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A Circular Array for Plane-Wave Synthesis 
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Abstract-We analyze a circular array of electric line sources for 
generating a uniform plane wave in the interior region of the array. 
Identical results for the synthesized element weightings are obtained using 
matrix inversion or a Fourier series technique. A physical optics 
approximation for the element weightings is also presented, hut it yields a 
much poorer result for the synthesized field. The angle of arrival of the 
plane wave can be scanned by recalculating the element weightings, and 
the quality of the field is maintained. Frequency scanning is also possible, 
but the number of array elements limits the maximum frequency, 
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I. INTRODUCTION 
N electromagnetic-susceptibility testing of electronic I equipment, the ideal incident field is a plane wave. The 

feasibility of using near-field phased arrays to produce a plane 
wave has been studied theoretically [ 11, [2] and experimentally 
with a five-element array of horns [3] and with a seven- 
element array of Yagi-Uda antennas [4]. 

The ability to scan the direction of arrival of the plane wave 
electronically and to step or sweep the frequency would be 
extremely useful in electromagnetic-susceptibility testing. In 
this paper we analyze a circular array of electric line sources to 
study the feasibility of directional and frequency scanning. 
Our two-dimensional model is idealized, but it contains many 
of the relevant features of a more realistic three-dimensional 
array. Some related work with circular arrays has been 
performed with application to hyperthermia therapy [5]-[7] 
and antenna pattern measurements [8]. 

The organization of this paper is as follows. Section I1 
contains a derivation of the fields produced by a circular array 
of line sources (the forward problem). Section 111 contains 
three methods of determining the element weightings (the 
inverse problem) for producing a plane wave in the interior of 
the circular array. Section IV contains numerical results for a 
number of array parameters, and Section V gives conclusions 
based on these numerical results. 

11. FORWARD PROBLEM 
The geometry of the N-element circular array is shown in 

Fig. 1, The z-directed electric line sources are equally spaced 
on a circle of radius b. For this two-dimensional model, the 
nonzero field components are E,, H,,, and H4.  The electric 
field can be written as a superposition of the fields of the 
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individual line sources [9]: 

where k = ~ ( p ) " ~ ,  p and E are the permeability and 
permittivity of free space, I, is the electric current of the nth 
array element, pn is the distance from the nth element to the 
field point @,+), and HA2) is the zero-order Hankel function of 
the second kind [lo]. The time dependence is exp ( ju t ) .  We 
can rewrite (1) in terms of cylindrical harmonics by using the 
Hankel addition theorem [9]: 

(2) 

where +,, = 21rn/N and J, is the mth-order Bessel function 
[lo]. A similar expansion could be written for p > b. 

The magnetic field components can be obtained from (2) by 
differentiation: 

and 
1 aE, 

H4=-  - 
J U P  a P  

(3) 

If we substitute (2) into (3), we obtain 

1 N-I m = m  

and 

For synthesis applications, we wish to optimize the field 
throughout a test volume of radius a, as shown in Fig. 1. We 
can define a hybrid vector F on the surface of this test volume 
[119 P I :  

F =  [.?E, + x H ]  I,,=" ( 5 )  

where .? and j are unit vectors. We have some freedom in 
choosing 7, but we find it numerically efficient to choose it 
equal to the impedance of free space: 7 = ( p / ~ ) " * .  For this 
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this quantity has no zeros [2]. Because m ranges over all 
integer values from - 03 to + 03, we can satisfy (12) only 
approximately for finite N .  We could actually synthesize other 
desired field distributions, and in such cases, the right side of 
(12) would be different. 

A .  Matrix Inversion 
X -  

IO 

We can rewrite (12) in the following form: 

N -  I - 4Ed'me-Jm+p 

n=O k 9 HE)( kb ) ' 
2 zne-jm+n= (13) 

Y 
Geometry for a circular array of N equally spaced elements. Fig. 1. In (13) each integer 

unknowns. We obtain the best results for the electric field if 
we choose the Z,, values to satisfy (13) for the small Im( 
values. Numerically, we have found no advantage to a least 
squares solution (number of m values greater than N ) .  We 

Of provides One equation in 

two-dimensional geometry, F has only a z component: 

F = z"Fz = i ( E z  + 9 H+) I = (I. (6) 

Fz is determined by substituting (2) and (4) into (6): have also found no need to constrain theI, values [2] for this 
geometry. Consequently, we choose to satisfy (13) for the N 

-k,,N-l m smallest values of ( m ( ,  and this results in a system of N 

4 n = O  m = - m  The cases of N odd or even need to be handled slightly 
Fz=- I n  H $ ) ( k b )  equations and N unknowns to be solved. 

. [ ~ ~ ( k ~ ) - j ~ ; ( k ~ ) ~ ~ ~ ~ ( + - + ~ ) .  (7) differently, and the ranges of m values are 

111. INVERSE PROBLEM 
The desired electric field is a plane wave Erp propagating at 

an arbitrary scan angle +p to the negative x axis: 

E rp- - ~ o ~ ~ ~ ~ ~ ~ ~ ~ + p + Y ~ ~ ~ ~ p ~ ~ ~ O ~ ~ k ~ ~ ~ ~ ~ ~ - ~ p ~  (8) 

where Eo is a constant. If we expand the exponential in 
cylindrical harmonics, then (8) can be written [9] 

N -  1 
Ndd:  m=O, - t l ,  k 2 ,  e . . ,  -t- 2 

N - 2  N 
Neve,,: m=O,  k l ,  k 2 ,  . . e ,  k- , +- 

2 (14) 

Thus, we have an N x N matrix to invert, but the matrix does 
not depend on kb or 4p. We can study the frequency-scanning 
(k dependence) and the angular-scanning ($p dependence) 
cases without having to invert a new matrix for each k or 4p 
value. 

B. Fourier Series 
The magnetic field components Hpp and H++, of the plane wave 
can be obtained by substituting (9) into (3). 

The hybrid vector for the plane wave has only a z 
component Frp which is given by 

We can avoid matrix inversion by representing the unknown 
currents 1, as Fourier series. This method has been used in far- 
field synthesis problems with circular arrays [ 111. We first 
write Z, in the following Fourier series form: 

FZP = [E ,  + ,, 4 J P l  I p = (1. (10) 

The expansion for Fzp in cylindrical harmonics is 
, e j 2 ~  / n / N  1 

z n = -  c 
N ,  

m The unknown C/ values are called sequence currents [ 1 11, and 
the range of integer I values is the same as the range of the m 
values in (14). If we substitute (15) into (13) and reverse the 
order of summations, we obtain 

Frp =Eo jrne-jm+p[Jm( ka) -jJ;(ka)] e'"+. (1 1) 

If we equate Fz in (7) with Fzp in (11) and use the r#~ 

m= --m 

orthogonality of the cylindrical harmonics, then we obtain 

n=O 

The n summation in (16) has a well-known result [ I l l :  
m=0, - t l ,  k2 ,  e . . .  (12) 

(17) l ,  ( ' -m) /N= integer 
0, otherwise. 

1 N - 1  

n=O 

To obtain (12) it was necessary to divide by the quantity - 
Jm(ka) - jJk(ka) .  This division is always possible because 
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Because of the restricted range of the I and m values, the 
summation in (17) is nonzero only for I = m .  If we substitute 
(17) into (16), we obtain the following expression for the 
sequence currents: 

Thus, I,, is given directly by (15) and (18) without matrix 
inversion. We have obtained agreement between matrix 
inversion and the Fourier series solution to at least five digits 
in all our numerical results. 

A remaining question is how many elements N are required 
to produce a reasonably uniform field inside the test volume of 
radius a. This question is explored numerically in Section IV, 
but we can also obtain an analytical estimate. The magnitude 
of the Bessel function J,(ka) decreases rapidly for 1 m 1 > ka. 
For N elements, we satisfy (12) for I m I less than approxi- 
mately N / 2 .  Therefore, we require that N satisfy 

N>2ka.  (19) 

C.  Physical Optics Approximation 
A physical optics approximation to the synthesis problem 

can be obtained by treating the array as an approximation to a 
continuous surface current [ 11. The surface current J, obtained 
from the physical optics approximation is 

(20) J,= i,26 HP)  - n/2  < 4 - 
elsewhere. 

< n / 2  

If we substitute the incident plane-wave expression for Hp into 
(20), the surface current has only a z component J,: 

- 2(EO/q)  cos (4 - $ p ) e j k 6  cos ( m - b ~ ) ,  

0, otherwise. 
(21) J,= [ -?r/2<4-4p<?r/2 

The element weightings I,, are obtained by sampling JLs: 

If we substitute (21) into (22), we obtain the physical optics 
approximation for I,: 

- I  COS ( 4 n - 4 p ) e j k b ~ ~ s ( b n - b ~ ) ,  

0, otherwise 
(23) I,= [ - a / 2  < +,, - q5p < n / 2  

where 

For (23) to be valid, the array size should be large (kb > > 
l ) ,  but the element spacings should be small (kb/N < < 1). 

IV . NUMERICAL RESULTS 
We first consider a 16-element array (N = 16) of radius b 

= 2X. All dimensions in this section are normalized to the 

Synthesis 
Phys. Opt. ----- 
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Element Number 

Fig. 2. Magnitude and phase of the element currents determined by 
synthesis and by the physical optics approximation. 

free-space wavelength h (A = 2n/k) .  We chose N to satisfy 
(19) for a test volume of radius a = X (2ka = 12.56). We 
actually varied N over a wide range of even and odd values 
and found that the quality of the field produced improved 
slowly as N was increased. The case of N = 16 would be 
convenient for a feed network using power splitters. 

In Fig. 2 we show the magnitude and phase of the 
synthesized currents for 4p = 0. In all cases the synthesized 
currents were computed by both matrix inversion and Fourier 
series, and the results were always identical to graphical 
accuracy. The simple physical optics approximation in (23) is 
generally quite different. In either case, the currents are 
normalized to Ipo, as given by (23).The physical optics currents 
go to zero on the side of the array opposite from the plane- 
wave direction of arrival, but the synthesized currents do not. 
We do not show the current results for n > 8 because of the 
symmetry of the array (I9 = I,, I,, = 16, etc.). 

The magnitude of the electrical field on a radial line through 
the center of the test volume is shown in Fig. 3 for 4 = 0 and 
in Fig. 4 for 4 = 90". The perfect plane-wave field is uniform 
(IEJEol = l) ,  and the synthesized field is uniform in the 
center of the test volume. The boundaries of the desired test 
volume (p = +- a) are shown on all of the electric field plots, 
and the synthesized field generally deviates from a perfect 
plane wave near the edges. The physical optics result is 
generally rather poor because kb /N is not sufficiently small. 
The symmetry of the field in the transverse direction is 
apparent in Fig. 4. We do not show magnetic field plots, but 
they are quite similar to the electric field plots. 

Corresponding phase plots are shown in Figs. 5 and 6. The 
phase varies nearly linearly in the longitudinal direction (4 = 
0) and is nearly constant in the transverse direction (4 = 90"). 
Again, the physical optics result is poor. 

We studied the angular-scanning capability of the circular 
array by varying the angle of arrival 4p of the plane wave, and 
we found that the quality of the synthesized field was relatively 
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Fig. 5.  Longitudinal dependence of the phase of the electrical field. 
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Fig. 6. Transverse dependence of the phase of the electrical field. 

independent of 4. Because of the symmetry and periodicity of 
the array, it is sufficient to vary +p over the range, 0 5 +p 5 
+,/2. In Fig. 7 we show the synthesized currents for +p = 
11.25" (= 4,/2). The current values repeat for n > 8 (Z9 = 
Is, Zlo = Z7, etc.). Corresponding plots of the magnitude of the 
electric field are shown in Figs. 8 and 9. The quality of the 
field is comparable to that for +p = 0 in Figs. 3 and 4. 
Symmetry is again apparent in the transverse direction, + = 
+p + 90" = 101.25". We do not show the phase results for 6, 
= 11.25", but they are similar to those in Figs. 5 and 6. 

We studied the frequency-scanning capability of the array 
by varying the frequency (wavelength) while holding N and b 
constant. Generally, it is necessary to recalculate the element 
currents I,, at each new frequency to obtain good results. If the 
frequency is increased enough that (19) is no longer satisfied, 
then the field quality is good only near the center of the test 
volume. To illustrate this point, we double the frequency (b/X 
= 4) in Figs. 10 and 11. We now have a/X = 2, but Fig. 11 
shows that the field quality is degraded for p/h  > 1. In 
general, we find that the electrical size of the useful volume 
stays fairly constant as we increase the frequency so that the 
physical size decreases. 
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Fig. 9. Transverse dependence of the magnitude of the electrical field for a 
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for a higher frequency. 

In Figs. 12 and 13 we increase the number of elements N to 
32 in order to satisfy (19). In this case the field quality is good 
for plh < 2. We do not show the transverse variation (4 = 
90") because it is typically smooth whenever the longitudinal 
variation (4 = 0) is smooth. The quality of the phase is also 

01 I I I I I I I I  
-2.4 -1.6 -0.8 0 0.8 1.6 2.4 

P I  A 
Longitudinal dependence of the magnitude of the electrical field Fig. 13. 

for a 32-element array. 

good in these cases. The physical optics result is still poor 
because the requirement kb/N < < 1 is not satisfied. 

If we decrease the frequency while holding N and b 
constant, the results are typically quite good. To illustrate this 
point we halve the frequency (b/X = 1) in Figs. 14 and 15. 
The field quality is good in Fig. 15, and we could probably 
achieve a satisfactory result with even fewer elements. 

V. CONCLUSIONS 
We have analyzed a circular array of electric line sources 

for producing a uniform plane in the interior region of the 
array. For this simple geometry, the synthesis technique can 
be greatly simplified by using a Fourier series representation 
for the currents, as described in Section 111-B. The matrix 
inversion technique in Section 111-A gives essentially identical 
results, but requires more computer time. For this geometry, 
no constraint on the elements was required because the fields 
outside the test volume did not tend to become large. The 



8 IEEE TRANSACTION: 

0 

I I: I! v 

+ p =  + = o  
I , I I I I I 

- 180”L  

1 
Synthesis 
Phys. Opt. 

1.5 r ------ 
I I 

0 1  2 3 4 5 6 7 8  
Element Number 

Fig. 14. Magnitude and phase of the element currents for a lower 
frequency. 

I I I I I I 
Synthesis 

c---. 

--_-e* 

N = 16 
0.5 bll  = 1 

j ON ELECTROMAGNETIC COMPATIBILITY, VOL. 30, NO. I ,  FEBRUARY 1988 

Scanning the direction of arrival of the plane wave is quite 
feasible for this geometry, and the quality of the field is not 
degraded as $p is varied. Frequency scanning is also feasible 
as long as (19) remains satisfied. This puts a constraint on the 
upper frequency limit for a given number of elements. The 
element weightings need to be recalculated for each new 
frequency; so, frequency stepping would be easier than 
continuous scanning. 

This idealized two-dimensional analysis could be extended 
to a more realistic three-dimensional geometry. Either a 
spherical [ 113 or a cylindrical [8] array would be interesting. 
In either case the near-field pattern of the array elements 
would need to be included in the analysis [4]. 
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