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Abstract 

Background: Circular RNAs (circRNAs) have received increasing attention in human tumor research. However, there 

are still a large number of unknown circRNAs that need to be deciphered. The aim of this study is to unearth novel 

circRNAs as well as their action mechanisms in hepatocellular carcinoma (HCC).

Methods: A combinative strategy of big data mining, reverse transcription-quantitative polymerase chain reac-

tion (RT-qPCR) and computational biology was employed to dig HCC-related circRNAs and to explore their potential 

action mechanisms. A connectivity map (CMap) analysis was conducted to identify potential therapeutic agents for 

HCC.

Results: Six differently expressed circRNAs were obtained from three Gene Expression Omnibus microarray datasets 

(GSE78520, GSE94508 and GSE97332) using the RobustRankAggreg method. Following the RT-qPCR corroboration, 

three circRNAs (hsa_circRNA_102166, hsa_circRNA_100291 and hsa_circRNA_104515) were selected for further analy-

sis. miRNA response elements of the three circRNAs were predicted. Five circRNA–miRNA interactions including two 

circRNAs (hsa_circRNA_104515 and hsa_circRNA_100291) and five miRNAs (hsa-miR-1303, hsa-miR-142-5p, hsa-miR-

877-5p, hsa-miR-583 and hsa-miR-1276) were identified. Then, 1424 target genes of the above five miRNAs and 3278 

differently expressed genes (DEGs) on HCC were collected. By intersecting the miRNA target genes and the DEGs, we 

acquired 172 overlapped genes. A protein–protein interaction network based on the 172 genes was established, with 

seven hubgenes (JUN, MYCN, AR, ESR1, FOXO1, IGF1 and CD34) determined from the network. The Gene Oncology, 

Kyoto Encyclopedia of Genes and Genomes and Reactome enrichment analyses revealed that the seven hubgenes 

were linked with some cancer-related biological functions and pathways. Additionally, three bioactive chemicals 

(decitabine, BW-B70C and gefitinib) based on the seven hubgenes were identified as therapeutic options for HCC by 

the CMap analysis.

Conclusions: Our study provides a novel insight into the pathogenesis and therapy of HCC from the circRNA–

miRNA–mRNA network view.
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Background
Circular RNA (circRNA), with a complete closed loop 

structure, is firstly identified in 1976 [1]. However, 

these transcripts without poly-A tail are ignored for 

a long time due to the limitation of traditional RNA 

detection methods. In recent years, with the develop-

ment of high-throughput sequencing technology, a 

myriad of circRNAs has been found in the eukaryotic 

transcriptome [2]. With the features of cell-type spe-

cific [3] and highly conserved across species [4], cir-

cRNAs are thought to be new star RNAs which play 

important roles in various diseases, including human 

cancers [5, 6].

Competing endogenous RNAs (ceRNAs) are tran-

scripts that act as miRNA sponges, modulating each 

other at post-transcriptional level via competely bind-

ing to shared miRNAs [7]. Recently, circRNAs have 

become new hotspots in ceRNA family since they have 

been demonstrated to harbor abundant conserved 

miRNA response elements (MREs) [8]. Increasing study 

has revealed that some circRNAs are involved in tumor 

initiation and progression by the ceRNA mechanism. 

For example, a classic cirRNA, ciRs7, is deemed to be a 

miRNA sponge, absorbing miR-7 and liberating the lat-

ter inhibitory effect on its target gene in many human 

cancers [9, 10]. CircRNAs as ceRNAs mediating patho-

logical processes has also been reported in HCC [11, 12]. 

However, many unknown circRNAs still remain to be 

explored.

In this study, we employed a combinative strategy 

of gene chip and computational biology to investigate 

novel circRNAs and their potential action mechanisms 

in HCC. �e flow chart recapitulating the present work 

is shown in Fig.  1 as follows: First, we collected HCC-

related microarray datasets providing expression profile 

of circRNAs from the Gene Expression Omnibus (GEO), 

obtaining differently expressed circRNAs (DECs) with 

RobustRankAggreg method and corroborating their 

expression using reverse transcription-quantitative poly-

merase chain reaction (RT-qPCR). To depict whether the 

DECs function as ceRNAs in HCC, we collected their 

sponge miRNAs and miRNA target genes, constructing 

a circRNA–miRNA–mRNA network. A protein–protein 

interaction (PPI) network was subsequently established 

and the hubgenes were identified. �en, Gene Oncol-

ogy (GO), Kyoto Encyclopedia of Genes and Genomes 

(KEGG) and Reactome enrichment analyses on the 

hubgenes were performed to elucidate the potential 

pathogenesis of HCC. Furthermore, we conducted a con-

nectivity map (CMap) analysis to acquire bioactive com-

pounds for the treatment of HCC, which provide a new 

insight into the latent therapeutic capacity of circRNAs 

in HCC.

Methods
Screening of DECs in HCC from GEO

Microarray datasets providing circRNA expression 

profile in HCC were achieved from the GEO data-

base [13]. All raw expression data were normalized and 

log2-transformed. First, we used Limma, a Bioconduc-

tor package for differential analysis of microarray data, 

to determine DECs in each dataset with the criteria of 

|log2(foldchange)| > 1 and P-value < 0.05 [14]. �en, we 

integrated and ranked all of the DECs with R package 

RobustRankAggreg [15].

Validation of DECs with RT-qPCR method

Sixteen paired fresh frozen HCC tissues and correspond-

ing adjacent non-tumor tissues were obtained from 

patients diagnosed with HCC at the First Affiliated Hos-

pital of Guangxi Medical University (Nanning, Guangxi, 

People’s Republic of China). No patient received any 

radiotherapy or chemotherapy before surgery. �e Eth-

ics Committee of the First Affiliated Hospital of Guangxi 

Medical University approved this study.

Total RNA was isolated with  TRIzol® Reagent (Life 

technologies, �ermo Fisher Scientific, USA) following 

the manufacturer’s instruction. �en, 1 µg total RNA was 

reversed into 20  µl complementary DNA (cDNA) with 

 Geneseed® II First Strand cDNA Synthesis Kit (Gene-

seed, Guangzhou, China). RT-qPCR was conducted using 

 Geneseed® qPCR  SYBR® Green Master Mix (Geneseed) 

on ABI7500 system (Applied Biosystems, CA, USA) 

in line with the manufacturer’s procedure. Beta-actin 

(Geneseed) was set as the endogenous reference. All of 

the primer sequences used in this study were synthe-

sized by Geneseed and are displayed in Table 1. CircRNA 

expression was determined using the  2−ΔCT method. Sig-

nificance between groups was analyzed by paired T-test 

with SPSS 22.0 (IBM, New York, USA). A P-value < 0.05 

denotes a statistical significance.

Prediction of MREs

�e miRNA binding sites, also known as MREs, of those 

selected DECs, were predicted with two web tools, Can-

cer-Specific CircRNA (CSCD) [16] and Circular RNA 

Interactome (CircInteractome) [17]. We identified over-

lapped miRNAs of the two algorithms as potential target 

miRNAs of the DECs.

Veri�cation of miRNA expression based on data from GEO 

and TCGA 

Microarray datasets providing miRNA expression pro-

file in HCC were obtained from the public databases 

GEO and �e Cancer Genome Atlas (TCGA) [18]. �e 

retrieval terms were as follows: (hepatocellular OR 

hepatic OR liver OR HCC) and (“cancer” OR “tumor” OR 



Page 3 of 21Xiong et al. J Transl Med  (2018) 16:220 

Fig. 1 Flow chart of the present study. HCC hepatocellular carcinoma, GEO Gene Expression Omnibus, MRE miRNA response element, DEGs 

differently expressed genes, TCGA  The Cancer Genome Atlas, PPI protein–protein interaction, MCODE Molecular Complex Detection, GO Gene 

Oncology, KEGG Kyoto Encyclopedia of Genes and Genomes, CMap connectivity map
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“tumour” OR “carcinoma” OR “neoplasm” OR “malig-

nan*”) and (miRNA OR microRNA OR miR OR “non-

coding RNA” OR ncRNA OR “noncoding RNA” OR “non 

coding RNA”).

We screened available datasets based on the listed 

inclusion criteria: (1) all of the patients were diagnosed 

with HCC; (2) the studies must contain circRNA expres-

sion data both in cancerous and normal liver tissues; and 

(3) the sample sizes in tumor and non-tumor group were 

at least three.

Two revivers extracted the basic information of each 

included record: miRNA type, first author and published 

year, region, data source, platform, number of case, and 

expression level of miRNA. Any divergences were settled 

via discussion with a third investigator.

�e combined standard mean difference (SMD) and 

95% confidence interval (95% CI) were computed by 

STATA 12.0 (StataCorp, College Station, TX, USA). A 

SMD > 0 represents high expression of miRNA in HCC 

samples than in normal controls. �e corresponding 95% 

CI do not cross 1 and a P-value < 0.05 suggest a statistical 

significance.

Prediction of miRNA target genes

�e miRNA–mRNA interactions were predicted with 

miRWalk 2.0 [19], which involves 12 predicted algo-

rithms (Targetscan, RNAhybrid, RNA22, PITA, Pictar2, 

miRWalk, Microt4, miRNAMap, miRDB, mirbridge, 

miRanda and miRMap). Target genes forecasted by at 

least eight algorithms were selected for further analysis.

Collection of di�erently expressed genes (DEGs) of HCC 

form TCGA 

RNA-sequencing (RNA-seq) data containing 374 HCC 

samples and 50 normal controls was downloaded from 

the TCGA. DEGs were determined by the edgeR pack-

age [20] in Bioconductor with the filter criteria of 

|log2(foldchange)| > 1 and adjust P-value < 0.05.

Construction of circRNA–miRNA–mRNA network

�e overlapping genes between the predicted miRNA 

target genes and the DEGs were obtained for circRNA–

miRNA–mRNA network construction. �e Cytoscape 

3.6.1 software [21] was used to visualize the regulatory 

network.

Establishment of PPI network and identi�cation 

of hub-genes

A PPI network was established by the STRING (v10.5) 

[27924014] and visualized by the Cytoscape 3.6.1. �en, 

the “Molecular Complex Detection” (MCODE), a clus-

tering algorithm identifying locally densely connected 

regions in a large PPI network based on a node-weighting 

arithmetic [22], was employed to recognize highly inter-

acted hubgene clustering.

GO, KEGG and Reactome enrichment analyses

GO annotation and KEGG pathway analyses were con-

ducted by clusterProfiler, an R package for functional 

classification and enrichment of gene clusters using 

hypergeometric distribution [23]. Reactome pathway 

analysis was performed by Reactome FI, a plugin of 

Cytoscape for network and pathway analysis [24].

Table 1 Primer sequences for reverse transcription-quantitative polymerase chain reaction

ACTB beta-actin

Gene ID Primer sequence Product 
length 
(bp)Forward (5′-3′) Reverse (5′-3′)

ACTB CAT GTA CGT TGC TAT CCA GGC CTC CTT AAT GTC ACG CAC GAT 250

hsa_circRNA_102166 TAC GTT GAT CAC CAA GGG CT CTT CTG CTT TGG CTG TGA CA 126

hsa_circRNA_104515 CTT TAT AAC TAT AGG GTA CTGG GTC TCC TCT GGT TCA TTG 150

hsa_circRNA_105031 ACT ACA GGC AAT CAG GGT TC GTA CAA GTT CTG CAG GAA CGA 118

hsa_circRNA_100291 CAT TCT TAT AGT TGT AAG CTTAG CAT AGG AGA AAG CAT CAT TAT 131

Table 2 Basic information of the three microarray datasets from GEO

GEO Gene Expression Omnibus, T tumor, N normal

Data source Platform First author Year Region Sample size (T/N) Number 
of circRNAs

GSE78520 GPL19978 Li C 2016 China 3/3 4451

GSE94508 GPL19978 Fu L 2017 China 5/5 2572

GSE97332 GPL19978 Han D 2017 China 7/7 3471
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CMap analysis

Hubgenes consisting of two lists of up- and down-regu-

lated tags were uploaded into the CMap web tool, match-

ing against over 7000 gene expression profiles following 

treatment of 1309 bioactive compounds in human cell 

lines [25]. �e match between the signatures of interest 

and chemicals from CMap was assessed by a connectivity 

score from − 1 to 1: a positive score denotes a stimulative 

effect of compound on the query signatures; while a neg-

ative score implicates a repressed effect of a compound 

on the query signatures.

Results
Identi�cation of six DECs in HCC based 

on RobustRankAggreg method

�ree microarray datasets (GSE78520, GSE94508 and 

GSE97332) were included in our study. All of the three 

gene chips were from the platform of Agilent-069978 

Arraystar Human CircRNA microarray V1. �e basic 

information of the three datasets is concluded in Table 2. 

A total of 259 DECs with 211 up-regulated circRNAs and 

48 down-regulated circRNAs were found in gene chip 

GSE78520 (Fig. 2a); 299 DECs with 46 up-regulated cir-

cRNAs and 253 down-regulated circRNAs were deter-

mined in gene chip GSE94508 (Fig. 2b); 882 DECs with 

429 up-regulated circRNAs and 453 down-regulated cir-

cRNAs were identified in gene chip GSE97332 (Fig. 2c). 

Subsequently, we integrated the DECs of the three data-

sets and ranked them with a robust method. A total of 

six circRNAs, including two up-regulated circRNAs 

(hsa_circRNA_103510 and hsa_circRNA_100542) and 

four down-regulated circRNAs (hsa_circRNA_102166, 

hsa_circRNA_104515, hsa_circRNA_105031 and hsa_

circRNA_100291), were found to be in the top rankings 

with an adjust P-value < 0.05 (Fig.  3). �e expression of 

Fig. 2 Volcano plots for DECs in HCC based on the three microarray 

datasets from GEO: a GSE78520, b GSE94508, c GSE97332. The 

volcano plot was generated by R package ‘ggplot2’. DECs differently 

expressed circRNAs, HCC hepatocellular carcinoma, GEO Gene 

Expression Omnibus

Fig. 3 Heatmap for the six DECs determined using the 

RobustRankAggreg method with an adjust P-value < 0.05. The 

heatmap was generated by R package ‘pheatmap’. DECs differently 

expressed circRNAs
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Fig. 4 Heatmap for the six DECs in individual microarray datasets: a GSE78520, b GSE94508, c GSE97332. The heatmap was generated by R package 

‘pheatmap’. DECs differently expressed circRNAs



Page 7 of 21Xiong et al. J Transl Med  (2018) 16:220 

Table 3 Essential characteristics of the six di�erently expressed circRNAs

CircRNA Alias CircRNA type Position Strand Best transcript Gene symbol Regulation

hsa_cir-
cRNA_103510

hsa_circ_0067934 Exonic chr3:170013698-
170015181

+ uc003fgs.2 PRKCI Up

hsa_cir-
cRNA_100542

hsa_circ_0017639 Exonic chr10:7290509-
7327916

− uc010qay.2 SFMBT2 Up

hsa_cir-
cRNA_102166

hsa_circ_0004913 Exonic chr17:62248459-
62265775

− uc002jec.3 TEX2 Down

hsa_cir-
cRNA_104515

hsa_circ_0002980 Exonic chr7:141336759-
141349133

+ uc003vwi.2 AGK Down

hsa_cir-
cRNA_105031

hsa_circ_0091570 Exonic chrX:131516205-
131526362

− uc004ewt.3 MBNL3 Down

hsa_cir-
cRNA_100291

hsa_circ_0000098 Exonic chr1:101372407-
101387397

+ uc001dtn.2 SLC30A7 Down

Fig. 5 Structural patterns of the six circRNAs by the Cancer-Specific CircRNA (CSCD, http://gb.whu.edu.cn/CSCD/#): a has_circRNA_103510, b 

has_circRNA_100542, c has_circRNA_102166, d has_circRNA_104515, e has_circRNA_105031, f has_circRNA_100291

http://gb.whu.edu.cn/CSCD/
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the six circRNAs in each dataset is shown in Fig. 4. �e 

essential characteristics of the six circRNAs are displayed 

in Table 3. �e basic structural patterns of the six circR-

NAs are exhibited in Fig. 5.

Corroboration of the six circRNAs with RT-qPCR

RT-qPCR was conducted in 16 pairs HCC samples 

and adjacent non-cancerous tissues to corroborate the 

expression of the six circRNAs. Among the six circR-

NAs, hsa_circRNA_103510 and hsa_circRNA_100542 

cannot be detected in these in-house tissues due to their 

relative low expression levels. �e low expression of 

hsa_circRNA_102166 in HCC tissues was corroborated 

by RT-qPCR (P = 0.047, Fig.  6a). Hsa_circRNA_100291 

and hsa_circRNA_104515 showed a down-regulated 

tendency in HCC, though the P-values were greater 

than 0.05 (hsa_circRNA_100291: P = 0.069, Fig.  6b; 

hsa_circRNA_104515: P = 0.059, Fig.  6c). For hsa_cir-

cRNA_105031, its expression in HCC tissues was simi-

lar to that in non-cancerous tissues (P = 0.588, Fig.  6d). 

�e head-to-tail splicing in the RT-qPCR product of 

hsa_circRNA_102166, hsa_circRNA_100291, hsa_cir-

cRNA_104515 and hsa_circRNA_105031 was confirmed 

by Sanger sequencing (Fig. 7).

Identi�cation of �ve circRNA–miRNA interactions

Hsa_circRNA_102166, hsa_circRNA_100291 and 

hsa_circRNA_104515 were selected for further analy-

sis. Increasing evidence has demonstrated that some 

circRNAs play critical roles in tumors by functioning 

as “decoys” to sponge miRNAs. To depict whether the 

three circRNAs perform the similar role in HCC, we 

Fig. 6 Violin plots for the expression of hsa_circRNA_102166, hsa_circRNA_104515, hsa_circRNA_105031 and hsa_circRNA_100291 in HCC by 

RT-qPCR: a hsa_circRNA_102166, b hsa_circRNA_100291, c hsa_circRNA_104515, d hsa_circRNA_105031. HCC hepatocellular carcinoma, ANT 

adjacent non-tumorous, RT-qPCR reverse transcription-quantitative polymerase chain reaction
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Fig. 7 Head-to-tail splicing in the RT-qPCR product of hsa_circRNA_102166, hsa_circRNA_100291, hsa_circRNA_104515 and hsa_circRNA_105031 

by Sanger sequencing: a hsa_circRNA_102166, b hsa_circRNA_100291, c hsa_circRNA_104515, d hsa_circRNA_105031
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collected their potential target miRNAs from two online 

databases, CSCD and CircInteractome. A total of five 

circRNA–miRNA interactions including two circRNAs 

(hsa_circRNA_104515 and hsa_circRNA_100291) and 

five miRNAs (hsa-miR-1303, hsa-miR-142-5p, hsa-miR-

877-5p, hsa-miR-583 and hsa-miR-1276) were identified 

(Fig.  8). DIANA-miRPath [26] was exploited to explore 

the signaling pathways in which the five miRNAs may be 

involved. As shown in Fig. 9, all of the five miRNAs were 

closely linked with some cancer-related pathways.

Expression of the �ve miRNAs based on the data from GEO 

and TCGA 

In all, 11 microarray and RNA-seq datasets were 

included. Among them, 7 datasets with 339 HCC sam-

ples and 113 normal controls were for miR-1303; 11 

datasets with 881 HCC samples and 351 normal controls 

were for miR-142-5p; 7 datasets with 671 HCC samples 

and 149 normal controls were for miR-877-5p; 5 datasets 

with 307 HCC samples and 97 normal controls were for 

miR-583; and 5 datasets with 534 HCC samples and 110 

normal controls were for miR-1276. �e essential proper-

ties of the 11 records are concluded in Table 4. According 

Fig. 8 CircRNA–miRNA interactions identified by both databases of CSCD (http://gb.whu.edu.cn/CSCD/#) and CircInteractome (https ://circi 

ntera ctome .nia.nih.gov/index .html): a hsa_circRNA_104515/hsa-miR-1303, b hsa_circRNA_104515/hsa-miR-142-5p, c hsa_circRNA_104515/

hsa-miR-877-5p, d hsa_circRNA_100291/hsa-miR-583, e hsa_circRNA_100291/hsa-miR-1276. CSCD: Cancer-Specific CircRNA; CircInteractome: 

Circular RNA Interactome

http://gb.whu.edu.cn/CSCD/
https://circinteractome.nia.nih.gov/index.html
https://circinteractome.nia.nih.gov/index.html
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to the pooled results, miR-142-5p was down-regulated 

(SMD = − 0.53, 95% CI − 0.88  to  − 0.19, P = 0.003; 

Fig.  10a) and miR-877 was up-regulated (SMD = 0.80, 

95% CI 0.25–1.34, P = 0.004; Fig.  10b) in HCC. MiR-

1303 and miR-1276 showed high expression tenden-

cies in HCC tissues compared to in normal liver tissues, 

while the P-values were greater than 0.05 (miR-1303: 

SMD = 0.49, 95% CI − 0.19  to 1.16, P = 0.157; Fig.  10c; 

miR-1276: SMD = 0.21, 95% CI − 0.30 to 0.72, P = 0.422; 

Fig. 10d). For miR-583, its expression in HCC tissues was 

similar to that in normal liver tissues (SMD = 0.03, 95% 

CI − 0.25 to 0.31, P = 0.851, Fig. 10e).

Construction of circRNA–miRNA–mRNA network

Total 1424 target genes of the aforementioned five 

miRNAs were obtained from the miRWalk. Addition-

ally, 3278 DEGs in HCC were gained from the TCGA 

(Fig. 11a). By intersecting the predicted target genes and 

DEGs, we identified 172 target genes that exert momen-

tous roles in HCC (Fig. 11b).

We integrated the circRNA–miRNA interactions and 

miRNA–mRNA interactions to construct a circRNA–

miRNA–mRNA network (Fig.  12), which provided a 

preliminary insight into the links between the DECs 

(hsa_circRNA_104515 and hsa_circRNA_100291), the 

five miRNAs (hsa-miR-1303, hsa-miR-142-5p, hsa-miR-

877-5p, hsa-miR-583 and hsa-miR-1276) and the 172 

mRNAs.

Identi�cation of seven hubgenes with MCODE algorithm 

from PPI network

Removing unconnected nodes, we established a PPI net-

work consisting of 91 nodes and 131 edges to view the 

interactions among the 172 mRNAs (Fig.  13a). Con-

sidering the importance of hubgene in a network, we 

employed a MCODE approach to screen hubgenes from 

the PPI network. With the k-core = 2, one subnetwork 

with 7 nodes and 18 edges was identified (Fig.  13b), 

which unveiled the critical roles of the seven genes 

(JUN, MYCN, AR, ESR1, FOXO1, IGF1 and CD34) in 

HCC. �e expression levels of the seven genes in HCC 

are exhibited in Fig.  14. A circRNA-miRNA-hubgene 

network was then built to delineate the links among the 

DECs, miRNAs and hubgenes (Fig. 15). Eight circRNA–

miRNA–mRNA regulatory modules, including hsa_cir-

cRNA_100291/hsa-miR-1276/FOXO1 regulatory axis, 

hsa_circRNA_100291/hsa-miR-583/ESR1 regulatory 

axis, hsa_circRNA_100291/hsa-miR-583/JUN regulatory 

axis, hsa_circRNA_100291/hsa-miR-583/AR regulatory 

axis, hsa_circRNA_104515/hsa-miR-877-5p/AR regula-

tory axis, hsa_circRNA_104515/hsa-miR-142-5p/MYCN 

regulatory axis, hsa_circRNA_104515/has-miR-142-5p/

IGF1 regulatory axis and has_circRNA_104515/has-miR-

142-5p/CD34 axis, were found from the network.

Fig. 9 Heatmap for the significant signaling pathways that the five miRNAs mediate according to the DIANA-miRPath
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GO annotation, KEGG pathway and Reactome pathway 

analyses of the seven hubgenes

GO analysis was carried out to illustrate the functional 

annotations of the seven hubgenes. �e top five highly 

enriched GO terms of biological process (BP), cellu-

lar component (CC) and molecular function (MF) are 

shown in Fig.  16. �e most enriched GO terms in BP 

was “epithelial cell proliferation” (P < 0.0001), that in CC 

was “chromatin” (P < 0.0001), and that in MF was “beta-

catenin binding” (P < 0.0001). KEGG pathway analysis 

was conducted to ascertain the signaling cascade that the 

seven genes participate. With an adjust P-value < 0.05, 12 

Table 4 Essential properties of the 11 records for the �ve miRNAs by data from GEO

TCGA  The Cancer Genome Atlas, SD standard deviation

miRNA First author Year Region Data source Platform Number of case Expression (mean ± SD)

Cancer Normal Cancer Normal

hsa-miR-1303 Hou J 2010 China GSE21279 GPL9052 4 7 4.15 ± 1.206 2.49 ± 0.554

Sato F 2011 Japan GSE21362 GPL10312 59 61 1.59 ± 1.014 1.39 ± 1.042

Kim J 2012 South Korea GSE39678 GPL15852 16 8 11.00 ± 0.702 11.49 ± 0.364

Diaz G 2013 USA GSE40744 GPL14613 9 19 3.72 ± 0.774 2.78 ± 0.492

Villanueva A 2016 Spain GSE74618 GPL14613 230 10 1.88 ± 0.658 1.51 ± 0.263

TCGA 2017 USA TCGA none 21 5 0.35 ± 0.225 0.17 ± 0.100

Xie Z 2017 China GSE98269 GPL20712 3 3 5.07 ± 0.071 5.10 ± 0.115

hsa-miR-142-5p Li W 2008 China GSE10694 GPL6542 78 88 11.01 ± 0.605 11.19 ± 0.710

Su H 2008 China GSE12717 GPL7274 9 6 9.11 ± 1.406 9.09 ± 0.707

Burchard J 2010 USA GSE22058 GPL10457 96 96 0.95 ± 0.241 1.07 ± 0.135

Hou J 2010 China GSE21279 GPL9052 4 7 7.04 ± 1.190 7.77 ± 1.112

Sato F 2011 Japan GSE21362 GPL10312 59 61 7.06 ± 1.022 7.93 ± 0.577

Kim J 2012 South Korea GSE39678 GPL15852 16 8 11.10 ± 0.959 11.88 ± 0.182

Morita K 2013 Japan GSE41874 GPL7722 6 4 0.72 ± 0.412 1.34 ± 0.225

Diaz G 2013 USA GSE40744 GPL14613 9 19 1.96 ± 0.506 1.74 ± 0.224

Villanueva A 2016 Spain GSE74618 GPL14613 230 10 1.37 ± 0.206 1.36 ± 0.212

Xie Z 2017 China GSE98269 GPL20712 3 3 6.76 ± 0.733 6.88 ± 0.169

TCGA 2017 USA TCGA None 371 49 5.45 ± 1.264 6.86 ± 0.796

hsa-miR-877-5p Hou J 2010 China GSE21279 GPL9052 4 6 3.64 ± 1.753 2.19 ± 0.713

Sato F 2011 Japan GSE21362 GPL10312 59 61 2.17 ± 0.921 2.05 ± 0.961

Morita K 2013 Japan GSE41874 GPL7722 6 4 1.08 ± 0.313 1.06 ± 0.452

Diaz G 2013 USA GSE40744 GPL14613 9 19 5.36 ± 0.619 3.88 ± 0.797

Villanueva A 2016 Spain GSE74618 GPL14613 230 10 3.64 ± 0.741 3.42 ± 0.636

Xie Z 2017 China GSE98269 GPL20712 3 3 5.31 ± 0.073 5.12 ± 0.066

TCGA 2017 USA TCGA None 360 46 1.47 ± 0.807 0.73 ± 0.328

hsa-miR-583 Sato F 2011 Japan GSE21362 GPL10312 59 61 1.47 ± 0.722 1.46 ± 0.837

Morita K 2013 Japan GSE41874 GPL7722 6 4 0.91 ± 0.249 0.76 ± 0.293

Diaz G 2013 USA GSE40744 GPL14613 9 19 1.75 ± 0.247 1.77 ± 0.344

Villanueva A 2016 Spain GSE74618 GPL14613 230 10 1.43 ± 0.237 1.45 ± 0.294

Xie Z 2017 China GSE98269 GPL20712 3 3 5.07 ± 0.119 5.02 ± 0.020

hsa-miR-1276 Sato F 2011 Japan GSE21362 GPL10312 59 61 1.55 ± 0.810 1.72 ± 0.737

Diaz G 2013 USA GSE40744 GPL14613 9 19 1.9 ± 0.254 1.70 ± 0.209

Villanueva A 2016 Spain GSE74618 GPL14613 230 10 1.34 ± 0.164 1.38 ± 0.191

Xie Z 2017 China GSE98269 GPL20712 3 3 5.06 ± 0.049 5.06 ± 0.027

TCGA 2017 USA TCGA None 233 17 0.61 ± 0.380 0.36 ± 0.233
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significantly enriched pathways were obtained (Fig. 17a). 

Among the 12 pathways, “AMPK signaling pathway”, 

“FoxO signaling pathway” and “Estrogen signaling path-

way” are linked with the progression of HCC [27–29]. 

Additionally, some other pathways such as “Prostate can-

cer”, “Breast cancer” and “Transcriptional misregulation 

in cancer” were also tumor-related pathways. Reactome 

pathway analysis was further performed to delineate the 

metabolic pathways that the seven hubgenes related to. 

With a P-value < 0.05, a total of 29 pathways were identi-

fied (data not shown). �e top 10 significantly enriched 

Reactome pathways are displayed in Fig. 17b.

Identi�cation of three bioactive compounds 

for the treatment of HCC based on CMap analysis

�e seven hubgenes consisting of two up-regulated genes 

(CD34, MYCN) and five down-regulated genes (AR, 

JUN, ESR1, FOXO1, IGF1) were loaded into the CMap 

web tool as up-regulated tags and down-regulated tags, 

respectively. Following the signature query, three com-

pounds (decitabine, BW-B70C, gefitinib) with the highest 

negative enrichment score were determined as the poten-

tial therapeutic agents for HCC (Table  5). �e chemi-

cal structures of the three compounds are presented in 

Fig. 18.

Fig. 10 Forest plots of datasets evaluating the expression of the five miRNAs in hepatocellular carcinoma: a hsa-miR-142-5p, b hsa-miR-877-5p, c 

hsa-miR-1303, d hsa-miR-1276, e hsa-miR-583
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Discussion
Due to the lack of 5′ caps and 3′polyadenylated tails, cir-

cRNAs are ignored in classical polyadenylated transcrip-

tome studies for a long time. In the past few decades, 

with the development of high-throughput sequencing, 

biochemical and computational biology methods, a large 

number of circRNAs are unmasked the veil in various 

tissues and cells [30]. Increasing study has unveiled the 

important roles of circRNAs in a myriad of human dis-

eases, including malignant tumors [31–33]. CircRNAs 

usually serve as diagnostic and prognostic biomarkers 

because of their relative tolerance to exonucleases, which 

benefits from the covalently closed loop structures [34, 

35]. In addition, owing to the high cell- and tissue- speci-

ficity of circRNAs, their roles in different neoplasms are 

not complete accord. In HCC, an increasing number of 

circRNAs, such as ciRS-7 [36], has_circ_0067934 [12], 

CDR1as [37] and circMTO1 [11], have been reported to 

exert momentous roles in regulating pathophysiologi-

cal process and guiding clinical diagnosis and treatment. 

However, there are still a lot of circRNAs that need to be 

unearthed.

In this study, we firstly collected three gene 

chips (GSE78520, GSE94508 and GSE97332) 

from the GEO database and screened six DECs 

(hsa_circRNA_103510,hsa_circRNA_100542, hsa_

circRNA_102166, hsa_circRNA_104515, hsa_cir-

cRNA_105031 and hsa_circRNA_100291) with the 

RobustRankAggreg approach, an algorithm for integra-

tion of different gene expression spectra, ranking genes 

by their fold changes and aggregating these rankings to 

achieve the final robust and rigorous results. Following 

the RT-qPCR validation of the six DECs, three circRNAs 

(hsa_circRNA_102166, hsa_circRNA_100291 and hsa_

circRNA_104515) were selected for further analysis.

As highly conserved endogenous RNAs, many circR-

NAs harbors abundant miRNA binding sites, indicat-

ing that they can sponge corresponding miRNAs and 

thus function as ceRNAs to regulate gene expression [8, 

38, 39]. To ascertain whether the aforementioned three 

circRNAs function as ceNAs in HCC, we predicted 

their MREs via two online tools, CSCD and CircInter-

actome. �e former web tool predicted MREs within 

50  bp upstream and downstream of circRNA junction 

point [16]. �e latter web tool predicted MREs based 

on the TargetScane algorithm, which forecasts MREs 

by searching for 7mer or 8mer complementarity to the 

3′ end and the seed region of each miRNA [17, 40]. We 

chose miRNA predicted by both algorithms as the puta-

tive target miRNA for the three circRNAs. Finally, five 

circRNA–miRNA interactions consisting of two circR-

NAs (hsa_circRNA_104515 and hsa_circRNA_100291) 

and five miRNAs (hsa-miR-1303, hsa-miR-142-5p, hsa-

miR-877-5p, hsa-miR-583 and hsa-miR-1276) were 

determined. �e expression of the five miRNAs was 

then verified based on the microarray and RNA-seq data 

from the GEO and TCGA. �e results showed that miR-

142-5p was down-regulated in HCC, which was con-

sistent with previous studies [41, 42]. No relevant study 

reported the expression of miR-877, miR-1303, miR-1276 

and miR-583 in HCC. According to our results, miR-

877 was up-regulated in HCC. MiR-1303 and miR-1276 

showed high expression tendencies in HCC, while the 

differences were not statistical significant. For miR-583, 

Fig. 11 Identification of 172 genes that exert momentous roles in hepatocellular carcinoma (HCC). a Volcano plot of the differentially expressed 

genes (DEGs) in HCC based on data from TCGA. The volcano plot was generated by R package ‘ggplot2’. b Venn diagram for the intersections 

between DEGs and miRNA target genes
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its expression in HCC tissues was similar to that in nor-

mal liver tissues. Due to the inter-study heterogeneity 

that cannot be ignored, the reliable of the pooled results 

is reduced. �ereby, further rigorous studies are neces-

sary to validate these findings.

Following the collection of the 172 overlapped genes 

between the target genes of the five miRNAs and the 

DEGs in HCC, we constructed a circRNA–miRNA–

mRNA regulatory network. We found that hsa_cir-

cRNA_104515 and hsa_circRNA_100291 may act as 

ceRNAs to capture miR-1276, miR-583, miR-877-5p or 

miR-142-5p, and subsequently regulate the 172 genes 

expression. Our results provide an evidence of the ceRNA 

regulatory mechanism of hsa_circRNA_104515 and hsa_

circRNA_100291 in HCC. To further elucidate the action 

mechanism of the ceRNA network, we constructed a PPI 

network, screening seven hubgenes (JUN, MYCN, AR, 

ESR1, FOXO1, IGF1 and CD34) from the PPI network. 

�e functional annotations and pathway analyses showed 

that the seven hubgenes genes were involved in many 

critical tumor-related biological functions and metabolic 

pathways, such as “epithelial cell proliferation”, “AMPK 

signaling pathway”, “FoxO signaling pathway”, “Estrogen 

signaling pathway”, “MAPK6/MAPK4 signaling” and 

“MAPK family signaling cascades”. �e important roles 

of the seven genes in HCC have also been demonstrated 

previously [43–49]. However, their links with circRNAs 

have not yet been explored. Here, we identified seven 

circRNA–miRNA–mRNA axes (hsa_circRNA_100291/

miR-1276/FOXO1, hsa_circRNA_100291/miR-583/

Fig. 12 circRNA–miRNA–mRNA regulatory network. The network consisting of two cricRNAs (hsa_circRNA_104515 and hsa_circRNA_100291), five 

miRNAs (hsa-miR-1303, hsa-miR-142-5p, hsa-miR-877-5p, hsa-miR-583 and hsa-miR-1276) and 172 genes was generated by Cytoscape 3.6.1
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Fig. 13 Identification of hubgenes from the PPI network with the MCODE algorithm. The node color changes gradually from green to red in 

ascending order according to the log2(foldchange) of genes. The edge size changes gradually from fine to coarse in ascending order according 

to the combined score between two neighbored genes. a A PPI network of the 172 target genes that exert momentous roles in hepatocellular 

carcinoma. This network consists of 91 nodes and 131 edges. The node size changes gradually from small to large in ascending order according 

to the number of neighbored genes per gene. b A PPI network of the 7 hubgenes that extracted from a. This network consists of 7 nodes and 18 

edges. PPI protein–protein interaction, MCODE Molecular Complex Detection

Fig. 14 Box-scatter plots for the seven hubgenes expression in hepatocellular carcinoma (HCC): a JUN, b MYCN, c AR, d ESR1, e FOXO1, f IGF1, g 

CD34
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ESR1, hsa_circRNA_100291/miR-583/JUN, hsa_cir-

cRNA_100291/miR-583/AR, hsa_circRNA_104515/

miR-877-5p/AR, hsa_circRNA_104515/miR-142-5p/

MYC, hsa_circRNA_104515/miR-142-5p/MYCN, 

hsa_circRNA_104515/miR-142-5p/IGF1 and hsa_cir-

cRNA_104515/miR-142-5p/CD34), indicating competi-

tive regulatory relationships of hsa_circRNA_100291 

and hsa_circRNA_104515 with the seven genes in HCC. 

However, given that the results are on the basis of com-

putational biology, further in-depth studies are indis-

pensable to verify the possible roles of the seven axes in 

HCC.

To date drug control is an important treatment for 

patients with HCC [50]. Digging effective and sensitive 

drugs against HCC helps improve patients’ outcomes. 

We therefore implemented the CMap analysis of the 

seven hubgenes to explore usable drugs for the treat-

ment of HCC. Based on the genome-wide expression 

profiling of transcripts technology, CMap provides a 

Fig. 15 CircRNA–miRNA–hubgene network. The network consisting 

of two cricRNAs (hsa_circRNA_104515 and hsa_circRNA_100291), 

four miRNAs (hsa-miR-142-5p, hsa-miR-877-5p, hsa-miR-583 and 

hsa-miR-1276) and seven hubgenes (JUN, MYCN, AR, ESR1, FOXO1, 

IGF1 and CD34) was generated by Cytoscape 3.6.1

Fig. 16 Top five Gene Ontology (GO) enrichment annotations of the seven hubgenes: a biological process, b cellular component, c molecular 

function. GO analysis was conducted by R package ‘clusterProfiler’ and visualized by R package ‘ggplot2’
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comprehensive and accurate data resource for explora-

tion of novel drug or relocation of existing drug [51]. 

Drugs available in CMap are all licensed for human use 

by the Food and Drug Administration, thus it is an ideal 

and reliable approach to obtain therapeutic agents for 

human diseases [52]. �ree chemicals (decitabine, BW-

B70C and gefitinib) were identified as the treatment 

options for HCC. As a cytidine antimetabolite analogue, 

decitabine represses DNA methylation, arresting cells 

Fig. 17 Significantly enriched Kyoto Encyclopedia of genes and genomes (KEGG) and Reactome pathways. a The significantly enriched KEGG 

pathways with an adjust P-value < 0.05. KEGG analysis was conducted by R package ‘clusterProfiler’ and visualized by R package ‘GOplot’. Cohort plot 

shows that the seven genes are correlated via ribbons with their assigned KEGG terms. b The top ten enriched Reactome pathways

Table 5 Three compounds identi�ed as treatment options 

for hepatocellular carcinoma by CMap analysis

CMap connectivity map

CMap name Enrichment 
score

Dose Cell Up score Down score

Decitabine − 0.996 100 nM MCF7 − 0.649 0.238

BW-B70C − 0.98 32 µM MCF7 − 0.564 0.226

Gefitinib − 0.979 10 µM HL60 − 0.455 0.329
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into G1/S phase and inhibiting tumor cell proliferation. 

Its antitumor activity in solid tumors including HCC 

has been elucidated in previous studies [53]. Xing et al. 

[54] have demonstrated that decitabine could facilitate 

the expression of miR-122 via inhibition of methylation 

in HCC cells. More importantly, Skårn et  al. [55] have 

demonstrated that miR-142 is epigenetically restrained 

by DNA methylation. Treating decitabine in mesenchy-

mal cells promotes mature miR-142-5p/3p expression 

and thus depresses cell proliferation. We thus hypoth-

esize that decitabine may exert its anti-HCC effect by 

augmenting miR-142-5p via demethylation and sub-

sequently regulating the downstream target genes of 

miR-142-5p. Further well-design study is necessary 

to validate the conclusion. BW-B70C is an inhibitor of 

arachidonic acid 5-lipoxygenase. Previous study has 

reported its anti-neoplastic activity in leukemic cells 

by suppressing the NOTCH1-P13K-AKT-eNOS axis 

[56]. However, its anti-HCC effect and action mecha-

nism have not been elucidated as of yet. In this study, 

we found its potential as therapeutic agent for HCC. 

More studies are needed to verify this finding. Gefi-

tinib is a selective inhibitor of tyrosine kinase receptor 

used in clinic for the treatment of locally advanced or 

metastatic non-small cell lung cancer (NSCLC) [57]. Its 

antineoplastic effect on the other solid tumors includ-

ing HCC has also been reported [58, 59]. However, the 

responsiveness of different HCC patients to gefitinib 

varies greatly and most patients even develop gefitinib 

resistance [60]. Multiple non-coding RNAs including 

miRNAs and lncRNAs have been reported to contribute 

to gefitinib resistance and sensitivity in NSCLC [61–63]. 

We speculate that gefitinib share the similar resistance 

mechanisms in HCC and lung cancer. Our study pro-

vides a theoretical basis for studying gefitinib resist-

ance mechanism and enhancing gefitinib sensitivity in 

patients with HCC from the perspective of circRNA–

miRNA–mRNA network.

Conclusions
In conclusion, by employing a comprehensive strategy of 

big data mining, RT-qPCR and computational biology, 

we constructed a circRNA–miRNA–mRNA network and 

found that hsa_circRNA_100291 and hsa_circRNA_104515 

may function as ceRNAs to exert critical roles in HCC. In 

addition, three bioactive chemicals (decitabine, BW-B70C 

and gefitinib) based on the CMap analysis was determined 

as therapeutic agents for HCC. Our study provides a novel 

insight into the pathogenesis and therapy for HCC from the 

circRNA–miRNA–mRNA view.
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