 < L. Fixing all remaining petal labels] is a function of L and S,

0 =06(r; L, S). The condition thaf remain fixed is expressed by

0(ro, L, S) = 0(rp), (3.3)

and this defines as a function ofL. by the implicit function theorem. The slope éfat ro becomes a
function of L, and we will show that it is increasing; that is,
320
arolL

This means, of course, that decreasingpwardsr (and hence increasing towardsr) makes the slope
of 6 smaller (i.e., more negative). Strict inequality in (3.4) means that the cutrantd S may be adjusted
until a new pair of parameters qualifies as largest and smallest, at which point one can shift to adjusting
them in turn. It is an easy argument to show that (3.2) follows.

The verification of (3.4) is rather messy; we sketch the euclidean case and leave details to the interestec
reader. Since we adjust only and S, we need only consider the contributions to the full angle sum of

either three or four of the faces in the flower. Suppose, for instance thatre the labels of the neighbors
of L andz, w are the labels of the neighbors $fEq. (3.3) reduces (see (1.1)) to

(ro, L, S) > 0. (3.4)

a(ro; L,x) +a(re; L, y) +a(rg; S, w) + a(rg; S, z) = constant (3.5)
For notational convenience define the mixed partial derivative
9%a(x;y,2)
ay2(x, y,7) = D (3.6)

dxdy
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Inequality (3.4) is equivalent to

ds ds
a12(ro, L, x) +a12(ro, L, y) +a12(ro, S, w)d—L + aq.2(ro, S, Z)d—L > 0. (3.7)

The computations are messy, but the results are all rational expressions; Eq. (3.5) permits computation
of g—f After simplification, reorganization, and cancellation of clearly positive factors, one can identify a
recurring subexpression in the left side of (3.7). In particular, define the auxiliary functions

(a —r)(a+b) —2r?

,a,b) = d F(ra,b,c,d):= f(@r,a,b)— f(r,d,c).
f(r,a,b) T tath) an (r,a,b,c,d):= f(r,a,b) — f(r,d,c)
A simple calculation confirms the following fact:
Ifa>d=>0,r>0, andb,ce[d,a], thenF(r,a,b,c,d) > 0. (3.8)

Inequality (3.7) is equivalent, after further simplification and judicious pairing of subexpressions, to a
linear combination with nonnegative coefficients of the following four expressions:

F@o,L,y,w,S), F@o,L,y,z,9), F(ro,L,x,w,S), F(ro,L,x,z,9).

The positivity of (3.8) implies inequality (3.7).

There are two other situations. Ifand S share a common neighbor, then simply take w (and/or
x = z) in the above. On the other hand/ifandS are themselves neighbors, say., S, z is the order of
petals, then the expressions in (3.5) and (3.7) must be adjusted accordingly. The simplifications become
slightly more involved, but the subexpressignrecurs and the result is a nonnegative combination of
these four expressions,

F(ro,L,x,L,S), F(ro,L,x,z,9), F(ro,L,S,L,S), F(ro, L, S,z,9).
Positivity again follows from (3.8). This covers all possibilities and completes the praof.

See Fig. 4 for a plot of andd as functions of for a sample 6-flower.
3.3. The numerical algorithm

Using the Uniform Neighbor Model, our basic algorithm generates a sequence of {&y¢las
follows:

Pick any initial labelRy, only requiring thatR (w) = g(w) for everyw € 9K .

Given a labeR,,, cycle through the list of interior vertices.

Given an interior vertey, adjustr,, (v) using the UNM by choosing®, (v) so thaté(Rn(v)) = A(v).
Denote the adjusted label IRy, ,1; return to (2) until a prescribed accuracy in the angle sums is
achieved.

PwNpE

Geometric facts about angle “flow” explain why this sequence of corrected labels converges so well
to the packing label. Consider the euclidean setting. For IBbdEfine “excesse at an interior vertex
and the “total error’E by

e(v) =6(v; R) — A(v), E=E(R)= Z le(v)].

v interior
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Fig. 4. Angle sums of the original and reference flowers.

Claim. E is monotone decreasing with our label corrections.

Let F denote the number of faces &f Each has three angles which sunxtoreorganizing these by
vertex, thetotal angleis ), _, 6(v; R) = Fr, independenof R. Thus total angle is a conserved quantity;
any adjustment of a label simply causegedistribution of that angle among the vertices. Suppose, for
instance, thab (v; R) is too large at some interiar, soe(v) > 0; by Lemma 2.2 one can increase the
label R(v) until e(v) = 0. The excess angle atis pushed to its immediate neighbors. At worat,
remains unchanged. Howeveruif~ v is an interior with angle sum tosmall or is a boundary vertex
(whose angle sum doesn’t count K), then the correction t®(v) simultaneouslyreduces|e(v)| and
le(n)|, andE decreases. Similar arguments apply whér < 0. In any case, as long as the change made
to R(v) does not cause the angle sunmvab overshootA (v), E cannot increase. Since by Lemma 3.1
corrections obtained from the UNM are conservative—they do not overshoot—the Claim is established.
Considerations are slightly altered in the hyperbolic setting because area and angle are equivalent; this
actually tends to improve the performance of the algorithm. (See [32] for the hyperbolic dynamics.)

Observations. The geometry of circle configurations makes the adjustment process so stable that
almost any iterative procedure will succeed. This is tempered by the essentially arbitrary combinatorics
permitted inK ; the local geometry is variable and there is almosarmiori information on the global
solution. Here are some observations regarding implementation:
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e The process is insensitive to the initial label: one can generally set its values (for interior vertices)
arbitrarily.

e There is no advantage in careful local computation, since results will be made obsolete by subsequent
adjustments.

e The process is insensitive to the order in which local adjustments are made.

e Combinatorial variability (variable degrees, lack of symmetry, etc.) complicates data manipulation,
storage, and vectorization.

4. Details of theimplementation

Given complexK , boundary functiory, and angle sum target, our task is to compute the associated
packing labelR, as guaranteed by Theorem 1.4. Index the vertice§ &y {w1, ..., wy; u1, ..., uy},
with w; denoting boundary vertices and, interior vertices. The label entries which are subject to
adjustment will be termeftee for the Dirichlet problem, these are t&interior labels.

Problem. Find values{ri,...,ry} so that the label vectoR satisfies the systenw(R) = 0, where
R={g(w1),...,g(wm);r1,...,ry}and

{G;(R)=6(u;; R) — A(u)), j=1,...,N}. (4.1)

Some abuse of notation and label transformations will be highly advantageous in describing the
algorithm.

Notational convention. The same letter to be used to denote both a vertex and its current label. Moreover,
in hyperbolic geometry we use transformed labels; in all calculations (and without further comment),
each hyperbolic labél € (0, co] will be replaced by the more convenient labet exp{—2h} € [0, 1).

Keeping these conventions in mind, the angle calculation associated with veideXace (v, u, w)
(1.1) can be rewritten in a more efficient form as

Euclidean: «(v;u,w)= Zsin‘l( . ) (4.2)
v+u v+w
: 1 1-u 1-w
Hyperbolic:  a(v; u, w) =2sin v- . . (4.3)
1—vu 1—ovw

In computing the angle suf(v; R), only the labels fow and its petals are involved, so all our packing
computations are “local”. We will writé (v; R) =6 (v; {v;}), where{v,} is shorthand for the list of petal
labels. The context should make our index usage clear.

4.1. Uniform neighbor calculation
Using the UNM requires two steps. First, given a valuelfaldetermines so thaté(v; 0) =0(v; {v;}).

Second, solve for a new value for(call it «) so thatd (u; 9) = A(v). The advantage of the UNM is that
these equations can be solved explicitly as follows.
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Letd =0 (v; {v;}) and A = A(v). From these values, compuyte= sin(%) ands = sin(%). For the
euclidean case, we hadgv) = ka(v, 0, D) = 0. Using the formula for (4.2), we getvo = 1‘_iﬂv. Then,

solvingé = A, we getu = %f;. Note that since & 6 < kxr then 0< B8 < 1 and so since > 0 then

u > 0.
For the hyperbolic case, the computations are slightly more complicated but proceed in a similar

i _ BV 55 A s B-v) i
fashion. We get = e If b <0 wetaked =0.Also 1-v = AABT thus since8 <1 andv < 1,
b < 1. We compute: from u = t?> where
25
(1—0)2+4520+ (1 —10)
It is clear that > 0. To see that < 1, start withs < 1 to get(1 — 0)? 4 48 < (26 — (1 — 9))%. Thus
25

< = -

126 —(1-v)[+(1—-v)

If 26 > (1 — ) this last equation reduces tc< % = 1. If, on the other hand,f2< 1 — v, then it reduces
to

=

t

25 25
< — < =
21—-0)—25 45—-25
In any event, in the hyperbolic case<: < 1, as desired.

Let this process, in either geometry, be represented B8yM (v, {v;}, A). Then one iteration of our
algorithm loops through th& free labels and updates them by

ui =M (u;, {u;}, Aw;)), i=1,...,N.

t 1.

Note that since the values of adjacent labels may change during the iteration, later updates will effect
the angle sums for prior circles—one expects this to be an iterative process. As we will soon show,
this algorithm is locally linearly convergent. We will improve convergence overall by using this local
convergence to create heuristics for global over-relaxation procedures (see Section 4.3).

4.2. Local linear convergence

Given petal label$v;}, letv denote the quantity of real interest; namely, the solutiaf(of {v;}) = A.
Lemma 3.1 implies that the computed valuges between the current valweandv:

v<u<v or v<u<Uu.
Thus, replacing labeb by u is always a conservative improvement. We would like to see how much
betteru = u(v) is thanv, so we look at the ratio
u(v) —v
v—1U
In particular we are interested in the maximum value of this ratio over the admissible rangaridr

also the value as approache$. From some simple calculations, we see that for the euclidean case, the
maximum occurs at = 0, and for the hyperbolic case,at= 1 (hyperbolic radius= 0).
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To understand the behavior of this ratio in the euclidean case, we need some information about the
angle sum function. Considéras a function ob alone, with petal labelfv;} as fixed parameters. Then,
for v near 0, we have

1

1
O(v) ~kr —2J/vS, whereS= Z = +
j=1 vj-i-l

Also, 6’ (v) ~ —-L §. Next,

Jv
. 1-6 1-
limu(v) = lim pv - I|m
v—>0 § v—»>01-— :B 6 v—0 dﬁ

using L’H6pital’s rule (since8,—o =1). To evaluate this, we have

ag
v 21< S(Zk)e ).

Thus forv near 0, we have

g 11 52 . 1—62k?

—~——=4/vS- — = lim = — =uo.

PR TR f = g T M) = Ty S
And thus we have

supu(v)i__vzlim u(v)i__vzl—u—_o<1.

vw>0 UV—UV v—>0t vV —UV v

This follows from the above calculations and the fact that &, < v.

For the hyperbolic case, the results are similar in that there is an explicit expression for the maximum
of this ratio in terms of{v;} and v and it is clearly less than 1. These results show that locally the
convergence is at worst linear.

4.3. Acceleration and final algorithm

Let R be the exact solution and lek; and R,.; be consecutive approximations. For larje
computational experiments have shown that the local linear convergence discussed in the previous sectior
is uniform, i.e.

Riji— R~ (R — R),

holds element-by-element for sorhe< 1. Assuming this result holds exactly, we get two heuristics for
accelerating the convergence of this process. Taking this resulafat/ + 1, we can solve foR;,, and
R to get

Rijo=Riy1+A(Riy1— Ry) (4.4)

and
A
R=R 1+ ﬁ(Rl-Fl — R)). (4.5)

When we use the equation f&, » (4.4) to replacek;; we call itsimpleacceleration. When we use the
formula for R (4.5) to replacer,,; we call it superacceleration.
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Table 1
Circle packing algorithm

Given:
e complexk
e boundary functiorg
e legal target functiom
o initial label R
e tolerances > 0 ands > 0.
Algorithm:
1. Setthe boundary labels &fto theirg values.
2. Initialize:c=¢+ 1,2 =—-1,flag=0
3. While ¢ > ¢) do
(@) co=c, ro=2,flagg=flag, Rg =R
(b) For each free node;
i. Calculate the angle sufy
ii. Updateuj = M(uj, {u;}, Aj)
iii. Accumulate error estimate=c + (6; — Aj)2
(€) c=+/c,A=c/cg, flag=1
(d) If (flagyg = 1) andA < 1 thenperform super acceleration
i. c=Xc
ii. If |A—Xgl<8thenri=21/(1— 1)
iii. Determine largest* s.t. R + A*(R — R) in range
iv. A =min(i, 0.50%)
V. R=R+i(R— RO
vi. flag=0

To use these acceleration schemes we need an estimate of the error reduction fagsoactice, we
use a ratio of valuesg;,1/c; wherec; is an approximation of G(R))||.. In addition, since we are using
an estimate, we choose between the two different acceleration steps based on whether or not the ratic
c;+1/¢; IS converging to a constant value. We also modify the size of the acceleration factor in order to
assure that the new value is in a valid range for radius lalels Q for euclidean and & v; < 1 for
hyperbolic). For this, we determine the larg&gt for which all components of

Rip1+ Ay (R — Ry)

remain valid. We uséAM as an upper bound for the acceleration factor. Thus we are assured that we
always stay in the proper range and when the situation presents itself, the iterates converge as quickly a:
possible. These modifications for acceleration and other features are incorporated into the Circle Packing
Algorithm given in Table 1.

4.4. Results

Having considered certain theoretical properties of our algorithm, let us examine some numerical
results.

Acceleration. First, consider the effect of using the acceleration. In Table 2 we show the performance
for sample runs with no acceleration, simple acceleration, and super-step acceleration. (Super-stepping



C.R. Collins, K. Stephenson / Computational Geometry 25 (2003) 233—-256 247

Table 2

Tests of acceleration

Data file eucl/hyp N Acceleration Iters Flops Error
spiral78 eucl 50 none 16 48,040 .8849E-5
spiral78 eucl 50 simple 14 43,590 A4398E-5
spiral78 eucl 50 super 12 37,370 .7230E-5
data237 eucl 223 none 297 3,924,600 .6165E-5
data237 eucl 223 simple 199 2,740,200 S524E-5
data237 eucl 223 super 46 632,900 B8R1E-5
data237 hyp 223 none 220 4,919,200 ATR2E-5
data237 hyp 223 simple 147 3,377,400 .5Q10E-5
data237 hyp 223 super 36 808,700 2H6E-5

occurs if the tests for step 3(d)(ii) in the meta-code given in the box are satisfied.) We report the number
of iterations, the flop count (an estimate of the number of floating point operations), and the error of the
final value. The error is computed &X1 | G as defined in (4.1).

Size. The data suggest a clear advantage using acceleration, one which grows with size. Therefore, we
next look at how the algorithm performs asincreases. We used a simple family of complexes which

are built by spiraling out from the center point to include the desired number of interior circles. In the
hyperbolic runs, we set the boundary labels to infinity and started the interior labels with sn@all)(

values. Fig. 5 is a graph of the asymptotic error reduction fac(@rithout acceleration) plotted against

the number of interior verticed’. This curve is approximately = NNT for C ~ 30. Thus for largeV

the basic iteration converges slowly. However, with this same setup, we have compared the number of
iterations needed to reach a tolerance of®l@sing only the simple acceleratimersususing the super

acceleration.

Ordering. To test the effect of the order in which free vertides} are adjusted, we ran trials with

a fixed hexagonal complex with 100 interior vertices. We set boundary labels to 2 and initial interior
labels to 1; in the exact solution, all labels are 2. We randomized the indexing, recorded the fAuhber
iterations it took to converge, noted the final error, and computed the approximate convergence factor
by A! = (Erron. In 41 random trialsk ranged from (6462 to 06094, I from 18 to 21. This was a
limited test, but is in line with our experience that the ordering of vertices has a limited impact on the
computations.

Initial label. To test the effects of the initial label on performance, we ran trials with the same
complex, but in the hyperbolic setting. Boundary labels were random but fixed, ending up in the range
[0.68, 0.86]. Table 3 summarizes the results for various initial values for the interior labatsthe
effective convergence rate, computed so tisaarting Erroy(r)! = (Final Erron, wherel is the number

of iterations. (HerdJ (a, b) indicates uniformly random variables in the rangesb) and R is the exact
solution.) Note that even though the local method is conservative (i.e., always produces values on the
same side of the correct answer as this initial guess), the super-step acceleration corrupts this property.
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Fig. 5. Experimental estimates bf

Table 3

Effects of starting labels
Initialization Iters Starting error Final error A
U@©,1 35 39601 17274E-6 0.6162
U(0,0.5 32 43520 68814E-7 0.5705
U(0.5,1 35 27540 16074E-6 0.6213
~R 35 84378 12559E-6 0.6381
>R 29 59513 25086E-6 0.6028
<R 31 43359 16615E-6 0.6209
0.86 34 10094 21669E-6 0.6366
0.68 31 59867 26891E-6 0.6241

5. General packing problems

We have described our algorithm for the simplest Dirichlet problem on simply connected complexes,
but it applies much more broadly. Here we discuss more general settings, open questions, computationally
intensive applications, and software.

Combinatorics. In fact, the only requirement on the compléX is that it triangulate an oriented
topological surface. Thus, it may be finite or infinite, with or without boundary, planar or nonplanar, and
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Fig. 6. Effects of acceleration.

simply or multiply-connected—we are guaranteed that there exists one or more circle packiigs for
Paraphrasing the central existence result (see [2]):

Fact. Given K, there exists a Riemann surfadeand a univalent circle packingx in S with the
combinatorics ofK; S and Pk are unique up to conformal isometries.

The packingPk satisfies certain extremal conditions and is called rieximal packingfor K.
Note thatK “chooses” the geometry in which its maximal packing must live. Fig. 7 illustrates several
examples. In computational terms:

(&) WhenK is a closed topological disc, the maximal packing liedDirand is computed by solving
the Dirichlet problem (Theorem 1.4) with infinite boundary labels (and default target). The maximal
packing for the complex of Fig. 1(a) is shown in Fig. 7(a).

(b) WhenK is the Riemann spher&? (the unit sphere ifiR®), then one vertex is removed, the reduced
complex is packed iD as in (a), the missing vertex is identified with the exterioDpind the results
are projected back 18, where a normalizing Mébius transformation may be applied. Fig. 7(b) is an
example with combinatorics dual to Buchminsterfullerene.

(c) SupposeX triangulates a compact surface (hence is finite with no boundary) of positive genus
Starting with any initial label, our algorithm generates labels converging (generally, quite rapidly) to
a maximal packing label. Wheg = 1, the computations are necessarily euclidean and the result
is unique up to scaling; whep > 1 the computations are hyperbolic and the result is unique.
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Fig. 7. Maximal packings.

A fundamental domain for a covering of the packing can be displayed or D, respectively.

Fig. 7(c) is a 1-torus and Fig. 7(d) is a 2-torus; edges have been marked to show edge identifications.
(d) SupposeK is infinite and simply connected. Eithef is parabolic meaningPx packsC, as

with the hexagonal “penny” packing of Fig. 7(e), & is hyperbolic meaningPx packsD,

as with the constant 7-degree packing of Fig. 7(f). Computationally, these are approximated by

appropriately normalized solutions of Dirichlet problems for finite, simply connected sub-complexes

exhaustingk. When given a nonsimply connect&d one works instead with its universal covering

complexf(, which is infinite and simply connected.
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Geometry. An important feature of circle packing is that tkembinatoricsof K largely determine

the geometryin which its packings live. The fundamental dichotomy expressed in (d) above provides a
striking example, since it can be shown thaparabolic complex has no packing iB (the Discrete
Liouville Theorem, [15]). WhenK is multiply connected, the topology determines the appropriate
geometry; namely, the intrinsic spherical, euclidean, or hyperbolic metric inherited from the universal
covering surface. (Note in particular that all numerical computations involve the familiar metric
guantities.) Thus, in (c) above, if gen&S) = 1, then the appropriate geometry is euclidean—the
hyperbolic packing algorithm will diverge to zero. Conversely, when gékius- 1, hyperbolic geometry
applies and the euclidean packing algorithm will fail.

The only influence one has on the geometry of a circle packing is through choice of boundary
conditions (if there is a boundary) and through branching, which is tightly mediated by Gauss—Bonet,
Riemann—Hurwitz, Euler characteristic, and other classical relations. In our experience, the packing
algorithm always degenerates if the geometry being used is theoretically incompatible with the given
complexK or with the boundary and branching conditions prescribedfor

Boundary angle sums.Boundary angle sums can be specified in place of boundary labels. Tight
compatibility conditions (involving geometry, combinatorics, and branching) have not yet been
formulated, but our packing algorithm appears to work without change for legal prescriptions—simply
set boundary angle sum targets, declare boundary labels as free, and run the algorithm. Fig. 8(a) illustrate:
a mixed problem: some boundary vertices were given specified labels, while others were given specified
angle sum targets.

Overlap packings. The fundamental existence result for circle packings (see the Andreev—Thurston
Theorem of [26]) actually applies wverlapping packingsof which our tangency patterns are a special
case. One is allowed to specify an overlap angie, v) € [0, 7 /2] for each edg€u, v) of K; in the
associated packing, the circlesc, andc, will overlap (i.e., intersect) with anglé (u, v) (¢ (u, v) =0
means tangency).

Our algorithm requires only an adjustment in the computatian. g illustrate in the euclidean case,
suppose triangld” has labelsy, y, z and overlapsp,, ¢,, ¢, (for opposite edges). Defining parameters
Ny, Ny, Nz € [0, 1], wheren. = cog¢.), formula (1.1) becomes

o (s 1, W, Ny, s Nw)
_ arcco< (% + y2 + 2xyn.) + (P 4 22 + 2xzmy) — (0P + 2%+ 2yznx))
2/ x2 4+ y2 + 2xyn,/x2 + 22+ 2xzn,

The monotonicity results of Section 2 continue to hold (see, e.g., [36]), so Thurston’s iterative algorithm
yields packing labels as in the tangency case. In fact, the process is sufficiently robust that the uniform
neighbor model works despite the fact that it is no longer strictly applicable.

Yet more general overlap situations are of theoretical and practical interest, but open the door to
incompatibilities. See [20] for the most general existence and uniqueness statement for overlaps up
to anglex. In another direction, “imaginary” values for overlap angles correspond geometrically to
inversive distancesa classical, conformally invariant way to measure the “distance” between pairs of
separated circles. The continuum of situations—from overlaps of anffe through tangency, out to
inversive distances approaching infinity—is accommodated in formula (5.1) by lettinggheameters

(5.1)
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Fig. 8. Mixed boundary value, overlap, and inversive distance examples.

vary over[0, oo). The four packings of Fig. 8 satisfy the same mixed boundary label/angle sum conditions
but show a variety of “overlap” prescriptions. Fig. 8(a) is the familiar tangency case; Fig. 8(b) has constant
inversive distances, all set to 20; Fig. 8(c) has all overlaps set#3; and Fig. 8(d) involves a mixture

of overlaps and inversive distances. There is yet little theoretical work on inversive distance packings, but
our algorithm handled these without complaint. Improper specifications tend to show up in labels that
degenerate during repacking.

Spherical geometry. The sphere is the most rigid and difficult classical setting. To the authors’
knowledge, no packing algorithm intrinsic to the geometry has been found; spherical packings are
typically obtained by stereographically projecting from the disc. However, fundamental existence and
uniqueness results for branched packings (i.e., discrete rational functions, see [8]) and even simple
Dirichlet problems cannot be handled by projection and remain open.

Applications. In the numerical conformal mapping of plane regions, it is unlikely that circle packing
can ever compete in speed or accuracy with classical numerical methods such as Schwarz—Christoffel.
However, circle packing techniques are finding new applications in a number of more general conformal
situations; see the survey [33]. We illustrate three for which no other methods are known. These are
computationally intensive and happen to be of interest to mathematicians, physicists, and neuroscientists;
they provided much of the motivation for our algorithm improvements. We do not mention other
potentially valuable applications, such as graph embedding.

Tilings. Fig. 9(a) approximates a (finite piece of) a “conformal” tiling ©f In this theory, the tile
shapes are determined purely by the abstract adjacency graph of the global pattern. Such a graph can b



C.R. Collins, K. Stephenson / Computational Geometry 25 (2003) 233—-256 253

Sees

(a)

(b)

Fig. 9. A sample conformal tiling.

augmented to give a complegk which is then circle packed to provide approximations of the tiling; a
refinement process and associated packings lead to more accurate shapes. We refer the reader to Bowe
and Stephenson [6] for details. The circle pattern underlying the tiling is Fig. 9(b). This example (indeed,
this whole topic) was motivated by work of Cannon, Floyd and Parry; see [22]. Our thanks to Bill Floyd,
whose software created the underlying complex as input for our packing routine.

Dessins. In the theory ofdessins d’enfantsf Grothendieck, drawings on surfaces lead to algebraic
number fieldsvia triangulations and associated conformal structures (see [30]). In [6], Bowers and
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Fig. 10. A stage-3, genus 2 dessin.

Stephenson develop circle packings techniques to provide both discrete parallels and approximations
to these conformal structures. Fig. 7(d) comes from a genus 2 dessin at a “coarse” stage. Fig. 10 is a
more accurate stage-3 refinement for the same dessin obtained with a “hex” refinement process. Eact
refinement stage roughly triples the number of vertices, so the ability to handle large packings becomes
important quickly. In this setting of triangulated surfaces, particularly, there appears to be a potential for
significant vectorization and parallelization of our algorithm.

Brain-mapping. A use for circle packings which is just emerging and placing new demands for
speed and flexibility concerns the “flattening” of images of the human brain for use in neuroscience
research. The cortical surfaces of the brain, the cerebellum and the hemispheres of the cerebrum, ar
essentially highly convoluted topological 2-spheres embedded in 3-space. Flat representations are neede
in structural and functional studies of the cortex for purposes such as registration, visualization and
statistical data collection; conformal flattening is emerging as the preferred method because it preserves
valuable geometric information. Various medical imaging technologies, such as PET, MRI and fMRl,
provide 3-dimensional representations from which the cortical surfaces can be extracted as triangulated
topological spheres or discs. Circle packing is then a means for approximating the conformal maps of
these surfaces and manipulating the resulting images. See [21] and references therein; our thanks to th
authors for the examples shown in Figs. 11 and 12. These are grayscale images of color coded flat map:
in the hyperbolic and spherical settings. These circle packings each involve roughly 50,000 circles; the
spherical packing is computed in hyperbolic geometry and projected stereographically to the sphere.
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Fig. 11. A hyperbolic flat map. Fig. 12. A spherical flat map.

Software. Our circle packing algorithm is implemented in C in the standalone progteRackand as

the compute engine behind the second author’s graphical software pdikageePack. The software

is available at www.math.utk.edukens. WithCi r cl ePack the user can create, manipulate, display
and print circle packings. Functionality is provided for all the operations we have discussed—Dirichlet,
boundary angle sums, overlaps, compact complexes—plus many more.
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