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Abstract. Swimming in circles occurs in a variety of situations at low Reynolds number. Here we propose
a simple model for a swimmer that undergoes circular motion, generalising the model of a linear swimmer
proposed by Najafi and Golestanian (Phys. Rev. E 69, 062901 (2004)). Our model consists of three solid
spheres arranged in a triangular configuration, joined by two links of time-dependent length. For small
strokes, we discuss the motion of the swimmer as a function of the separation angle between its links.
We find that swimmers describe either clockwise or anticlockwise circular motion depending on the tilting
angle in a non-trivial manner. The symmetry of the swimmer leads to a quadrupolar decay of the far flow
field. We discuss the potential extensions and experimental realisation of our model.

1 Introduction

The physics of microswimmers is a rapidly advancing field,
for recent reviews see [1–4]. One of the simplest models
of a microswimmer was proposed by Najafi and Golesta-
nian [5] in 2004: it consists of three aligned spheres that
are linked by rigid rods whose lengths change in time be-
tween two values. Moving with a periodic motion which
breaks the time-reversal symmetry, this simple swimmer
experiences a net propulsion along the rod orientation. A
number of other swimmer models have been proposed sub-
sequently [6–14], most of which lead to propulsion along
a linear trajectory.

However, there are many examples in nature showing
circle swimming rather than swimming along a straight
line. On a planar substrate, certain bacteria [15–20] and
spermatozoa [21–23] swim in circles. Moreover, spherical
camphors have been shown to exhibit circular swimming
when confined to an interface [24]. Recently, catalytically
or thermally driven colloidal particles with an asymmetric
shape have been prepared [25] also resulting in circular
motion on a substrate [26].

Even though circle swimming is frequent in the pres-
ence of solid surfaces, curved trajectories are also very
common in the bulk [27]. This can be attributed to asym-
metries in the swimming stroke that can result in both
translational and rotational modes of motion [28]. There-
fore, while linear swimming occurs for highly symmet-
ric swimmers, more generally swimming can occur along
curved or circular trajectories.

a e-mail: r.ledesmaaguilar1@physics.ox.ac.uk

The modelling of circle swimmers is much less ad-
vanced than that of their linearly moving counterparts.
For instance, Dunstan et al. [29] considered a swimmer
model of two spheres with different radii, which is a linear
swimmer in a bulk fluid but yields circle swimming close
to a solid surface. Shum et al. [30] have implemented a
detailed model of a flagellate that exhibits circle swim-
ming at surfaces. For circle swimmers in the bulk, mini-
mal rotor models [7,8,31,32] or very coarse-grained driven
Brownian particle models [33–35] have been proposed. For
the latter, the particles proceed with both an effective
translational and angular propagation velocity and expe-
rience additional Brownian fluctuations. The determinis-
tic (noise-free) trajectory in two dimensions is a closed
circle. However, a more detailed model which resolves the
hydrodynamic details of the swimming strokes is missing.

In this paper we close this gap and generalise the
linear model of Najafi and Golestanian [5] to a simple
circle swimmer. In order to do so, we consider three
spheres joined by two links which are tilted relative to each
other and perform the stroke as in the Najafi-Golestanian
model. By using both analytical and numerical methods,
we show that the resulting motion is a closed circle which
depends on the swimmer angle, β, which characterises the
separation between the links. We focus on the resulting ra-
dius of the trajectories, Rt, as a function of β for strokes
of small amplitude. Interestingly, we find that swimming
occurs predominantly along one direction of the circu-
lar trajectory (anticlockwise for the specific configuration
studied here), except for a small range of angles, where
the swimmer reverses the sense of rotation. Such a be-
haviour is robust to changes in the model parameters. We
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Fig. 1. Model of a circle swimmer. Three spherical beads of
identical radius R are joined by two links of variable length, l1
and l2. The angle between the links, β �= 0, allows the swimmer
to move in a curved trajectory.

further analyse the velocity field produced by this sim-
ple circle swimmer and find a marked inverse-power de-
cay at large distances. We recover the expected quadrupo-
lar far-field behaviour [8], with the magnitude of the ve-
locity field decaying as the inverse cube of the distance
from the swimmer. This is a consequence of the symme-
try of the swimming stroke, which is invariant under com-
bined time-reversal and parity transformations [36,37].
For asymmetric swimming strokes, which do not posses
the time-reversal and parity symmetry, we recover a de-
cay consistent with a dipolar velocity field, as expected.

Our simple model can serve as a starting point for
further analytical and numerical studies. These can in-
clude single circle swimmers in confinement [33,34] and
shear flow [38] as well as the scattering [37,39] and syn-
chronization [40–42] of two circle swimmers and the (still
unknown) collective properties of many circle swimmers,
for example swarming and vortex formation.

The rest of the paper is organised as follows: in sect. 2,
we describe and define the model. A discussion of the ge-
ometry of the resulting trajectory is performed in sect. 3
while the velocity fields in the surrounding fluid are dis-
cussed in sect. 4. Finally we conclude in sect. 5.

2 Model

Our model swimmer consists of three beads connected by
two massless links, as depicted in fig. 1. These are sepa-
rated by the swimmer angle, β, and have lengths, l1 and l2,
which are known functions of time, and hence determine
the swimming stroke.

The configuration of the swimmer can be characterised
by the position vectors of the beads, ri, which are re-
lated by the conditions r12 = l1t̂1, and r23 = l2t̂2, where
rij ≡ rj − ri and t̂i is the unit tangent vector to link li.
Since, by symmetry, motion can only occur in the plane
defined by t̂1 and t̂2, the orientation of the swimmer is
determined by a single angle. Here we choose the polar
angle associated with t̂1, θ1; the polar angle associated
with t̂2 hence obeys θ2 = θ1 + β. The swimming stroke
imposes kinematic conditions for the bead velocity vec-
tors, vi ≡ ṙi, where the dot indicates differentiation with
respect to time. For the tangential motion, corresponding
to the contraction and extension of the links

(v2 − v1) · t̂1 = l̇1 (1)

and

(v3 − v2) · t̂2 = l̇2, (2)

while for the angular velocities

(v2 − v1) · n̂1

l1
−

(v3 − v2) · n̂2

l2
= β̇, (3)

where ˙̂ti = θ̇in̂i.
The bead dynamics in the overdamped limit is given

by

vi =

3
∑

j=1

Hij · Fj , (4)

where the velocity of bead i results from the force acting
on each bead, Fj , mediated by the hydrodynamic interac-
tion tensor, Hij , summed over all beads. For a Newtonian
fluid of viscosity η, the hydrodynamic interactions can be
described using the Oseen tensor

Hij =

{

�/6πηR, if i = j,

1/8πηrij

(

� + rijrij/r2

ij

)

, if i �= j,
(5)

which is valid in the limit R/rij ≪ 1.
To complete the model, we impose force-free and

torque-free conditions on the swimmer

3
∑

i=1

Fi = 0 (6)

and
3

∑

i=1

ri × Fi = 0. (7)

Equations (1)–(7) constitute a linear system for the
bead velocities and forces, whose solution depends on time
through l1(t), l2(t) and β(t) —which are prescribed func-
tions of time— and through θ1(t), which reflects the de-
pendence on the particular frame of reference and satisfies
θ̇1 = (v2 − v1) · n̂1/l1. Once θ1(t) is known, the evolution
of the swimmer configuration and force distribution can
be obtained by time integrating vi and Fi.

Following refs. [5] and [8] we consider a four-step swim-
ming stroke, where the links contract and expand alter-
nately at constant velocity W from an initial extension D
with a change in length ǫ. This has the advantage of sim-
plifying the analytics considerably, although other choices
of the swimming stroke, consisting for instance in a contin-
uous sinusoidal link variation, are also possible. The time
evolution of the length of the links is chosen to be

l1(t) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

D − Wt, if 0 ≤ t < P/4,

D − ǫ, if P/4 ≤ t < P/2,

D − ǫ + Wt, if P/2 ≤ t < 3P/4,

D, if 3P/4 ≤ t < P,

(8)
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Fig. 2. Piece-wise swimming stroke. The links of the swimmer,
of maximum extension D, contract and expand out of phase
by a small length ǫ (exaggerated in the figure) over a period P .

and

l2(t) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

D, if 0 ≤ t < P/4,

D − Wt, if P/4 ≤ t < P/2,

D − ǫ, if P/2 ≤ t < 3P/4,

D − ǫ + Wt, if 3P/4 ≤ t < P,

(9)

and is repeated subsequently over a period P . As shown
in fig. 2, the swimming stroke dictated by eqs. (8) and (9)
breaks the time-reversal symmetry, and thus results in a
net propulsion of the swimmer.

3 Swimmer trajectories

We treat the problem analytically by first solving the lin-
ear system (1)–(7), we subsequently expand vi in powers
of R/D (up to first order), and ǫ/D and β (up to third or-
der) and restrict ourselves to the case where β is constant
in time. We are interested in the trajectory described by
the swimmer, which can be characterised by angular and
translational displacements over one period of the swim-
ming stroke, Δθ and Δr, respectively. Given that we ex-
pect only a small angular displacement within each step
of the stroke cycle, it is sensible to shift to the frame of
reference where θ1(0) = 0 at each step and perform an
expansion in powers of θ1. Keeping only the leading-order
term in the expansion (constant angular velocity approx-
imation) and adding the contribution of each step of the
swimming stroke, we obtain, for the angular displacement,

Δθ ≡

∫ P

0

θ̇1dt ≈
5

32

(

R

D

) (

2
( ǫ

D

)2

+ 3
( ǫ

D

)3
)

×

(

β −
77

180
β3

)

. (10)

For the translational displacement vector of the center of

mass, Δr ≡
∫ P

0

1

3

∑

3

i=1
vidt = Δxêx + Δyêy, we obtain

Δx ≈ R

(

( ǫ

D

)2

+
( ǫ

D

)3
)(

7

12
−

53

144
β2

)

−
5R

4608

(

R

D

)(

2
( ǫ

D

)2

+ 33
( ǫ

D

)3
)

β2 (11)

Fig. 3. Circular trajectories for swimmers at constant swim-
mer angle, β. Parameter values are ǫ/D = R/D = 10−1.

and

Δy ≈ R

(

( ǫ

D

)2

+
( ǫ

D

)3
) (

7

24
β −

53

144
β3

)

−
5R

9216

(

R

D

) (

2
( ǫ

D

)2

+ 33
( ǫ

D

)3
)

β3. (12)

Equations (10)–(12) reduce to the result reported by Earl
et al. [8] for vanishing β, where the swimmer moves along a
linear trajectory with a displacement per swimming stroke

Δr ≈ R

(

7

12

)(

( ǫ

D

)2

+
( ǫ

D

)3
)

êx. (13)

For small, but finite, β the trajectory is no longer lin-
ear; according to eqs. (10)–(12) the swimmer undergoes a
small positive rotation, and a translation along the x and
y directions, thus describing a curved trajectory. While
Δθ and Δy are odd functions of β, Δx is an even function
of the swimmer angle; this is consistent with the symme-
try of the trajectory under the transformation β → −β,
which corresponds to a reflection about the x-axis and
has the effect reversing the sense of rotation and motion
along the y-direction while keeping the translation along
x unchanged.

Given that for a given β value Δθ and |Δr| are con-
stants, the stroke-averaged trajectories form equilateral
chains, becoming regular polygons whenever Δθ = 2π/m
for integer m. Furthermore, due to the smallness of the
angular displacement, the trajectories approach closed cir-
cles with curvature

1

Rt

≈
Δθ

|Δr|
≈

15

56

(

2 +
( ǫ

D

)

−
( ǫ

D

)2

+
( ǫ

D

)3
)

β

D
.

(14)
In order to verify this assertion, and to explore the

full range of β, we carry out numerical simulations for
the motion of the swimmer, integrating the Oseen-level
hydrodynamics over time. Numerical simulations are per-
formed following the algorithm proposed in ref. [8]. At a
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Fig. 4. (a) Normalised angular displacement as a function of the swimmer angle β. Numerical results for the full Oseen-tensor
hydrodynamics are carried out for ǫ = 10−2 (solid line) and ǫ = 10−1 (dots). The dashed curve corresponds to the perturbative
result. Inset: angular displacement during each step of the swimming stroke as a function of β. (b) Translational displacement
as a function of β for ǫ = 10−1 (solid line). The dashed curve corresponds to the perturbative result.

given timestep, the swimmer shape is first updated accord-
ing to the prescribed swimming stroke, while the position
of its centre of mass and orientation are kept constant.
We then use an iterative algorithm to find the position
and orientation that satisfy the force-free and torque-free
conditions. Swimmer trajectories, with the swimmer su-
perimposed at an arbitrary time, are shown in fig. 3. As
expected, trajectories are very close to circular. Figure 4
shows plots of Δθ and |Δr| as a function of β, where
we also plot the perturbative result, given by eqs. (10)–
(12). The angular displacement, depicted in fig. 4(a),
shows a good agreement with the analytics up to angles
as large as β ≈ 40◦. As suggested by eq. (10), results
follow the same master curve for different deformations
(ǫ/D = 10−1 and ǫ/D = 10−2) when rescaling by the am-
plitude (R/D)(2(ǫ/D)2 + 3(ǫ/D)3). This indicates that
the shape of the curve is a function of β only and, con-
sequently, that the location of maxima and minima is in-
dependent of both R/D and ǫ/D. Figure 4(b) shows the
magnitude of the translational displacement, which cap-
tures the main qualitative features of the numerical result.
The slight discrepancy at small β can be attributed to cor-
rections in R/D and ǫ/D as discussed in ref. [8] for linear
swimmers.

While their trajectories are always circular, the sense
of rotation of the swimmers changes depending on β,
as shown in fig. 4(a). Such a dependence results from
the competition between the four steps in the swimming
stroke. During step 1, l1 contracts and bead 3 moves to the
left, experiencing a drag pointing to the right (see fig. 1).
As a consequence, there is a torque acting on l1 that causes
a negative rotation of the swimmer. A similar reasoning
can be used to conclude that the angular displacement
must be positive for step 2. Step 3 can be mapped onto

step 2 by performing combined time-reversal and parity
transformations, and therefore gives rise to the same posi-
tive angular displacement. Similarly, step 4 can be mapped
to step 1. This is verified in the inset of fig. 4(a), where
we superimpose the angular displacement at each step of
the swimming stroke as a function of β. Given that for
steps 2 and 3 the relative distances between the beads are
smaller than for steps 1 and 4, the angular displacement
tends to be larger for the former. The net displacement
is therefore positive for a wide range in β. For the range
107◦ � β � 120◦ the numerics show that steps 1 and 4
dominate, causing negative net angular displacements.

Based on their sense of rotation, we can divide swim-
mers into three main groups. The first group, correspond-
ing to positive Δθ, is delimited by two vanishing points,
located at β = 0◦ and β ≈ 107◦, with a maximum located
at β ≈ 53◦. Within the same range of angles, the trans-
lational displacement, |Δr|, decreases with increasing β
to a minimum located at β ≈ 103◦ and then increases
again. For the second group of swimmers the angular dis-
placement is negative, as shown in fig. 4(a), and also has a
non-monotonic behaviour, here Δθ decreases for β > 107◦

up to a minimum value, roughly located at β = 113◦, and
then increases again, vanishing at β ≈ 120◦. In this same
range the translational displacement increases monoton-
ically for angles larger than 103◦. For β > 120◦, corre-
sponding to the third group of swimmers, both the an-
gular and translational displacements increase monoton-
ically. These results are summarised in fig. 5, where we
depict the reciprocal radius of the swimmer trajectory,
D/Rt, as a function of the swimmer angle, β (in units
of the rest link length, D). The sign of D/Rt reflects the
sense of motion along the trajectory, being clockwise for
D/Rt < 0 and anti-clockwise if D/Rt > 0. Angles for
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Fig. 5. Normalised curvature of the swimmer trajectory as a
function of the swimmer angle, β. The solid line corresponds
to the numerical solution of the Oseen-tensor hydrodynam-
ics while the dashed curve corresponds to the perturbative re-
sult. The arrows indicate the β values for which swimmers
describe a linear motion. The vertical asymptote indicates a
purely rotating swimmer. Model parameters are R/D = 10−1

and ǫ/D = 10−1.

which swimmers have linear trajectories, corresponding to
a vanishing angular displacement in fig. 4(a), are indicated
by arrows. The purely rotating swimmer, with vanishing
|Δr| but finite Δθ is indicated by the asymptote located
at β ≈ 103◦.

Apart from giving a useful insight into the circle swim-
ming exhibited by the model, fig. 5 can be used as a read-
out to choose a particular swimmer, depending on the de-
sired radius of trajectory and sense of motion. This can be
useful given the wide range of radii that the trajectories
can adopt. While the range in β that results in clockwise
motion is rather narrow, one can always obtain the de-
sired direction of motion by considering negative values of
β (mirror image swimmer).

4 Velocity fields

Based on the qualitative change in the trajectory with the
swimmer angle, we expect that the flow field created by
the swimmers also changes with β. This is interesting in
terms of the hydrodynamic interactions with surrounding
objects, e.g. passive particles, both small tracers and ex-
tended objects, and other swimmers. The average velocity
field is calculated as

v̄i =
1

T

∫ T

0

∑

j

Hij · Fjdt, (15)

where i denotes a point in space with position vector ri

in the frame of reference of the hydrodynamic centre of
the swimmer with the links oriented at an angle β/2 with
respect to the x-axis.

Figures 6 and 7 depict the direction (arrows) and
magnitude (colours) of v̄i for β = {0◦, 53◦, 107◦} and
β = {113◦, 120◦, 140◦}, respectively. We plot the veloc-
ity field at two different length scales: on the left we show
the range −2D < x, y < 2D, and on the right we show
the range −20D < x, y < 20D. At small length scales
the strength of the velocity field is higher close to beads
1 and 3, and is weakly dependent on β. The flow pat-
tern resembles that of the linear swimmer for small β, for
β > 107◦ the swimmers exhibit a recirculation pattern,
up to distances comparable to the swimmers body length.
This behaviour, however, is rapidly lost at larger length
scales, as shown in the left panels of figs. 6 and 7.

We consider now the far-field behaviour. Quadrupo-
lar decays (a velocity field which scales with distance as
r−3) arise generally for swimmers whose stroke is invariant
under a combined time-reversal and parity transforma-
tion [37]. This invariance must be reflected in the velocity
field —resulting in odd-power decays. For our swimmer
the symmetry holds when the extension and deformation
of both legs are identical. While the flow patterns for β > 0
are in general reminiscent of a stresslet velocity field, a
closer inspection of the magnitude of the velocity shows
that it does indeed have a power law decrease with dis-
tance governed by an exponent n = −3. Figure 8(a) plots
the apparent decay exponent, n, measured at a large dis-
tance from the swimmer, as a function of β. We consider
the decay along the the x- and y-axes, and define n as

n(y = 0) =
∂ ln |vi|

∂ lnx

∣

∣

∣

∣

y=0

(16)

and

n(x = 0) =
∂ ln |vi|

∂ ln y

∣

∣

∣

∣

x=0

. (17)

Since the exponent is measured at a finite distance from
the swimmer, its value is in general non-integer. However,
for sufficiently long measuring distances we expect to re-
cover a single integer value for n. Along the y-axis the
apparent exponent is always closer to n = −3, indicating
that the quadrupolar term in the velocity field dominates
at long distances as expected. This holds along the x-axis
as well, except for β ≈ {83◦, 126◦}, where higher-order
terms in the expansion dominate the decay, as indicated
by the larger exponent n < −4. This behaviour is interest-
ing, as it suggests that the symmetry of the swimmer at
these angles suppresses the contribution of the quadrupo-
lar term and gives way to higher order terms in the mul-
tipole expansion.

In order to demonstrate the change in the behaviour
of the far-field velocity as the swimmer loses its invariance
under a time-reveral and partity transformation, we have
measured the apparent exponent for asymmetric swim-
mers, where l1 and l2 have maximum extensions 0.8D
and D, while all other parameters are kept as before. The
results, presented in fig. 8(b), show apparent exponents
along the x- and y-axes, which are consistent with a dipo-
lar decay (n = −2).
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Fig. 6. (Colour on-line) Average velocity fields near (left) and far (right) from the swimmer for β = 0◦, 53◦, and 107◦. Arrows
indicate the direction of the velocity field, vi/|vi|,while the colour scale indicates its normalised magnitude, P |vi|/ǫ.
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Fig. 7. Average velocity fields near (left) and far (right) from the swimmer for β = 113◦, 120◦, and 140◦. Arrows indicate the
direction of the velocity field, vi/|vi|,while the colour scale indicates its normalised magnitude, P |vi|/ǫ.
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Fig. 8. Apparent exponent governing the decay of the magnitude of the velocity field along the x- and y−axes with distance,
as a function of the swimmer angle β. (a) Symmetric swimmer with identical maximum arm extension, D. (b) Asymmetric
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Fig. 9. Example of swimming pattern where the swimmer angle of the swimmer varies according to β(t) = β0 + β̂ sin(Ωt), with

(a) β0 = 53◦, β̂ = β0/2 and Ω = 2π/1000P , (b) β0 = 80◦, β̂ = β0/2, and Ω = 2π/1000P and (c) β0 = 80◦, β̂ = 4β0/5 and

Ω = 2π/50000P .

5 Conclusions

In this paper we have proposed a simple three-sphere
model for a circle swimmer which is a natural generali-
sation of the linear Najafi-Golestanian swimmer [5]. The
spheres are placed on a triangle such that two subsequent
strokes are performed at an angle. We find that the radius
and the sense of rotation of the swimmer trajectory de-
pend delicately on the separation angle between the rods
joining the beads. The velocity field produced by this sim-
ple circle swimmer exhibits a characteristic inverse-power
decay at large distances. For swimming strokes invariant
under a combined time-reversal and parity transformation
we recover the expected quadrupolar decay for the velocity
field, except for a narrow range of separation angles where
a stronger decay is observed. As expected, for asymmetric
swimming strokes, which do not posses the time-reversal

and parity symmetry, we recover a decay consistent with
a dipolar velocity field.

The model can serve as a simple reference to help un-
derstand more complex situations such as a circle swim-
mer in a confining geometry or the collective properties of
many circle swimmers. A further extension of the model
is to swimmers whose angle varies in time [7,8]. Here we
expect that more complicated modes of motion arise, de-
pending on the interplay between the timescale of the link
variation and the timescale of the swimmer angle varia-
tion. Since the latter essentially controls the radius of the
swimming trajectory, a slow variation of the swimmer an-
gle relative to the links results in more complex swim-
ming patterns, as shown in fig. 9, where the trajectories
have a varying curvature leading to meandering motion.
Any arbitrary two-dimensional trajectory can be gener-
ated by a suitable choice of β(t). Hence β(t) can be used
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as a “steering wheel” to navigate at will. Similar ideas,
related to the controllability of the swimmer trajectories,
have been recently explored by Alouges et al. [43]. The
motion of circle swimmers under shear (e.g., linear shear
or Poiseuille flow) can lead to new trajectories such as
cycloids. Other external driving that could alter trajec-
tories include a gravitational field or magnetic or electric
fields [44]. One is just beginning to understand the topolo-
gies of these trajectories for simple noise-free circle swim-
mers [38].

The trajectories of the circle swimmers studied in this
paper could also be verified experimentally, e.g., by con-
trolling the trajectories of immersed microbeads using op-
tical traps, as performed by Leoni et al. [45] for the linear
three-bead swimmer, and there is no obstacle in principle
to do this for our circle swimmer as well.

Finally, putting together more than three spherical
beads could lead to more complicated motion, in three di-
mensions, than the simple circular trajectories discussed
in this paper. This results from the intricate translation-
rotation coupling for biaxial particles. It was shown that
the simple Brownian circle swimmer in three spatial di-
mensions possesses a wealth of different trajectories with
the circular helix being the simplest one [46]. It would be
interesting to generalise our model to four spheres which
are not in a common plane in order to access these com-
plicated types of motion.
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