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The vast accumulation of environmental data and the rapid development of geospatial
visualization and analytical techniques make it possible for scientists to solicit informa-
tion from local citizens to map spatial variation of geographic phenomena. However,
data provided by citizens (referred to as citizen data in this article) suffer two limitations
for mapping: bias in spatial coverage and imprecision in spatial location. This article
presents an approach to minimizing the impacts of these two limitations of citizen data
using geospatial analysis techniques. The approach reduces location imprecision by
adopting a frequency-sampling strategy to identify representative presence locations
from areas over which citizens observed the geographic phenomenon. The approach
compensates for the spatial bias by weighting presence locations with cumulative
visibility (the frequency at which a given location can be seen by local citizens). As a
case study to demonstrate the principle, this approach was applied to map the habitat
suitability of the black-and-white snub-nosed monkey (Rhinopithecus bieti) in Yunnan,
China. Sightings of R. bieti were elicited from local citizens using a geovisualization
platform and then processed with the proposed approach to predict a habitat suitability
map. Presence locations of R. bieti recorded by biologists through intensive field
tracking were used to validate the predicted habitat suitability map. Validation showed
that the continuous Boyce index (Bcont(0.1)) calculated on the suitability map was 0.873
(95% CI: [0.810, 0.917]), indicating that the map was highly consistent with the field-
observed distribution of R. bieti. Bcont(0.1) was much lower (0.173) for the suitability
map predicted based on citizen data when location imprecision was not reduced and
even lower (−0.048) when there was no compensation for spatial bias. This indicates that
the proposed approach effectively minimized the impacts of location imprecision and
spatial bias in citizen data and therefore effectively improved the quality of mapped
spatial variation using citizen data. It further implies that, with the application of
geospatial analysis techniques to properly account for limitations in citizen data, valuable
information embedded in such data can be extracted and used for scientific mapping.
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information (VGI); Rhinopithecus bieti
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1. Introduction

The rapid development of geospatial technologies in the last decade or so has empow-

ered the general public to contribute geospatial data (Goodchild 2007a, Elwood 2008).

With the popularization of the Internet, personal computers, and spatially enabled

portable devices such as global positioning system (GPS)-equipped smartphones and

personal digital assistants, citizens can now easily share georeferenced observations of

the world (e.g., wildlife sightings) via interactive geovisualization interfaces (e.g.,

Google Maps, Google Earth, and Microsoft Virtual Earth), via social media (e.g.,

Twitter, Flickr, Instagram), or via citizen science projects (e.g., eBird) (Silvertown

2009, Sullivan et al. 2009, Dickinson et al. 2012, Guan et al. 2012). These technol-

ogies have created unprecedented opportunities for citizens to report their observations

of the world. Such citizen-contributed observations have been referred to as volun-

teered geographic information (VGI) (Goodchild 2007a, Sui 2008, Sui et al. 2013).

The technologies also create opportunities for scientists to conveniently solicit useful

information from citizens on geographic features or phenomena of interest (e.g., Seeger

2008, Anadón et al. 2009, Haklay 2013). In this paper, we refer to the data contributed

by citizens, whether voluntarily reported by citizens or deliberately solicited from

citizens, as citizen data.

Citizen data have several advantages. First, they contain rich local information that

spans a wide temporal spectrum because citizens, as local experts and sensors (Goodchild

2007a, 2007b), have long been sensing and accumulating knowledge of their respective

areas. But citizen data also have the potential to provide information over large areas,

given that seven billion networked human sensors are distributed across the globe. In

addition, citizen data can provide timely updated information that cannot be obtained

through remote sensing techniques but can be easily observed by citizens on the ground

(Goodchild 2007b). Finally, collecting citizen data is much less expensive than traditional

scientific data collection. In many cases, citizens contribute data purely voluntarily in the

spirit of self-promotion and altruism without any hope of financial reward (Goodchild

2007a, 2007b), while traditional scientific data collection is costly and labor intensive and

can only be conducted by professional scientists following strict protocols. This low cost

might be of significant practical importance.

Interest in citizen data has grown rapidly, and many approaches have recently been

proposed to assure their quality (see Goodchild and Li 2012, for a review; Elwood et al.

2013, Ali and Schmid 2014). Citizen data are now driving many successful ongoing

applications. Among them, OpenStreetMap (Haklay and Weber 2008) is producing geo-

graphic data (e.g., road networks) for every corner of the world with voluntary efforts

from Internet users. Such user-generated geographic data can be of quite high location

accuracy, comparable to survey products of government mapping agencies (e.g., Haklay

2010). The eBird citizen science project (Sullivan et al. 2009) is documenting bird species

(e.g., presence, abundance) with collective observations contributed by worldwide birders.

For emergency management, citizen data are providing timely information for disaster

monitoring and response such as wildfires and earthquakes (e.g., Goodchild and Glennon

2010, Zook et al. 2010). In the world’s poor and remote areas, wildlife sightings can be

solicited from subsistence farmers, herdsmen, and hunters who have long been living in

the local area and whose livelihoods are closely linked to ecosystem services. For

conservation programs with limited budgets in those areas, local citizens could serve as

a cost-effective data source on wildlife distribution (e.g., Anadón et al. 2009).

International Journal of Geographical Information Science 1865
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Citizen data contain valuable information on the spatial distribution of geographic

phenomena, and in some cases represent the only data that is available. The data thus have

the potential to be used for mapping spatial variation of geographic phenomena of interest.

Predictive mapping is a commonly used technique to map the spatial variation of

geographic phenomena, which is particularly useful for mapping those physical geo-

graphic phenomena that cannot be observed and mapped using remote sensing techniques

but that have spatial variation that is highly related with their environmental factors

(covariates) (Franklin 1995, Scull et al. 2003, Zhu 2008). Examples of such geographic

phenomena are forest composition (Franklin 1995), soil class and soil properties (Zhu

et al. 2001, Scull et al. 2003, Zhu 2008), species richness (Pittman et al. 2007), and

habitat suitability (Franklin and Miller 2009).

Under the framework of predictive mapping, one needs to first establish the relationship

between the target geographic phenomenon and its environmental covariates, and then apply

this relationship to an environmental database to create a predictive map of spatial variation

of the target geographic phenomenon (Franklin 1995, Scull et al. 2003, Zhu 2008). The

relationship is often derived from representative field samples of the target geographic

phenomenon (each consisting of observation of the target geographic phenomenon at a

particular location) using a wide range of methods (e.g., statistical modeling, machine

learning) (Franklin 1995, Zhu 2008). Citizen data contain field observations of geographic

phenomena and therefore could serve as ‘samples’ for predictive mapping. In combination

with the vast accumulation of environmental data (e.g., Kerr and Ostrovsky 2003, Gillespie

et al. 2008, Viña et al. 2008), the relationship between the target geographic phenomenon

and its environmental covariates can be derived from citizen data and applied to predict

spatial variation of the geographic phenomenon of interest.

There are two important requirements for samples to be used for predictive mapping.

One is that the samples need to be representative of the study area in order to derive a

relationship that can represent the covariation between the target geographic phenomenon

and its environmental covariates. This is often accomplished by collecting samples

following a well-designed spatial sampling scheme, such as random sampling, stratified

random sampling, or systematic sampling (Haining 2003). The other requirement is that

the precision of sampling locations needs to be high so that the locations can be used to

accurately obtain the corresponding values of environmental covariates at these locations

from environmental databases. However, data contributed by citizens sometimes do not

meet these two requirements when used as samples for predictive mapping, though these

limitations might not be of concern in some other applications. Spatial bias (Sullivan et al.

2009, Munson et al. 2010) in citizen data is one of the major challenges while other data

quality issues are also under scrutiny (e.g., Flanagin and Metzger 2008, Bonter and

Cooper 2012, Foody et al. 2013). The spatial coverage of citizen data is biased because

observations made by citizens are opportunistic and ‘ad-hoc’ in nature. In the example of

wildlife sightings, local citizens are not intentionally tracking wildlife of interest. Instead,

they typically spot the wildlife en route to doing something else. In the sense of

geographic sampling, the routes on which local citizens spotted the wildlife would be

considered neither random nor regular by design but ‘ad-hoc.’ As a result, the spatial

coverage of wildlife sightings elicited from local citizens is likely to be biased. Such

spatial bias, if not appropriately accounted for, might adversely affect inferences made

from citizen data (e.g., Ponder et al. 2001, Reddy and Dávalos 2003, Graham et al. 2004,

Kadmon et al. 2004, Leitão et al. 2011).

In some cases, citizen data can be of quite high location accuracy (e.g.,

OpenStreetMap data) and location imprecision might not be a concern for these cases

1866 A.-X. Zhu et al.
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(Girres and Touya 2010, Haklay 2010). For example, OpenStreetMap data on human

tracks (e.g., roads, streets, buildings) and physical geographic features (e.g., rivers, lakes)

are of high location accuracy because these stationary targets were digitized from accu-

rately georeferenced high-resolution remote-sensing imagery. However, spatial location of

citizen data might be imprecise depending on the geographic features or phenomena under

observation, as well as on the availability of positioning technologies. In cases where

reliable positioning technologies are in short supply and the geographic features under

observation are on the move it is challenging to ensure the location accuracy of citizen

data. For instance, unlike some biologists who can rely on GPS collars to pinpoint the

location of wildlife occurrences, a farmer’s descriptions of the location of the sighted

wildlife are often imprecise or vague, particularly if a long time has lapsed since the actual

sightings. It is not feasible for the farmer to report the exact location of the sighted wildlife

with any level of confidence. In these situations, location imprecision might be a serious

concern in the use of citizen data for predictive mapping (Graham et al. 2008, Fernandez

et al. 2009, Osborne and Leitão 2009, Moudrý and Šímová 2012).

To the best of our knowledge, few studies have been conducted that focus on tackling

spatial bias in citizen data for predictive mapping. Several methods related to reducing

location imprecision in citizen data exist. Khalili et al. (2010) developed a method for

disambiguating Flickr hometown location information. Jones et al. (2008) developed a

method for improving the quality of information related to vague place names. Wieczorek

et al. (2004) proposed the point-radius method for georeferencing locality descriptions in

natural history museum specimens. However, these methods operate at very coarse spatial

scale (e.g., place names, city names). Therefore, they might not help to further improve

the location accuracy of citizen data at a finer spatial scale (e.g., if a farmer said, ‘I saw

monkeys over that area on the northern hill slope.’). The appropriate strategy for reducing

location imprecision in citizen data should depend closely on the context of the data (what

the data are about and how the data were generated).

This paper presents an approach to minimizing the impacts of spatial bias and location

imprecision associated with citizen data for the predictive mapping of spatial variation of

geographic phenomena using a monkey habitat-mapping example. The approach employs

geospatial analysis techniques to reduce the location imprecision and to compensate for

the spatial bias in citizen data, respectively. Section 2 introduces the basic idea and details

of the approach. It is then illustrated with a case study that maps the habitat suitability of

the black-and-white snub-nosed monkey (Rhinopithecus bieti) in Yunnan, China.

2. Methodology

2.1. The basic idea

When using data contributed by citizens as ‘samples’ for predictive mapping, the chal-

lenges raised by location imprecision and spatial bias in citizen data need to be addressed

to make the data as representative as possible. The first challenge is to obtain representa-

tive locations of the observed geographic phenomenon. For example, local citizens often

provide location information of their sightings of wildlife in the form of, ‘I saw the

monkeys over this area.’ Clearly, ‘over this area’ can be depicted using a polygon, but this

does not mean that the monkeys showed up at every location in the polygon area and

certainly not at an equal probability within the polygon. Considering all locations in the

polygon as wildlife sightings is thus not appropriate. The question then is how to obtain

International Journal of Geographical Information Science 1867
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locations that are representative of the actual presence location of wildlife in the polygon

area outlined by local citizens.

Geographic phenomena that are highly related to their environmental covariates

usually occur under certain typical environmental conditions (e.g., wildlife usually present

in preferred habitats). Citizen data do contain valuable information on where the observed

geographic phenomenon occurred, hence the polygons outlined by local citizens, though

imprecise, do capture such typical environmental conditions under which the geographic

phenomena would occur. Accordingly, the basic idea to reduce location imprecision

assumes that locations at which values of environmental conditions are most frequent

over the polygon area would best approximate, or represent, the actual location of the

observed geographic phenomenon (e.g., wildlife presence) (Qi and Zhu 2003). This

approach can serve as a first approximation given that additional information on the

specifics of the habitat is not available. Otherwise, the approach can be fine-tuned to make

use of the specifics of habitat. For example, if presence is more related to food source, the

food source information should be weighted more heavily, even exclusively, in improving

the precision of locations.

The second challenge is to find a way to remedy or compensate for the bias in the

spatial coverage of citizen data. For instance, multiple sightings of monkeys at one

location by many local citizens do not necessarily mean that the location is highly

preferred by monkeys. This is because it might be that the location is easily visible

from multiple routes. Thus, every time a monkey shows up at this location it is spotted by

some local citizen(s). On the other hand, a monkey that shows up at locations that are

preferred by monkeys but less visible to local citizens will have a lower chance of being

spotted by local citizens. So, we must compensate for this spatial bias.

Citizen data are spatially biased because not every location on the landscape can be

equally observed from the routes taken by the local citizens, given the irregular and

nonrandom distribution of their routes and the variability of the terrain conditions.

Accordingly, cumulative visibility, the frequency at which a given location can be seen

by local citizens from the routes they take, was used as a weight to compensate for the

bias due to unequal visibility over the landscape from the routes.

2.2. Detailed methodology

2.2.1. Collection of the citizen data

Citizen data were solicited from local citizens through a series of structured interviews

using geovisualization techniques. The objective of each interview was to obtain from the

local citizens sightings of the geographic phenomenon of interest (e.g., wildlife presence)

and their activity routes in the study area. The connections between their experiences and

the geographic phenomenon of interest were first reinforced by introducing them to

materials relevant to the target geographic phenomenon (e.g., photos, videos, and audios

of a wildlife species). The interview was then conducted using a 3D geovisualization

platform, 3dMapper® (Burt and Zhu 2004; freely available at solim.geography.wisc.edu).

3dMapper® integrates digital elevation model (DEM) data with high-resolution satellite

imagery to produce an intuitive 3D view of the study area, on which local citizens can

rotate, pan, and zoom to any part of the study area. After being familiarized with the 3D

view, it was not difficult for local citizens to locate areas where the geographic phenom-

enon had been sighted. Information on where and when they sighted the geographic

phenomenon was recorded by drawing polygons on the 3D view and by filling in attribute

1868 A.-X. Zhu et al.
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tables tied to polygons. The location of their activity routes and the timing and frequency

of the use of the routes was recorded by drawing polylines and by filling in attribute tables

tied to the polylines.

2.2.2 Refinement of the citizen data

2.2.2.1. Selection of representative locations. Under the assumption that those locations

at which values of environmental conditions are most frequent over the polygon area

would best approximate the location where a geographic phenomenon actually occurred

(as discussed in Section 2.1), a frequency-sampling strategy proposed by Qi and Zhu

(2003) was adopted to locate the representative locations within a polygon. A detailed

discussion of this sampling strategy is beyond the scope of this paper, but an overview of

this strategy is given here. The sampling strategy consists of three steps. First, within each

sighting polygon solicited from local citizens for each environmental covariate taken into

account (e.g., elevation, vegetation type, etc.), the frequency distribution of the environ-

mental values was constructed. Here, a robust rule proposed by Freedman and Diaconis

(1981, 1991) was adopted to determine the bin width for the construction of frequency

distributions (histograms):

binx ¼ 2 IQRxð Þk�1=3; (1)

where binx is the bin width for environmental variable x for this polygon, which

encompasses k pixels; IQRx is the interquartile range of the k values of environmental

variable x. Based on this frequency distribution, the locations (pixels) at which environ-

mental values fall into the modal interval (the interval of environmental values with the

highest frequency) were identified. Second, the pixels at which environmental values fall

into the modal intervals of their respective environmental variables simultaneously were

identified and these pixels were taken as representative locations for this polygon. Third,

representative locations identified from all polygons were pooled to form a full set of

presence locations.

2.2.2.2. Compensation for spatial bias. Cumulative visibility was used to compensate for

spatial bias due to unequal visibility over the landscape from the routes taken by local

citizens. Calculation of the cumulative visibility at every location across the landscape

involves three steps. First, visibility at this location from each route was calculated by

performing a viewshed analysis (Wang et al. 2000) from the corresponding route with a

maximum visible distance (estimated based on field experience). Second, the correspond-

ing frequency with which local citizens took the route was multiplied to the visibility from

each route. Third, visibility from each route was summed up to obtain the cumulative

visibility of this location. The spatial bias was compensated for by inversely weighting

each presence location with the cumulative visibility at that location.

2.2.3. Use of citizen data for predictive mapping

With the refined citizen data, the relationship between the target geographic phenomenon

and its environmental covariates can then be derived for predictive mapping of spatial

variation of the target geographic phenomenon. The selection of the predictive mapping

approach depends greatly on the characteristics of the ‘samples’ data, among other factors

International Journal of Geographical Information Science 1869
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(Franklin 1995, Scull et al. 2003). We adopted a fuzzy-based predictive mapping

approach (Zhu 2008) over other alternatives (e.g., statistical approaches) for citizen

data-based predictive mapping, because the use of citizen data as ‘samples,’ though

refined, does not conform well to the requirements imposed by statistical methods. This

is due to location imprecision and spatial bias. Fuzzy-based approaches, however, afford

the ability to accommodate imprecision and uncertainty in spatial data (Altman 1994,

Robinson 2003).

Further, wildlife habitat suitability was used as an example of the target geographic

phenomenon to illustrate the proposed citizen-data-based predictive mapping approach.

Habitat suitability at a spatial location indicates the degree of closeness between environ-

mental conditions at this location and the optimal environmental conditions for species

survival (Hirzel et al. 2002, Hirzel and Le 2008). For predictive mapping of wildlife

habitat suitability, the relationship between habitat suitability and environmental variables

that influence the wildlife need to be quantified first. This relationship can then be applied

to an environmental database to create a predictive habitat suitability map (Guisan and

Zimmermann 2000, Franklin and Miller 2009).

2.2.3.1. Quantification of suitability–environment relationships. Wildlife presents more

frequently at locations where environmental conditions are better suited to their survival

and reproduction (Hirzel et al. 2002, Phillips et al. 2006). Probability density functions

(PDFs) of environmental conditions over the presence locations were, therefore, used to

quantify the relationships between wildlife habitat suitability and environmental condi-

tions (these PDFs were referred to as ‘presence PDFs’). The presence PDF in respect to

every environmental variable was estimated using kernel density estimation, a method that

is capable of estimating continuous PDFs, which uses the equation (Silverman 1986,

Porter and Reich 2012):

f xð Þ ¼ 1

nhx

X

n

i¼1

K
x� xi

hx

� �

; (2)

where f(x) is the estimated PDF quantifying the relationship between habitat suitability

and environmental variable x; xi is the value of environmental variable x at presence

location i; n is the total number of presence locations; K is a kernel density function and

hx is a bandwidth for environmental variable x. Here, we adopted the Gaussian kernel for

K and used the ‘rule-of-thumb’ algorithm to determine hx for each environmental variable

in the equation (Silverman 1986):

K
x� xi

hx

� �

¼ 1
ffiffiffiffiffi

2π
p e

� x�xið Þ2
2hx

2 ; hx ¼ σx

4

3n

� �1=5

; (3)

where σx is the standard deviation of values of environmental variable x over the n

presence locations.

To compensate for the spatial bias in citizen data, a weight was given to each of the

presence locations when estimating PDF:

f
0
xð Þ ¼ 1

h
0
x

X

n

i¼1

wi
P

wi

K
x� xi

h
0
x

� �� �

; (4)
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where f’(x) is the estimated PDF for environmental variable x, and wi is the weight to

adjust the contribution of xi to the estimated PDF; it was used to compensate for spatial

bias. wi is defined as inversely proportional to cumulative visibility (vi) at presence

location i:

wi ¼
w

0
i

max w
0ð Þ ;w

0
i ¼

1

vi
; (5)

a presence location with a higher cumulative visibility would have a smaller contribution

to the estimated PDF and a presence location with a lower cumulative visibility would

have a larger contribution. The bandwidth h’x in Equation (4) was calculated with weights

because σ
’

x and n’ were also calculated with weights:

h
0
x ¼ σ

0
x

4

3n
0

� �1=5

; σ
0
x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

wi xi � xð Þ2
h i

n
0 � 1

v

u

u

t

; n
0 ¼

X

wi; x ¼
X wi

P

wi

xi

� �

: (6)

It is worth noting that there are weaknesses to this approach to accounting for spatial

bias. In general, it is essential to incorporate information on spatial distribution of

sampling/observation efforts to correct for spatial bias (Reddy and Dávalos 2003, De

Solla et al. 2005, Kramer-Schadt et al. 2013). This approach used cumulative visibility as

a proxy of observation efforts. In cases where observation efforts of local citizens are

spatially incomplete, that is, there are ‘gaps’ in spatial coverage of their observation

efforts, this cumulative visibility-based approach does not fully address spatial bias.

This might be an issue for citizen data collected over large areas, but is less of a problem

for small areas that would most likely be fully covered by the collective observation

efforts of local citizens.

2.2.3.2. Mapping of habitat suitability. Based on these estimated presence PDFs, habitat

suitability at each location (pixel) in the area was calculated in two steps through a ‘rule-

based’ approach (Rüger et al. 2005, Van Broekhoven et al. 2006, Zhu 2008). First, habitat

suitability was calculated with respect to every single environmental variable. Second, the

overall habitat suitability was determined by aggregating habitat suitabilities to all envir-

onmental variables involved. The details of each step are as follows.

At the first step, with the assumption that wildlife habitat suitability was higher where

observed presence probability density of the wildlife was higher, habitat suitability to

every single environmental variable was computed by normalizing the corresponding

presence PDF to [0, 1]:

Sxj ¼
f
0
xj
� �

max f
0
xð Þð Þ ; (7)

where xj refers to the value of environmental variable x at location j, max(f’(x)) refers to

the maximum value of the PDF, and Sxj refers to the habitat suitability in respect to

environmental variable x at location j. It is worth noting that here S is not a probability of

presence, but instead an index that indicates habitat suitability.

At the second step, with the assumption that wildlife habitat suitability was controlled

by multiple environmental variables but determined by the least favorable factor (the
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‘limiting factor’ approach), a minimum operator, which takes the minimum suitability

value among the suitability values of individual environmental variables, was adopted to

determine the overall habitat suitability (Zhu and Band 1994, Rüger et al. 2005, Li and

Hilbert 2008, Zhu 2008):

Sj ¼ min S1j ; S
2
j ; . . . ; Smj

	 


; (8)

where m refers to the number of environmental variables.

2.3. Validation and evaluation

The continuous Boyce index (Hirzel et al. 2006), computed by comparing a suitability

map against a validation data set (e.g., independently collected ground truth wildlife

presence locations) was adopted to validate the accuracy of predicted habitat suitability

map(s). The basic idea for computing the Boyce index (Boyce et al. 2002) was as follows.

The habitat suitability range was partitioned into several classes (or bins). The Boyce

index is the Spearman-rank correlation between area-adjusted frequency of validation

points within individual bins and the bin rank. The continuous Boyce index Bcont(W)

overcomes the shortcomings of the Boyce index by calculating with a moving window (W

is the window width, usually set to 0.1) instead of dividing into fixed classes. It is a robust

and reliable accuracy measure of presence-only-based prediction (Hirzel et al. 2006). Bcont

(W) varies from −1.0 to 1.0. A positive value indicates a suitability map that is consistent

with the distribution of presence locations in the validation data set, that is, the higher the

suitability rank, the larger the proportion of presence locations in the validation data set

that fall in areas of this suitability rank on the map. A value close to 0 indicates a

suitability map that is not different from one predicted from a chance (random) model.

A negative value indicates a suitability map that contradicts the distribution of presence

locations in the validation data set (Hirzel et al. 2006). Details on how to compute Bcont

(W) for a habitat suitability map based on a validation data set can be found in Hirzel et al.

(2006).

Wildlife presence locations collected by field biologists were used as the validation

data set to evaluate the accuracy of the habitat suitability map predicted from citizen data.

To evaluate the effectiveness of the proposed approach to addressing location imprecision

and spatial bias in citizen data, the accuracy of suitability maps (validated against the

validation data set) predicted from citizen data processed using the approach and maps

predicted from citizen data processed without using the approach were compared.

3. Case study

3.1. Study area

The study area is located at Mt. Lasha (99°13′E–99°17′14″E; 26°17′52″N–26°20′58″N) in

northwest Yunnan Province, China (Figure 1). The 20.3 km2 study area is part of the Yunling

Nature Reserve (established in 2006) and is an important habitat for a population of the

black-and-white snub-nosed monkey (R. bieti). R. bieti is an endangered species endemic to

the eastern Himalayas in northwest Yunnan and southeast Tibet, China, between the upper

Mekong and Yangtze Rivers. Mt. Lasha is near the southern-most portion of the geographic

range for the snub-nosed monkey (Long et al. 1994, Xiao et al. 2003). The Mt. Lasha group

of R. bieti contains about 100 individuals (Huang et al. 2012).
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3.2. Citizen data

Citizen data were collected through interview sessions with local citizens during July and

August 2010. Local citizens who had extensive experience in the field were interviewed.

In total, 70 local citizens (including herdsmen, hunters and farmers) from all five nearby

villages were interviewed. Local citizens in the area were more intensively active in the

field in summer and therefore had more opportunities to spot the monkeys. Sightings from

local citizens over the 2006–2010 summer months (June, July, and August) were then

extracted (Figure 2).

Figure 1. Location of study area. (a) Yunnan in China; (b) Mt. Lasha in Yunnan.

Figure 2. Sightings of R. bieti (27 presence polygons) and routes taken by local citizens over the
2006–2010 summer months.

International Journal of Geographical Information Science 1873

D
o
w

n
lo

ad
ed

 b
y
 [

U
n
iv

er
si

ty
 o

f 
W

is
co

n
si

n
 -

 M
ad

is
o
n
] 

at
 1

2
:1

4
 2

4
 S

ep
te

m
b
er

 2
0
1
5
 



3.3. Environmental data

Environmental variables on factors that influence R. bieti habitat suitability were selected

to characterize the environmental conditions. For R. bieti, the factors include terrain

conditions, water source, shelter and food, and human impact (Kirkpatrick 1996, Xiao

et al. 2003, Huang 2009) (Table 1). A DEM at 30 m resolution was created from the

contours digitized from 1:50,000 topographic maps of the area (20 m contour interval).

Elevation, slope gradient, and slope aspect were derived from the DEM (Wilson and

Gallant 2000) and used to characterize the terrain factor. Least-cost distances (ESRI 2010)

to rivers and to villages or roads were computed to characterize the water source factor

and human impact factor, respectively. A vegetation-type map of the study area derived

from a field inventory (Huang 2009) was included to represent characteristics of forest

structure and food resources.

3.4. Habitat suitability map

The relationships between R. bieti habitat suitability and the environmental variables

(presented as normalized presence PDFs) are shown in Figure 3. The differences between

derived suitability–environment relationships for which spatial bias is compensated and

relationships for which spatial bias is not compensated were apparent, especially for the

relationships with respect to elevation, vegetation type, and cost distance to river.

The habitat suitability map that was predicted based on derived suitability–environ-

ment relationships that compensated for spatial bias is shown in Figure 4 (cumulative

visibility for bias compensation was computed with visible distance threshold 500 m, an

estimation based on field experience in the study area). The following spatial patterns can

be observed on this habitat suitability map: a large portion of the study area was predicted

to have low suitability, mainly including areas over ridges, valleys, and southwest hill

slopes; areas predicted to have relatively high suitability were located over middle

elevation range and were distributed primarily on northeast hill slopes; small patches of

relatively high suitability were isolated.

Table 1. Environmental variables selected to characterize factors that influence R. bieti habitat
suitability (the resolution of data is 30 m).

Category Environmental variable Value range

Terrain Elevation 2460–3843 m
Slope 0–52 degree
Aspect 8 categories

Water source Cost distance to river 0–628 m
Shelter and food Vegetation type 10 types
Human impact Cost distance to village or road 0–788 m

Notes: Eight slope aspect categories are: 1-North (0–22.5; 337.5–360) (in degree), 2-Northeast (22.5–67.5), 3-
East (67.5–112.5), 4-Southeast (112.5–157.5), 5-South (157.5–202.5), 6-Southwest (202.5–247.5), 7-West
(247.5–292.5), and 8-Northwest (292.5–337.5). In calculation of cost distances, tan(slope) was adopted as
cost. Ten vegetation types are: 1-Evergreen coniferous, 2-Deciduous broadleaf, 3-Deciduous broadleaf and
coniferous, 4-Evergreen broadleaf and coniferous, 5-Pasture, 6-Burning remains, 7-Charcoal remains, 8-
Farmland, 9-Yunnan pine, and 10-Shrubberies.
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3.5. Validation

Presence locations of R. bieti recorded by field biologists in intensive field tracking were

used as validation data to evaluate the accuracy of the predicted habitat suitability map.

The field tracking of the Mt. Lasha R. bieti group (Huang et al. 2012) was conducted by

one field biologist and two assistants. Nearly one year was spent in the field habituating

Figure 3. Suitability–environment relationships for R. bieti. Solid lines or bars are relationships
derived with spatial bias compensated for. Dashed lines or bars are relationships derived with spatial
bias not compensated for.

Figure 4. Habitat suitability map for R. bieti predicted using citizen data.
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the monkeys. Tracking and direct observation of the group of monkeys were then

conducted in 2008 and 2009 (primarily for behavioral studies). Locations of the group

of R. bieti were recorded every 30 minutes during the field tracking periods. Due to the

endangered status, small population size, and the secluded nature of R. bieti, the presence

locations of R. bieti recorded in field tracking form the most detailed data set available

reflecting the distribution of R. bieti in the study area. Presence locations of R. bieti over

summers in these two years (853 presence locations in total) were selected as validation

data to temporally match citizen data used to predict the habitat suitability map (Figure 5).

Based on these field-observed R. bieti presence locations, Bcont(0.1) calculated for the

predicted habitat suitability map was 0.873 (95% CI: [0.810, 0.917]) (Table 2), indicating

that the habitat suitability map predicted from citizen data was highly consistent with the

distribution of R. bieti presence observed in the field.

4. Discussion

4.1. Effectiveness of the approach

As shown in Table 2, if the frequency-sampling strategy was not applied to identify

representative presence locations within sighting polygons (i.e., taking all locations within

sighting polygons as representative presence locations to predict a habitat suitability map),

Bcont(0.1) for the predicted habitat suitability map was 0.173 (95% CI: [−0.048, 0.379]).

Clearly, with the frequency-sampling strategy applied to reduce location imprecision,

there was a significant improvement in accuracy of the predicted habitat suitability

map. This indicates that the frequency-sampling strategy was effective to reduce location

imprecision in citizen data.

Figure 5. Presence locations of R. bieti observed in the field over summers in 2008 and 2009.
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Table 2 also shows that, if spatial bias in presence locations was not compensated for,

Bcont(0.1) for the predicted habitat suitability map was −0.048 (95% CI: [−0.269, 0.178]).

The accuracy of the habitat suitability map when it compensated for spatial bias was much

higher than that of the map with no spatial bias compensation. This indicates that the

cumulative visibility-based method was fairly effective at compensating for spatial bias in

citizen data.

It is also worth noting that, without applying either frequency-sampling strategy or

cumulative visibility to reduce location imprecision or to compensate for spatial bias, Bcont

(0.1) for the predicted habitat suitability map was −0.126 (95% CI: [−0.333, 0.092])

(Table 2). Clearly, there was a significant improvement in the accuracy of the predicted

habitat suitability map with the two strategies applied, which indicates that the geospatial

analysis techniques we adopted, as a whole, effectively mitigated the impacts of the two

limitations of citizen data in predictive mapping.

4.2. Sensitivity analysis

4.2.1. Estimation of visible distance threshold

As discussed above, the cumulative visibility-based method effectively compensated for

spatial bias in citizen data. In calculating cumulative visibility, visible distance threshold is

a crucial parameter (initially estimated as 500 m based on field experience in the case

study area). The estimation of this visible distance threshold might have an impact on the

effectiveness of the spatial bias compensation method. To investigate this impact, cumu-

lative visibility was calculated with variable visible distance thresholds to compensate for

spatial bias in citizen data, and the accuracy of the predicted habitat suitability maps was

evaluated.

Results (Figure 6) showed that, there was a significant increase in Bcont(0.1) as visible

distance threshold increased from 100 to 200 m; Bcont(0.1), reaching the highest value of

0.917 when visible distance threshold increased to 300 m; and that it was around 0.9 when

visible distance threshold was in the range of 200–500 m, but decreased dramatically to

negative values after visible distance threshold exceeded 500 m. This suggests that

suitability maps predicted based on citizen data can be of high accuracy with an estima-

tion of visible distance threshold in the range of 200–500 m for the case study area. The

optimal estimation of the visible distance threshold for the case study area is 300 m,

though 500 m is already a reasonably good estimation.

Table 2. Evaluation of predicted habitat suitability maps.

Not compensated Compensated

Bcont(0.1) 95% CI Bcont(0.1) 95% CI

Not sampled −0.126 [−0.333, 0.092] 0.173 [−0.048, 0.379]
Sampled −0.048 [−0.269, 0.178] 0.873 [0.810, 0.917]

Notes: ‘Compensated’ or ‘Not compensated’ means spatial bias was compensated for or not based on cumulative
visibility calculated with a visible distance threshold of 500 m. ‘Sampled’ means applying frequency-sampling
strategy to obtain representative presence locations from sighting polygons. ‘Not Sampled’ means simply taking
all the pixels in presence polygons as representative presence locations. ‘95% CI’ stands for 95% confidence
interval for Bcont(0.1) computed based on Fisher’s z-transformation.
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It should be noted that in this paper cumulative visibility computed based on DEM

is only an approximation of the realistic visibility over the landscapes. In fact, other

than terrain condition, factors such as weather, vegetation coverage, and the eyesight of

local citizens could also influence the visibility at a specific location from local

citizens. Visibility under such complex conditions could be modeled if detailed infor-

mation on these factors was available. For example, visibility in vegetated conditions

can be modeled if spatial variation of vegetation structure and vegetation density is

well known (Llobera 2007). However, for the study area, detailed information on these

factors was unavailable. Therefore, the simplistic DEM-based viewshed analysis algo-

rithm (Wang et al. 2000) was applied to compute visibility. In this sense, the visible

distance threshold should be regarded as an estimation of the average visible distance

threshold under the aggregated effects of all the factors influencing visibility for local

citizens.

4.2.2. Impact of sample size

The number of pixels selected as presence locations (referred to as ‘sample size’) might

have an impact on the accuracy of the predicted habitat suitability map. To assess this

impact, presence location sets (referred to as ‘sample sets’) of variable sizes were obtained

by randomly selecting a subset of the 542 presence locations (pixels). Accuracy of the

habitat suitability map predicted from each sample set was evaluated. For each given

sample size, this process was repeated 20 times to obtain a distribution of Bcont(0.1).

Results (Figure 7) showed that, as sample size decreased, the median value of Bcont

(0.1) was consistently high (around 0.9), but the spread of Bcont(0.1) widened slightly. For

all sample sizes larger than 200, the minimum value of Bcont(0.1) was greater than 0.8. As

long as sample size was larger than 200, the accuracy was consistently high. For small

sample sizes (e.g., 50), the accuracy deviated to a much lower value from the median.

This might be because when sample size was small, there were no presence locations

selected within some sighting polygons, and therefore only a smaller amount of informa-

tion in citizen data was used for prediction. Overall, for the monkey habitat suitability

mapping case study, accuracy of the predicted habitat suitability map was fairly robust

when sample size was above 200. In general, the full set of presence locations identified

with frequency-sampling strategy is recommended for prediction.

Figure 6. The impact of visible distance threshold on the accuracy of predicted habitat suitability
maps.
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4.2.3. Sensitivity to uncertainty in sighting polygon boundaries

Wildlife presence data were elicited from local citizens by letting them draw polygons

indicating where the wildlife had presented. When local citizens were drawing such

polygons, though empowered by the intuitive 3D map of the area, uncertainties regarding

where to draw polygon boundaries were unavoidable. For example, if a local citizen

sighted monkeys in a large forested area, it is nearly impossible to draw a polygon that

exactly delineates the extent of the monkeys’ presence, due to the lack of easily recogniz-

able references over such a homogenous area on the map. It was thus likely that the

polygon drawn by the local citizen was larger or smaller than the actual size of the

polygon. This uncertainty associated with polygon boundaries could possibly affect the

accuracy of habitat suitability maps that are predicted based on citizen data. To assess this

effect, we introduced different levels of area change into the sighting polygons to simulate

such uncertainty. This was done by randomly enlarging or shrinking the sighting polygons

proportionally while retaining their geometric centers and shapes. For example, for an area

change level of 0.1, every sighting polygon was randomly either enlarged to 1.1 times the

original area or reduced to 0.9 of the original area. Based on sighting polygons with

introduced random area change, a habitat suitability map was predicted and its accuracy

was evaluated. For each given area change level, this process was repeated 20 times to

obtain a distribution of Bcont(0.1).

Results (Figure 8) showed that accuracy of the predicted habitat suitability map

decreased with the increase of area change level introduced in sighting polygons.

However, as long as the area change level did not exceed 0.5 (50%), the accuracy of

the predicted habitat suitability map remained consistently high with a minimum Bcont

Figure 7. The impact of sample size on the accuracy of predicted habitat suitability maps. Boxplot
at each given sample size was based on 20 values of Bcont(0.1), each calculated on a suitability map
predicted from a representative presence location set randomly selected from the 542 presence
locations (pixels).
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(0.1) greater than 0.8. This indicates that, for the monkey habitat suitability mapping case

study, the accuracy of the predicted habitat suitability map was fairly protected from the

uncertainty associated with boundaries of sighting polygons. Even so, however, a general

principle for soliciting sighting polygons from local citizens is to let them draw the

polygons as small and accurate as possible to minimize uncertainties at the very beginning

of generating citizen data.

4.2.4. Impact of bandwidths in kernel density estimation

Kernel density estimation was used to assess the PDFs of environmental conditions over

the presence locations and so to quantify the relationships between wildlife habitat

suitability and environmental conditions (Section 2.2.3.1). The bandwidth h’x in

Equation (4) is a critical parameter that determines the smoothness of the estimated

PDFs and would therefore have an impact on the predictive mapping result. The ‘rule-

of-thumb’ algorithm (Silverman 1986) was applied to determine bandwidth h’x for each

environmental variable x (Equation 6). Here the impact of h’x on the accuracy of the

predicted suitability map was further investigated by multiplying a coefficient a to h’x (the

bandwidth determined using the ‘rule-of-thumb’ algorithm):

H
0
x ¼ ah

0
x; (9)

where a varies from 0.1 to 2.0 with a 0.1 increment to decrease or increase the bandwidth

H’

x (H
’

x is equal to h’x when a is 1.0). Figure 9(b) is an example of how bandwidth affects

Figure 8. Impact of uncertainty in sighting polygon boundaries on the accuracy of the predicted
habitat suitability map. Boxplot at each given area change level was based on 20 values of Bcont

(0.1), each calculated on a suitability map predicted from sighting polygons introduced with random
area change at this level.
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the smoothness/shape of the estimated PDF. The accuracy of suitability maps predicted

with these various bandwidths were then compared. Results (Figure 9(a)) showed that

when a is smaller than 0.9, prediction accuracy dropped dramatically (Bcont(0.1) below

0.7). Prediction accuracy was consistently high when a was in a range from 0.9 to 1.4

(Bcont(0.1) above 0.85), and then dropped slightly when a was larger than 1.4. This

demonstrated that ‘rule-of-thumb’ is indeed a good algorithm to determine the bandwidth

for kernel density estimation and achieve high prediction accuracy.

4.2.5. Suggestions on parameter selection

Several guidelines and suggestions related to parameter selection were presented for

applying the proposed citizen-data-based predictive mapping approach. First, in soliciting

citizen data, interviewers should let local citizens draw the sighting polygons as small and

accurate as possible to minimize the uncertainty associated with polygon boundaries at the

very beginning of generating citizen data, although the monkey habitat mapping case

study showed that mapping accuracy holds up to a certain extent against such uncertainty.

Second, it is recommended that all the representative locations identified with the

frequency-sampling strategy from sighting polygons be used as samples for predictive

mapping. Third, in computing cumulative visibility to compensate for spatial bias in

citizen data the visible distance threshold should be estimated based on field experience

in the respective study area (e.g., in the monkey habitat mapping case study it was

estimated as 500 m according to field visibility in the study area). Last, in deriving

suitability–environment relationships using kernel density estimation, the ‘rule-of-thumb’

(Silverman 1986) is a robust algorithm to determine bandwidth.

4.3. Potential limitations of the approach

The proposed citizen-data-based mapping approach adopted specific geospatial analysis

techniques to address the issues of location imprecision and spatial bias in citizen data and

it is worth noting the potential limitations. The limitations for other applications are very

much related to the two core assumptions used to address the location imprecision and

spatial bias. The assumption in reducing location imprecision is that locations at which

environmental conditions are most prevalent over the polygon area would best represent

Figure 9. Impact of bandwidth in kernel density estimation on accuracy of the predicted habitat
suitability map (a). The 542 presence locations identified with frequency-sampling strategy were
used for prediction. Cumulative visibility computed at 500 m visibility threshold was used to
compensate for spatial bias. (b) An example of how bandwidth H’x affects the smoothness/shape
of estimated PDF of elevation over the presence locations.
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the actual location of the observed geographic phenomenon. This assumption worked well

as a first approximation for the monkey habitat mapping case studies. The suitability of

this assumption for other cases very much depends on the nature of how the citizen data

were generated and whether such an assumption would hold. In correcting for spatial bias

it was assumed that the spatial bias was mostly due to the visibility of the observers. If this

assumption does not hold, visibility from locations of observers will not be a good

measure to compensate for the spatial bias. One important point to be made by this

paper is that in working with citizen data one must understand the nature of how these

data were generated and then use this understanding to preprocess the data so that the data

meet the requirements of the application.

4.4. Potential use of the approach

The R. bieti habitat mapping case study shows that the proposed approach effectively

minimized the impacts of the two limitations associated with citizen data (namely,

location imprecision and spatial bias) and as a result, habitat suitability mapping based

on citizen data achieved high accuracy. The approach presented in this paper also has

implications for tackling data quality issues associated with citizen-contributed data in

general (e.g., VGI and data produced in citizen science projects). It implies that, with the

application of geospatial analysis techniques to properly account for the limitations of

location imprecision and spatial bias in citizen data, valuable information embedded in

citizen data can be extracted and used for scientific mapping.

The approach presented in this article thus has the potential to be used in a range of

cases. For example, conservation programs in poor and remote areas where most of the

world’s biodiversity occurs (Myers et al. 2000) usually have only limited budgets, and

might not be able to afford conducting traditional wildlife data collection protocols (e.g.,

field tracking, GPS collars). In such cases, data can be solicited from local citizens at low

cost, processed with geospatial analysis techniques to increase its quality, and then used to

support decision-making in conservation practices. In addition, citizens’ observations

include various geographic phenomena. This approach, therefore, can potentially be

used for predictive mapping of geographic phenomena of interest other than wildlife

habitat suitability.

5. Conclusions

This article presented an approach that employs geospatial analysis techniques to mini-

mize the limitations of citizen data, location imprecision and spatial bias in particular, for

predictive mapping of geographic phenomena. The approach minimizes the impact of

location imprecision in citizen data by using a frequency-sampling strategy to identify

representative locations from areas over which citizens observed the geographic phenom-

enon. It mitigates the impact of spatial bias in citizen data by using cumulative visibility

(the frequency of a given location seen by local citizens) to compensate for the bias due to

unequal visibility over the landscape.

As a case study and test of the principle, this approach was applied to R. bieti habitat

suitability mapping in Yunnan, China. Citizen data (the sightings of R. bieti) were

solicited from local citizens and then processed using the proposed approach. A habitat

suitability map predicted from the processed citizen data was validated using R. bieti

presence locations recorded by field biologists in an intensive field tracking. A validation

revealed that the predicted suitability map was highly consistent with the distribution of R.
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bieti presence observed in the field (Bcont(0.1) = 0.873, 95% CI: [0.810, 0.917]). An

evaluation of the approach showed that the proposed approach effectively minimized the

impacts of the location imprecision and spatial bias associated with citizen data in

predictive mapping.

The proposed approach has implications for tackling data quality issues of citizen-

contributed data in general. It implies that, with the application of geospatial analysis

techniques to properly account for the limitations in citizen data (e.g., location imprecision

and spatial bias), valuable information embedded in citizen data can be extracted and used

for scientific mapping.
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