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Abstract— Boolean Satistifiability has attracted tremendous
research effort in recent years, resulting in the developments of
various efficient SAT solver packages. Based upon their design ar-
chitectures, researchers have tried to develop better heuristics to
further imp rove its efficiency, by either speeding up the Boolean
Constraint Propagation (BCP) procedure or finding a better deci-
sion ordering (or both). In this paper, we propose an entirely dif-
ferent SAT solver design concept that is circuit-based. Our solver
is able to utilize circuit topological information and signal correla-
tions to enforce a decision ordering that is more efficient for solv-
ing circuit-based SAT problem instances. In particular, for unsat-
isfiable circuit examples, our solver is able to achieve from 2x up
to more than 75x speedup over a state-of-the-art SAT solver.

I. Introduction
The Boolean Satistifiability (SAT) Problem has been extensively

studied in recent years. Popular SAT solvers [1, 2, 3, 4] are of-
ten designed based upon the Conjunctive Normal Form (CNF) rep-
resentation. For many applications in CAD, applying SAT to solve
a circuit-oriented problem often requires transformation of the circuit
gate-level netlist into its corresponding CNF format [5]. In the circuit-
to-CNF transformation, the topological ordering among the internal
signals is no longer there. All signals become (input) variables in the
CNF format.

For solving circuit-oriented CAD problems, circuit structural infor-
mation can be very useful. For example, researchers have developed
various SAT solvers able to utilize circuit-related information to speed
up the state-of-the-art SAT solver performance [6, 7, 8].

In this paper, we present a circuit-based SAT solver that utilizes
signal topological ordering and signal correlations to identify an ef-
fective decision ordering in the SAT search process. Our solver design
follows three key ideas:

� If a group of signals can be identified in advance that they are
highly correlated, then in the solver’s decision variable selec-
tion, they should be grouped together.

� When solving a SAT problem originated from a circuit, some-
times we can solve the problem more easily by following the
topological structure. This means that more efficiency gain can
be obtained by pre-selecting a set of ”proper” signals in the cir-
cuit, and explicitly enforcing the SAT solving process to follow
their topological ordering to solve the problem.

� When making the decisions of value assignments to signals, it
is more effective for the solver to select those values that are
more likely to cause conflicts. Therefore, if we know how circuit
signals are correlated beforehand, that information can be used
to guide the value assignments in the solver.

By combining the three ideas above, we implemented a circuit-
based SAT solver whose decision ordering is guided by what we call
the signal correlation learning. Our solver includes two types of

the signal correlation learning: implicit learning and explicit learn-
ing which differ in their ways to affect the decision ordering. In im-
plicit learning, correlated signals are grouped together in the deci-
sion variable selection, and correlation information is used to guide
the solver to assign values that are more likely to cause conflicts.
In explicit learning, a set of K signals fs1; : : : ;sKg are pre-selected
based upon signal correlations. The decision ordering on these sig-
nals are enforced by their topological order. Values assignments
fs1 = v1; : : : ;sk = vKg are pre-determined in such a way that solv-
ing each sub-problem ”si = vi” (1� i� K) is likely to cause conflicts.
Moreover, the solver starts by explicitly following the topological or-
der to solve each sub-problem in fs1= v1; : : : ;sk = vKg, then followed
by solving the original SAT problem. We call this approach the incre-
mental learn-from-conflict strategy.

For unsatisfiable circuit examples, with implicit learning, our
solver was able to achieve on average 3-7x speedup over the state-
of-the-art SAT solver ZChaff [1, 2]. With explicit learning, this per-
formance gain could further be enhanced from 13x up to more than
75x. For satisfiable cases that contain CNF format in their problem
inputs, our circuit-based solver was not able to take the full advan-
tage of the circuit structural information. As a result, with implicit
learning, roughly 2x speedup was obtained, and with explicit learn-
ing, only comparable results were achieved. We discuss our circuit-
based solver implementation and the experimental results in the rest
of the paper.

The rest of the paper is organized as the following. In Section II,
we explain the key ideas in more detail. Section III describes our
simulation-based method to identify signal correlations. Section IV
presents the method for implicit learning. Detail of our solver im-
plementation is also discussed there. In Section V, we present the
explicit learning method and discuss results on both satisfiable and
unsatisfiable cases. Section VI concludes the paper.

II. Observations
Most SAT problems encountered in CAD applications are origi-

nated from circuits. In a traditional approach, a circuit is transformed
into its CNF-equivalent form [5] and then a SAT solver is applied on
the circuit in CNF. The major disadvantage with this transformation
is the loss of the circuit structural information, specifically the topo-
logical ordering among all the signals. From the circuit point of view,
a CNF formula is a 2-level OR-AND netlist with inverters possibly
associated with the circuit inputs. Hence, with the CNF transforma-
tion, all internal signals in the original circuit become primary inputs
in the corresponding 2-level OR-AND CNF netlist. When solving a
circuit-originated problem, the topological information can be very
useful, and with a CNF netlist, it is not easy to fully take advantage of
that information.

II-A. The Incremental Learn-From-Conflict Idea
Consider the circuit in Figure 1. Suppose we want to solve a circuit

SAT problem with the output objective ”c = 1.” If we apply SAT to
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prove c = 1, then potentially, the search space is the entire circuit.
Now suppose we can identify, in advance, two internal signals a and b
such that ”a= 1” and ”b= 0” individually are very unlikely to happen.
Then, we can divide the original problem into three sub-problems: 1)
solving ”a= 1,” 2) solving ”b= 0,” and then 3) solving ”c= 1.” What
is the advantage of doing so?

C
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Figure 1: A SAT Process Following Topological Order

Since ”a = 1” is unlikely to happen, conflicts are more likely to
occur during the solving process. As a result, information can be
learned more effectively. In a SAT solver, this information is stored
as the learned clauses each representing a functional sub-space that
contains no solution. From another point of view, each learned clause
specifies a constraint on a set of circuit signals, which has to be true
based upon the circuit structure.
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Figure 2: Learned Gates Accumulated by Solving ”a = 1”

Most importantly, if we assume that solving ”a = 1” is done only
based upon the cone of logic headed by the signal ”a” (as the shaded
area A) then the learned clauses will be based upon the signals con-
tained in the area A only. Figure 2 illustrates the results of applying
SAT for solving ”a = 1.” Regardless of whether the problem is satis-
fiable or not, a set of learned clauses can be collected. In the figure,
they are represented as the learned AND gates whose outputs are 1.

As the solver finishes solving ”a = 1” and starts solving ”b = 0,”
all the learned information regarding the circuit area A can be used to
help solving ”b = 0.” In addition, if ”a = 1” is indeed unsatisfiable,
then signal ”a” can be assigned with 0 when solving ”b = 0.” Simi-
larly, learned information from solving ”a = 1” and ”b = 0” can be
used to help solving ”c= 1.”

Intuitively, solving the three sub-problems would be much faster
than solving the original problem. This is because when solving ”b=
0,” hopefully much fewer (or no) decisions are required to go into the
area A. Hence, the search space is more restricted within the area
B. Similarly, solving ”c= 1” requires focusing decision making only
on area C. Moreover, the learned clauses accumulated by solving
”a = 1” would be shorter because they are based upon the signals
on area A only. Similar, the learned clauses accumulated by solving
”b = 0” would be shorter because fewer decisions are made on area
A. Therefore, conceptually, this strategy allows us to solve a complex
problem incrementally.

We make two key observations: 1) the incremental process sug-
gests that we should guide the SAT solver to solve a sequence of pre-
selected sub-problems following their topological ordering, and 2) the
selection of the sub-problems such as ”a= 1” and ”b= 0” should be
those most likely to be unsatisfiable. Intuitively, the search space for

a likely unsatisfiable problem instance is more constrained and hence,
conflict analysis can be more effective and more information can be
accumulated in the learned clauses.

If solving ”a= 1” and ”b= 0” does not cause many conflicts, then
there is not much information to be learned from the solving processes
and hence, when solving ”c= 1,” the problem size cannot be reduced
much (many decisions will still go into areas A and B). We note that in
this case, although the the incremental strategy may not be effective, it
should not be too harmful either because solving ”a= 1” and ”b= 0”
are supposed to be fast (without many conflicts).

II-B. Potential Issues
We note that intuitively, the above incremental strategy would not

be effective for solving circuit satisfiability if its CNF form is used.
This is because with a 2-level OR-AND CNF structure, the topolog-
ical ordering among the signals is lost. With a 2-level structure, the
incremental strategy has very little room to proceed. Moreover, con-
sider the above example again. Since all internal signals become pri-
mary inputs to the 2-level OR-AND CNF circuit, both a and b are
primary inputs. Hence, the order of solving the sub-problems may
become solving ”b = 0” followed by solving ”a = 1.” In a later sec-
tion, we will demonstrate that by reversing the topological ordering,
the efficiency of the incremental strategy can be dramatically reduced.

Another key issue is how to identify in advance the sub-problems
that are most likely to be unsatisfiable. In this paper, we propose to
utilize the pair-wise signal correlations for identifying likely unsatis-
fiable cases. In the following, we describe our definition of the signal
correlation.

III. Define and Identify Signal Correlations
In this section, we define the the concept of signal correlations.

Following that, we will describe two approaches to utilize the signal
correlations in the solver: implicit learning and explicit learning. In
implicit learning, signal correlations are used to affect decision order-
ing and value assignments. In explicit learning, signal correlations are
used to implement the incremental learn-from-conflict strategy.

Let fs0;s1; : : : ;sng be ”s0 = 0” (0 is a constant) plus n signals on
a given circuit. We say that si is correlated with s j for all i 6= j, if
either ”si = s j” or ”si 6= s j” is true with a very high probability when
an arbitrary input assignment is supplied to the circuit.

Suppose we have identified a signal correlation between si and s j

as ”si = s j.” Then, intuitively assigning si = 1 and s j = 0 (or vice
verse) will most likely casue the SAT process to produce many con-
flicts because the search space is highly constrained. As a result, much
information can be learned and stored in the learned clauses.

Algorithm III.1: RANDOM SIMULATION(Circuit)

comment: C is the initial equivalence class.
i 0;C set of all signals;
S = fCg;S0  S;
while (i < 4) and (S 6= S0

)

do

8>>>>>>>>><
>>>>>>>>>:

S0 S;
Produce 32 random input assignments;
Perform parallel logic simulation [10];
Based upon the simulation results and
the current equivalence classes,
compute the new equivalence classes;

S fthe new equivalence classesg;
i i+1;

return (S)

How to identify signal correlations? One possible way is to uti-
lize random simulation. In Algorithm III.1, we demonstrate a sim-
ple procedure to compute the set of equivalence correlations (i.e.



”si = s j”) using random simulation. To identify the correlations
”si = 0,” ”si = 1,” and ”si 6= s j” are not the same but similar.

In the algorithm, an equivalence class is a subset of signals mutu-
ally having the equivalence relationship. In the algorithm, two signals
will be put into the same class if their simulation results from all the
simulated assignments are identical.

We note that deciding the equivalence classes among all signals
can be achieved quite efficiently with a hash table. Hence, its run
time is actually close to linear instead of quadratic on the number
of signals under consideration. Also note that each time, only the
signals currently belonging to the same equivalence class are needed
to be considered together. If two signals have already been sorted
into different classes, then no need to further decide if they have the
equivalence relationship or not.

Our random simulation is simple. Each time 32 random input as-
signments are simulated together using a word (32 bits) in parallel
logic simulation [10]. Based upon the simulation results, two signals
are decided whether they still belong to the same equivalence class or
not. If repeating the simulation step four times does not lead to iden-
tifying any new equivalence class(es), then the simulation stops. At
the end, the set of the equivalence classes is returned. In our current
implementation, we use ”four” as the number to stop the simulation.
This number is selected arbitrarily. What we need is a small constant
so that as soon as the efficiency of the random simulation for identi-
fying new signal correlations drops, the simulation stops. In this way,
we can avoid spending too much time in simulation.

In the returned set S, an equivalence class containing the sub-
set of signals fs1; : : : ;smg indicates that they are mutually correlated
(si = s j , 8i; j). we note that if constant 0 is not included and the size of
the subset is greater than 3 (i.e. m > 3), then we would remove those
signals from being considered as correlated. The reasoning behind
this step is that a large m might be just an indication that the random
simulation is ineffective to differentiate those signals. It does not nec-
essarily imply that those signals are actually having the equivalence
relationships with a high probability.

We emphasize that our definition of the signal correlation includes
for a particular signal si that si is correlated to the constant 0. Hence,
both ”si = 0” and ”si = 1” cases are included in our definition of
the signal correlation. For convenience, we sometimes still call them
”pair-wise” correlations with the understanding that the pairs are de-
fined over a signal and the constant 0.

IV. Implicit Learning By Signal Grouping
The incremental learn-from-conflict strategy involves explicitly se-

lecting a correlated pair of signals, assigning their values in the way
that it will most likely to cause conflicts, and then utilize the SAT
solver to accumulate learned clauses (learned gates). In contrast, in
implicit learning, signal correlations are used to influence the decision
variable selection and variable value assignment. This means that in-
stead of creating a sequence of likely unsatisfiable sub-problems for
the SAT solver to solve them explicitly one by one, correlation infor-
mation is used only within the decision variable selection procedure.

The latest Chaff package ZChaff provided the baseline for our de-
velopment. In the initial version of the circuit-based SAT solver, we
implemented all the ideas in ZChaff, including the VSIDS decision
variable selection, clause removal, watched literal [1], and UIP based
conflict analysis [2]. In addition, our solver can also add the justifica-
tion frontier (J-node) [10] into the consideration of decision variable
selection.

In our correlation-guided implicitly learning, we use signal corre-
lations to ”group” variables in the decision variable selection. For

example, suppose a signal si is correlated with signal s j as ”si 6= s j .”
During the solving process, whenever si gets to be assigned a value,
we want to ”immediately” make the decision to assign the same value
to s j . In this way, we ”group” the two signals together in the solver’s
value-assignment process, and values are assigned in such a way that
they are most likely to cause conflicts.

If two signals are highly correlated in terms of ”si 6= s j ,” then intu-
itively, the search sub-space imposed by ”si = s j” will be highly con-
strained. As a result, SAT can learn more quickly in this sub-space
than searching the complementary sub-space imposed by ”si 6= s j .”
Algorithm IV.1 depicts the detail of our signal correlation guided im-
plicit learning.

Algorithm IV.1: SELECT DECISION VARIABLE(Jnodes)

Suppose s just being assigned a value v by implication (BCP)
if (9s0;s0 is correlated with s) and (s0has not yet assigned a value)

then

8>><
>>:

select s0as the next decision signal
if (it is equivalence correlation)

then s0 v
elses0 v

else

8>><
>>:

use VSIDS among J-nodes to select a signal s0

if (s0 is correlated with 0)

then
�

s0 1 if it is equivalence correlation, or
s0 0 otherwise

return (s0
)

IV-A. Our Circuit Solver Implementation Detail
We first describe the implementation detail of our circuit-based

solver, and present the baseline comparison results between ZChaff
and our solver without the proposed learning. Improved results by
implicit learning then follow.

Although our initial circuit-based SAT solver borrows almost all
the ideas from ZChaff, our implementation is different from ZChaff
in several aspects:

� The input to the solver is assumed to be in a circuit format (such
as the ”.bench” format). After the circuit is read in, it is trans-
formed into a netlist based upon only the 2-input AND primi-
tive. In the netlist, we allow inverters to be associated with the
AND gate inputs as attributes. Lookup tables are used for fast
implications on the AND primitive [8].

If an input is in its CNF form, we first convert it into a 2-level
OR-AND circuit. Then, the circuit will be given to our circuit
solver. We note that this could add some overhead to the repre-
sentation of the problem.

� Since our ultimate goal is to develop a circuit SAT solver ap-
plicable to sequential circuits directly, internal circuit represen-
tation and data structures were designed for later extension to
the sequential domain. For instance, ”FRAME” objects were
used to contain dynamic information that is valid within a time
frame during sequential time frame expansion [10]. This adds
additional overhead to our code, as comparing to ZChaff.

� For each learned clause, pointers to the two watched literals are
explicitly stored. In this way, when one literal gets assigned
a value, it can immediately check to see if the other has been
assigned a value or not, as opposed to an additional search on
the learned clause in the current ZChaff implementation. This
change is minor.

� We implement restart based upon the average back-jump lev-
els calculated over 4096 backtrack occurrences. In our current
implementation, if the average is less than 1.2, we re-start the
solving process.



� In ATPG terminology, a justification frontier (J-node) is a gate
whose output has received a value, and some of its inputs need
further decision(s) to justify the value. For example, if an AND
gate output is set to 0, then it becomes a J-node if none of its
inputs are currently assigned with 0 and there are more than one
unassigned inputs.

In our implementation, only inputs to J-nodes are considered in
the calculation of VSIDS for current decision making. How-
ever, we note that here our definition of the J-node include all
the learned gates. Therefore, initially the restriction on J-nodes
for decision making would make our solver behave differently
from the ZChaff. However, after many learned gates are ac-
cumulated, effectively the two would follow the same VSIDS
algorithm. Nevertheless, we note that since our solver tends to
make different decision at the beginning, the entire decision or-
dering can be very different from ZChaff.

One important thing worth mentioning is that if we did not treat
the learned gates as J-nodes, then the performance would de-
grade significantly.

IV-B. Baseline Comparison Results
Tables I presents the comparison results for unsatisfiable cases.

”C-SAT” is our implementation of the SAT solver using the origi-
nal VISDS decision variable selection. ”C-SAT-Jnode” is the ver-
sion including the J-node decision selection. All experiments ran on a
Pentium-3 1G machine with 1G RAM under Linux Mandrake 2.4.3.

In the cases denoted as ”circuit.equiv” we contructed an equiva-
lence checking circuit model by taking two copies of the same circuit.
Each pair of corresponding primary outputs are XORed and all the
outputs of the XOR go to an AND gate. The SAT problem is to ask
if the output of the AND gate is 1. In each case, it is unsatisfiable.
As shown, C-SAT-Jnode is slightly better than C-SAT, and is slightly
worse than ZChaff. In the case of C6288, none of the solvers was able
to complete the run.

Circuit ZChaff C-SAT C-SAT-Jnode
C1355.equiv 3.7 7.98 3.77
C1908.equiv 4.6 5.22 1.39
C3540.equiv 53 101 102
C5315.equiv 56 49 105
C7552.equiv 215 304 177
C6288.equiv * * *
Total 332.3 467.2 389.16
*Aborted after 7200 seconds.

TABLE I: INITIAL RUN TIME RESULTS (SECS) FOR UNSAT CASES

Circuit ZChaff C-SAT C-SAT-Jnode
9Vliw001 1057 3539 969
9Vliw004 953 1521 133
9Vliw005 3126 1114 462
9Vliw007 140 98 3938
9Vliw008 1450 1722 3184
9Vliw010 867 1291 25
Total 7593 9285 8711

TABLE II: INITIAL RUN TIME RESULTS (SECS) FOR SAT CASES

Similar results can be observed in Table II for satisfiable cases
taken from the benchmarks in [9]. The slight performance degrada-
tion in our tool can be attributed to the more complicated data struc-
tures reserved for future sequential circuit solver enhancement.

IV-C. Improved Results Using Implicit Learning
Table III shows the results for unsatisfiable cases by applying the

implicit learning method to our circuit solver. Several new examples
are added, denoted as ”circuit.opt.” These examples are similar to the

equivalence checking models described earlier. The difference is that
in these examples, we did not take two identical copies of the same
circuits. Instead, we optimize a circuit with Design Compiler to pro-
duce a functionally equivalent, structurally different circuit. Then, the
two circuits are used to create the equivalence checking model.

For the ”circuit.equiv” cases, our new solver achieves more than
5x speedup over ZChaff by looking at the sub-total results. For the
”circuit.opt” examples, the speedup is more than 10x. If we consider
all cases together, the speedup is more than 7x. This demonstrates the
effectiveness of our implicit learning techniques for solving the un-
satisfiable cases originated from circuits. For all cases, the simulation
times are minimal. We emphasize that the new C-SAT-Jnode solver
was still unable to complete the run on C6288.

With Implicit Learning
Circuit ZChaff C-SAT-Jnode Simulation
C1355.equiv 3.7 0.35 0.01
C1908.equiv 4.6 0.6 0.02
C3540.equiv 53 21 0.03
C5315.equiv 56 17 0.04
C7552.equiv 215 23 0.07
C6288.equiv * * 0.05
Sub-Total 332.3 61.95 0.22

C3540.opt 41 39 0.03
C5315.opt 127 4.08 0.04
C7552.opt 433 14.5 0.08
Sub-Total 601 57.58 0.15

Total 933.3 119.53† 0.37
*Aborted after 7200 seconds.
†About 7.8x speedup without counting simulation.

TABLE III: IMPROVED RESULTS FOR UNSAT CASES WITH IMPLICIT LEARNING

Table IV presents the results on the satisfiable examples. The
speedup is not as dramatic as the unsatisfiable cases. However, if
we look at the total run time, more than 2x speedup is obtained. How-
ever, the simulation times are noticeable in these examples. The only
case that the new solver is slower is the first example. But we note
that this is also the easiest example among all.

One thing worth mentioning is that for these satisfiable bench-
marks, each problem seems to be specified in such a way that part
of the problem is described as a multi-level circuit, and part of it is
described in CNF form (instead of constraint gates on the internal
signals). Since our reasoning behind the effectiveness of using sig-
nal correlations is based entirely on the circuit structure, it is unclear
how much the same reasoning would hold based upon those satisfi-
able benchmarks. Hence, performance degradation was expected.

With Implicit Learning
Circuit ZChaff C-SAT-Jnode Simulation
9Vliw007 140 286 110
9Vliw010 867 329 96
9Vliw004 953 804 92
9Vliw001 1057 567 93
9Vliw008 1450 239 114
9Vliw005 3126 740 88
Total 7593 2965† 593
†About 2.5x speedup without counting the simulation time.

TABLE IV: IMPROVED RESULTS FOR SAT CASES WITH IMPLICIT LEARNING

V. Signal Correlation Guided Explicit Learning
In explicit learning, a sequence of likely unsatisfiable sub-problems

are created based upon signal correlations computed by the random
simulation. Internally, the C-SAT-Jnode solver would try to solve
each sub-problem one by one. After finishing solving all the sub-
problems (this point will be discussed more in Section V-C later), all



the learned information is stored in the learned gates which are then
used to solve the original SAT problem. Four aspects are worth men-
tioning in our implementation.

� When solving each sub-problem, the solver may not complete
the solving. In our current implementation, the solver stops af-
ter accumulating 10 learned gates. We note that the primary
goal of solving each sub-problem is to learn more circuit infor-
mation. Hence, it is not necessary to solve a sub-problem com-
pletely. Not completely solving each sub-problem differentiates
our approach from a typical equivalence check point matching
approach commonly adopted in structural equivalence checking.

We found that for pure circuit benchmark examples, aborting
the solving of sub-problems earlier does not make much of the
difference as compared to solving them completely. However,
for those examples in the format of CNF form, a strategy of
solving each sub-problem completely may significantly degrade
the overall run time efficiency. This is understandable because
the the effectiveness of the explicit incremental strategy highly
depends on the circuit structure. If such a multi-level circuit
structure does not exist, the overhead of solving the many sub-
problems may easily out-weight the potential efficiency gain.

� When solving each sub-problem, the solver follows the topolog-
ical ordering. Each sub-problem can be based upon two internal
signals or upon one signal and the constant 0.

� At this point, our C-SAT-Jnode is the version including the im-
plicit learning as well.

� The usage of J-node decision is crucial in this case. By follow-
ing the J nodes, the search process for solving each sub-problem
can be (more) restricted within the two cones of logic headed by
the two correlated signals (or the cone of logic headed by the
single signal correlated to 0). With this feature, solving each
sub-problem can be done on the original circuit, instead of ex-
plicitly creating another sub-circuit for each sub-problem. This
allows us to implement the explicit incremental strategy more
efficiently.

Individual
Signal Pair Signal Vs. 0

circuit ZChaff Time Num. Time Num. Both Simu.
C1355.equiv 3.7 0.2 257 0.63 141 0.13 0.01
C1908.equiv 4.6 0.24 163 0.67 113 0.21 0.02
C3540.equiv 53 3.08 510 26 86 1.98 0.03
C5315.equiv 56 1.36 736 12 319 0.42 0.04
C7552.equiv 215 4.78 1064 18 342 3.81 0.07
Sub-Total 332.3 9.66 — 57.3 — 6.21 0.17

C3540.opt 41 1.33 531 24.5 86 1.01 0.03
C5315.opt 127 1.76 829 23.6 325 0.78 0.04
C7552.opt 433 5.18 1112 27.37 320 4.02 0.08
Sub-Total 601 8.27 75.47 5.81 0.15

Total 933.3 17.93 132.77 12.02† 0.32

C6288.equiv * 22.4 1968 * 67 9.6 0.05
*Aborted after 7200 seconds.
*About 77x speedup over ZChaff without counting simulation.

TABLE V: IMPROVED RESULTS FOR UNSAT CASES WITH EMPLICIT LEARNING

Table V summarizes the results for the unsatisfiable examples.
Three new columns of results are shown: ”Signal Pair,” ”Signal Vs.
0,” and ”Both.” In the first column, explicit learning was done based
upon correlations on pairs of signals. In these experiments, signal cor-
relations with the constant 0 were ignored, and were considered in the
second column. Similarly, in the experiments of the second column,
correlations on pairs of signals were ignored. Results on these two

column separately demonstrate the effect from each type of the cor-
relation learning. In each case, the numbers of sub-problems created
are also included (as ”Num.”). In the ”Both” column, both types of
the signal correlations were used. Several things can be observed:

(1). Only considering correlations with 0 is less effective than only
considering pairs of signals. (2). Considering both types of corre-
lations is better than only considering each type individually. (3).
By comparing the results in the ”Both” column to ZChaff column,
for ”circuit.equiv” examples, the ”Sub-total” results show more than
50x speedup. For ”circuit.opt” examples, the speedup is more than
100x. Averaging on the two, the speedup is about 75x. This demon-
strates that our incremental learn-from-conflict strategy was able to
effectively learn useful information by taking advantage of the circuit
structure. (4). The most noticeable results are for C6288. The new
solver now is able to finish the run in only 9.6 seconds.

V-A. The Ordering Of Explicit Learning
In our incremental learn-from-conflict implementation, the order-

ing of the explicit learning follows the topological order of the signals.
The reason was explained in Section II-A before. What if we disturb
that ordering? In this section, we consider two more experiments: one
by reverse the ordering of explicit learning, and the other by randomly
selecting sub-problems for solving. Results are shown in Table VI.

The Ordering of Explicit Learning
Circuit Topological Reverse Random
C1355.equiv 0.13 1.56 0.55
C1908.equiv 0.21 1.17 0.91
C3540.equiv 1.98 52 20
C5315.equiv 0.42 8.69 4.8
C7552.equiv 3.81 21 16
Sub-total 6.21 84.42 42.26

C6288.equiv 9.6 * *
*Aborted after 7200 seconds.

TABLE VI: EFFECTS FROM THE ORDERING OF EXPLICIT LEARNING

As expected, if the topological ordering is disturbed, the effective-
ness of the incremental learn-from-conflict strategy may degrade. As
we can observe, a random ordering is better than the reverse ordering,
and both are inferior to the topological ordering. One noticeable re-
sult is that if we do not follow the topological ordering, then the solver
would not be able to complete the run for C6288.

Results in Table VI demonstrate the importance of following the
topological ordering in the incremental learning process. Therefore,
if a problem input is in the CNF format, then applying the incremen-
tal strategy does not guarantee that the explicit learning process in-
deed is following the topological order in the original circuit structure
which the problem is derived from. For this reason, we suspect that
for those satisfiable benchmark examples considered earlier, where
they partially are specified in the CNF form, the proposed explicit
learning may lead to inferior results to the implicit learning approach.
Without following the topological ordering, the effectiveness of the
incremental learning is degraded, and the overhead associated with
the incremental process can out-weight the potential efficiency gain
from the explicit learning.

V-B. Performance Degradation to The Satisfiable Exam-
ples Containing CNF Formatted Inputs

Table VII shows the anticipated degraded results for the satisfiable
cases. However, we note that with the incremental strategy, although
the 2x speedup shown in Table IV before is no longer there, the per-
formance of the C-SAT-Jnode solver remains comparable to ZChaff.
It is interesting to note that among these examples, an easier problem
for ZChaff would be a bit harder for our circuit solver. The reverse is



Circuit ZChaff C-SAT-Jnode (Both) Simulation
9Vliw007 140 855 110
9Vliw010 867 1897 96
9Vliw004 953 1011 92
Sub-Total 1960 3763 298

9Vliw001 1057 793 93
9Vliw008 1450 1914 114
9Vliw005 3126 1314 88
Sub-Total 5633 4021 295

Total 7593 7784 593

TABLE VII: RUN TIME DEGRADATION FOR SAT CASES IN EXPLICIT LEARNING

also true: A harder problem for ZChaff would be a bit easier for our
solver to run.

V-C. On The Amount of Explicit Learning
In this section, we conduct controlled experiments: Instead of

solving all the sub-problems, our solver would try to solve the sub-
problems of which their topological locations are before a certain
boundary. For example, given a percentage 50%, by following the
topological ordering, the solver only considers the correlations in-
volving the first half of the signals. The correlations involving the
second half of the signals are not used in the explicit learning. In this
way, we can study the impact on the efficiency of the solver based
upon the amount of explicit learning.

Conduct only a % of Explicit Learning
Circuit 0.1 0.2 0.4 0.5 0.7 0.9 0.95 1
C3540.equiv 49 27.5 38.7 31.2 4.5 7 2.2 1.98
C5315.equiv 16.5 16.6 3.4 2.7 3 2.4 0.5 0.42
C7552.equiv 21.3 12.1 20.7 18.9 8.7 5.9 4.9 3.81
Sub-total 86.8 56.2 62.8 52.8 16.2 15.3 7.6 6.21

C6288.equiv * * * * * 91.8 15.8 9.6
*Aborted after 7200 seconds.

TABLE VIII: THE EFFECT OF PARTIAL LEARNING ON UNSAT CASES

Tables VIII and IX present the results on the controlled experi-
ments. The percentage number in each case is denoted and ”1” in-
dicates 100%. In the case of 100%, the results are the same as the
”Both” columns shown in Table V and Table VII earlier.

We see that for ”circuit.equiv” cases, there is a clear trend that
the less amount of explicit learning is involved, the less effective the
solver would be. For the satisfiable cases in Table IX, the trend is
totally reversed although it is not so smooth. We note that there is a
significant difference between 50% and 100% explicit learning.

Also notice that as the percentage of explicit learning move below
90%, the solver would not finish solving C6288. This says that C6288
is an extreme case where solving the problem instance requires take
full advantage of the incremental strategy.

Conduct only a % of Explicit Learning
Circuit 0.5 0.7 0.8 0.95 1
9Vliw007 286 671 324 1846 855
9Vliw004 804 516 794 645 1011
9Vliw010 329 1816 192 1374 1897
9Vliw008 239 1976 863 602 1914
Total 1658 4979 2173 4467 5677

TABLE IX: THE EFFECT OF PARTIAL LEARNING ON SAT CASES

VI. Conclusion and Future Work
Table VI shows additional results. We note that ”sxxxxx.scan” ex-

amples are sequential circuits where all state holding elements are
treated as primary inputs. We conjecture that because of this change
in the circuit structure (circuit depth becomes more shallow), the ef-
fectiveness of our learning techniques degrades as compared to the
combinational circuit examples ”Cxxxx” shown before.

Circuit ZChaff Implicit Explicit Simulation
9Vliw009 1006 784 829 117
9Vliw017 1007 175 913 109
9Vliw001 1057 567 793 93
9Vliw024 1375 965 1282 107
9Vliw021 1666 1069 1345 99
9Vliw015 2209 985 1270 97
9Vliw019 2936 849 1448 129
Sub-Total 11256 5394 (2.08x) 7780 (1.44x) 751

c2670.equiv 1.89 0.89 0.35 0.01
c1908.opt 6.5 0.64 0.18 0.01
s13207.scan.equiv 16 12 7.5 0.29
s15850.scan.equiv 44 13 2.61 0.56
s35932.scan.equiv 322 170 46 0.2
s38417.scan.equiv 547 157 10 1.83
s38584.scan.equiv 882 236 66 3.58
Sub-Total 1819.39 589.53(3x) 132.64(13.7x) 6.48

TABLE X: RESULTS FOR ADDITIONAL SAT AND UNSAT CASES

In conclusion, this paper describes our implementation of a circuit-
based SAT solver whose design philosophy is to take advantage of
the signal correlations and circuit topological structure. We propose a
new SAT solver design concept called incremental learn-from-conflict
where the solver learning process is carefully guided by signal corre-
lation information. We differentiate between the implicit learning and
the explicit learning approaches both implemented in our solver. We
discuss their strengths and compare their performance. Although we
do not consider that our circuit-based solver is superior to ZChaff in
general on solving CNF-based problem instances, we do conclude
that if our solver is able to take advantage of the circuit structural
information, significant performance improvements can be obtained.
For the future work, we will continue the development of our solver
for handling sequential circuits directly.
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