Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2013) 37: $884-894$
(C) TÜBITAK
doi:10.3906/mat-1201-35

A class of 3-dimensional almost cosymplectic manifolds

İrem Küpeli ERKEN, Cengizhan MURATHAN*

Department of Mathematics, Uludağ University, Faculty of Arts and Science, 16059, Görükle, Bursa, Turkey
Received: 19.01.2012 • Accepted: 02.10.2012 \quad Published Online: 26.08.2013 \quad • \quad Printed: 23.09 .2013

Abstract

The main interest of the present paper is to classify the almost cosymplectic 3-manifolds that satisfy $\|\operatorname{grad} \lambda\|=$ const. $(\neq 0)$ and $\nabla \xi h=2 a h \phi$.

Key words: Almost cosymplectic manifold, cosymplectic manifold

1. Preliminaries

Let M be an almost contact metric manifold and let (ϕ, ξ, η, g) be its almost contact metric structure. Thus M is a $(2 n+1)$-dimensional differentiable manifold and ϕ is a $(1,1)$ tensor field, ξ is a vector field, and η is a 1 -form on M, such that

$$
\begin{align*}
\phi^{2} X & =-X+\eta(X) \xi, \quad \eta(X)=g(X, \xi) \tag{1}\\
\phi(\xi) & =0, \quad \eta \circ \phi=0 \tag{2}\\
g(\phi X, \phi Y) & =g(X, Y)-\eta(X) \eta(Y) \tag{3}
\end{align*}
$$

for any vector fields X, Y on M.
The fundamental 2 -form Φ of an almost contact metric manifold (M, ϕ, ξ, η, g) is defined by

$$
\begin{equation*}
\Phi(X, Y)=g(X, \phi Y) \tag{4}
\end{equation*}
$$

for any vector fields X, Y on M, and this form satisfies $\eta \wedge \Phi^{n} \neq 0 . M$ is said to be almost cosymplectic if the forms η and Φ are closed, that is, $d \eta=0$ and $d \Phi=0$.

The theory of an almost cosymplectic manifold was introduced by Goldberg and Yano in [9]. The products of almost Kaehler manifolds and the real \mathbb{R} line or the circle S^{1} are the simplest examples of almost cosymplectic manifolds. Topological and geometrical properties of almost cosymplectic manifolds have been studied by many mathematicians (see [4], [11], [5], [9], [15], and [18]).

For M, define $(1,1)$-tensor fields \tilde{A} and h by ([7],[8],[15],[16])

$$
\begin{equation*}
\tilde{A} X=-\nabla x \xi \tag{5}
\end{equation*}
$$

[^0]\[

$$
\begin{equation*}
h=\frac{1}{2} \mathcal{L}_{\xi} \phi, \tag{6}
\end{equation*}
$$

\]

where \mathcal{L} indicates the Lie differentiation operator and ∇ is the Levi-Civita connection determined by g. The tensors \tilde{A} and h are related by

$$
\begin{equation*}
h=\tilde{A} \phi, \quad \tilde{A}=\phi h \tag{7}
\end{equation*}
$$

The main algebraic properties of \tilde{A} and h are the following:

$$
\begin{gathered}
g(\tilde{A} X, Y)=g(\tilde{A} Y, X), \quad \tilde{A} \phi+\phi \tilde{A}=0, \quad \tilde{A} \xi=0, \quad \eta \circ \tilde{A}=0, \\
g(h X, Y)=g(h Y, X), \quad h \phi+\phi h=0, \quad h \tilde{A}+\tilde{A} h=0, \quad h \xi=0, \quad \eta \circ h=0 .
\end{gathered}
$$

The curvature tensor R of M is given by $R(X, Y) Z=\left[\nabla_{X}, \nabla_{Y}\right] Z-\nabla_{[X, Y]} Z$ and the Ricci tensor Ric of M are defined by $\operatorname{Ric}(X, Y)=\operatorname{Tr} X \rightarrow R(X, Y) Z$ for any vector field X, Y and Z.

In [6], Dacko and Olszak proved the existence of a new class of almost cosymplectic manifolds, which is called (κ, μ, v)-spaces. This means that the curvature tensor R satisfies the condition

$$
\begin{align*}
R(X, Y) \xi= & \kappa(\eta(Y) X-\eta(X) Y)+\mu(\eta(Y) h X-\eta(X) h Y) \tag{8}\\
& +v(\eta(Y) \phi h X-\eta(X) \phi h Y)
\end{align*}
$$

where κ, μ, v are smooth functions. Contact metric manifolds fulfilling Eq. (8) were investigated in [2], [1], [3], and [12].

This work was inspired by [14] and [13]. We carry on those studies to the 3 -dimensional almost cosymplectic manifolds in this paper. The purpose of the present paper is to give a new local classification of 3 -dimensional almost cosymplectic manifolds under some conditions. The paper is organized in the following way. Section 2 is devoted to some lemmas related to 3 -dimensional almost cosymplectic manifolds for later use. In Section 3, we give our main theorem.

All manifolds considered in this paper are assumed to be connected and of class C^{∞}.

2. Three-dimensional almost cosymplectic manifolds

Now we shall give some essential Lemmas and notations.

Lemma 2.1 [10] Let M be a smooth manifold $f: M \rightarrow \mathbb{R}$ be a smooth real function. Let V_{1} and V_{2} be open sets of M defined by

$$
\begin{aligned}
& V_{1}=\{m \in M \mid f(m) \neq 0 \text { in a neighborhood of } m\}, \\
& V_{2}=\{m \in M \mid f(m)=0 \text { in a neighborhood of } m\} .
\end{aligned}
$$

Then $V_{1} \cup V_{2}$ is open and dense in M.
Let (M, ϕ, ξ, η, g) be an almost cosymplectic 3 -manifold. Let

$$
\begin{aligned}
U & =\{p \in M \mid h(p) \neq 0 \text { in a neighborhood of } p\} \subset M, \\
U_{0} & =\{p \in M \mid h(p)=0 \text { in a neighborhood of } p\} \subset M
\end{aligned}
$$

be open sets of M. Using Lemma 2.1, we can say that $U \cup U_{0}$ is an open and dense subset of M, and so any property satisfied in $U_{0} \cup U$ is also satisfied in M. For any point $p \in U \cup U_{0}$, there exists a local orthonormal basis $\{e, \phi e, \xi\}$ of smooth eigenvectors of h in a neighborhood of p (this we call a ϕ-basis).

On U, we put $h e=\lambda e, h \phi e=-\lambda \phi e$, where λ is a nonvanishing smooth function assumed to be positive.
Lemma 2.2 [17] On the open set U we have

$$
\begin{align*}
\nabla_{\xi} e & =-a \phi e, \quad \nabla_{e} e=b \phi e, \quad \nabla_{\phi e} e=-c \phi e+\lambda \xi \tag{9}\\
\nabla_{\xi} \phi e & =a e, \quad \nabla_{e} \phi e=-b e+\lambda \xi, \quad \nabla_{\phi e} \phi e=c e \tag{10}\\
\nabla_{\xi} \xi & =0, \quad \nabla_{e} \xi=-\lambda \phi e, \quad \nabla_{\phi e} \xi=-\lambda e \tag{11}\\
\nabla_{\xi} h & =2 a h \phi+\xi(\lambda) s, \tag{12}
\end{align*}
$$

where a is a smooth function,

$$
\begin{align*}
b & =\frac{1}{2 \lambda}((\phi e)(\lambda)+A) \text { with } A=\sigma(e)=\operatorname{Ric}(e, \xi) \tag{13}\\
c & =\frac{1}{2 \lambda}(e(\lambda)+B) \text { with } B=\sigma(\phi e)=\operatorname{Ric}(\phi e, \xi) \tag{14}
\end{align*}
$$

and s is the type $(1,1)$ tensor field defined by $s \xi=0$, se $=e$, and $s \phi e=-\phi e$, and Ric is Ricci tensor field.
By Lemma 2.2, we can prove that

$$
\begin{align*}
{[e, \phi e] } & =\nabla_{e} \phi e-\nabla_{\phi e} e=-b e+c \phi e \tag{15}\\
{[e, \xi] } & =\nabla_{e} \xi-\nabla_{\xi} e=(a-\lambda) \phi e \tag{16}\\
{[\phi e, \xi] } & =\nabla_{\phi e} \xi-\nabla_{\xi} \phi e=-(a+\lambda) e \tag{17}
\end{align*}
$$

If we adapt Theorem 7 of [17] to a 3-dimensional almost cosymplectic manifolds, we get the following:
Lemma 2.3 [17] Let (M, ϕ, ξ, η, g) be a 3-dimensional almost cosymplectic manifold. If $\sigma \equiv 0$, then the (κ, μ, ν)-structure always exists on every open and dense subset of M. This means that the Riemannian curvature tensor R of M satisfies

$$
\begin{aligned}
R(X, Y) \xi= & -\lambda^{2}(\eta(Y) X-\eta(X) Y) \\
& +2 a(\eta(Y) h X-\eta(X) h Y) \\
& +\frac{\xi(\lambda)}{\lambda}(\eta(Y) \phi h X-\eta(X) \phi h Y)
\end{aligned}
$$

for all vector fields X and Y on M.

3. Main theorem and proof

In this section, we will give our main theorem and prove it.
Theorem 3.1 (Main theorem) Let $M(\phi, \xi, \eta, g)$ be a 3-dimensional almost cosymplectic manifold with $\|$ grad $\lambda \|=$ 1 and $\nabla_{\xi} h=2 a h \phi$. Then at any point $p \in M$ there exists a chart $(U,(x, y, z))$ such that $\lambda=f(z) \neq 0$ and
$A=0, B=F(y, z)$ or $A=F(y, z), B=0$. In the first case $(A=\operatorname{Ric}(e, \xi)=0, B=\operatorname{Ric}(\phi e, \xi)=F(y, z))$, the following are valid:

$$
\xi=\frac{\partial}{\partial x}, \quad \phi e=\frac{\partial}{\partial y} \quad \text { and } e=k_{1} \frac{\partial}{\partial x}+k_{2} \frac{\partial}{\partial y}+k_{3} \frac{\partial}{\partial z}, \quad k_{3} \neq 0
$$

In the second case $(A=\operatorname{Ric}(e, \xi)=F(y, z), B=\operatorname{Ric}(\phi e, \xi)=0)$, the following are valid:

$$
\xi=\frac{\partial}{\partial x}, e=\frac{\partial}{\partial y} \text { and } \phi e=k_{1}^{\prime} \frac{\partial}{\partial x}+k_{2}^{\prime} \frac{\partial}{\partial y}+k_{3}^{\prime} \frac{\partial}{\partial z}, \quad k_{3}^{\prime} \neq 0
$$

where

$$
\begin{gathered}
k_{1}(x, y, z)=r(z)=k_{1}^{\prime}(x, y, z), \\
k_{2}(x, y, z)=k_{2}^{\prime}(x, y, z)=2 x f(z)-\frac{(H(y, z)+y)}{2 f(z)}+\beta(z), \\
k_{3}(x, y, z)=k_{3}^{\prime}(x, y, z)=t(z)+\delta, \quad \frac{\partial H(y, z)}{\partial y}=F(y, z),
\end{gathered}
$$

and r, β are smooth functions of z and δ is constant. Furthermore, $f(z)=\int \frac{1}{k_{3}(z)} d z$.
Proof. By virtue of Lemma 2.2, it can be easily proven that the assumption $\nabla_{\xi} h=2 a h \phi$ is equivalent to $\xi(\lambda)=0$. From the definition of a gradient of a differentiable function, we get

$$
\begin{align*}
\operatorname{grad} \lambda & =e(\lambda) e+(\phi e)(\lambda) \phi e+\xi(\lambda) \xi \\
& =e(\lambda) e+(\phi e)(\lambda) \phi e . \tag{18}
\end{align*}
$$

Using Eq. (18) and $\|\operatorname{grad} \lambda\|=1$ we have

$$
\begin{equation*}
(e(\lambda))^{2}+((\phi e)(\lambda))^{2}=1 \tag{19}
\end{equation*}
$$

Differentiating (19) with respect to ξ and using Eqs. (16) and (17) and $\xi(\lambda)=0$, we obtain

$$
\begin{aligned}
\xi(e(\lambda)) e(\lambda)+\xi((\phi e)(\lambda))(\phi e)(\lambda) & =0 \\
([\xi, e](\lambda)) e(\lambda)+([\xi, \phi e](\lambda))(\phi e) \lambda & =0 \\
\lambda e(\lambda)(\phi e)(\lambda) & =0
\end{aligned}
$$

and since $\lambda \neq 0$,

$$
\begin{equation*}
e(\lambda)(\phi e)(\lambda)=0 \tag{20}
\end{equation*}
$$

To study this system, we consider the open subsets of U :

$$
\begin{aligned}
U^{\prime} & =\{p \in U \mid e(\lambda)(p) \neq 0, \text { in a neighborhood of } p\} \\
U^{\prime \prime} & =\{p \in U \mid(\phi e)(\lambda) p \neq 0, \text { in a neighborhood of } p\}
\end{aligned}
$$

From Lemma 2.1 we have that $U^{\prime} \cup U^{\prime \prime}$ is open and dense in the closure of U. We distinguish 2 cases.

Case 1: We suppose that $p \in U^{\prime}$. By virtue of Eqs. (19) and (20), we have $(\phi e)(\lambda)=0$, and $e(\lambda)=\mp 1$. Changing to the basis $(\xi,-e,-\phi e)$ if necessary, we can assume that $e(\lambda)=1$. The Eqs. (15), (16), (17), and (13), Eq. (14) reduces to

$$
\begin{align*}
{[e, \phi e] } & =-b e+c \phi e \tag{21}\\
{[e, \xi] } & =-2 \lambda \phi e \tag{22}\\
{[\phi e, \xi] } & =0, \quad \lambda=-a \tag{23}\\
b=\frac{A}{2 \lambda}, \quad c & =\frac{B+1}{2 \lambda}, \quad a=-\lambda, \tag{24}
\end{align*}
$$

respectively.
Since $[\phi e, \xi]=0$, the distribution that is spanned by ϕe and ξ is integrable, and so for any $p \in U^{\prime}$ there exists a chart $\{V,(x, y, z)\}$ at p, such that

$$
\begin{equation*}
\xi=\frac{\partial}{\partial x}, \quad \phi e=\frac{\partial}{\partial y}, \quad e=k_{1} \frac{\partial}{\partial x}+k_{2} \frac{\partial}{\partial y}+k_{3} \frac{\partial}{\partial z} \tag{25}
\end{equation*}
$$

where k_{1}, k_{2}, k_{3} are smooth functions on V. Since $\xi, e, \phi e$ are linearly independent we have $k_{3} \neq 0$ at any point of V.

Using Eqs. $(21),(22)$ and (25), we get the following partial differential equations:

$$
\begin{gather*}
\frac{\partial k_{1}}{\partial y}=\frac{A}{2 \lambda} k_{1}, \quad \frac{\partial k_{2}}{\partial y}=\frac{1}{2 \lambda}\left[A k_{2}-B-1\right], \quad \frac{\partial k_{3}}{\partial y}=\frac{A}{2 \lambda} k_{3} \tag{26}\\
\frac{\partial k_{1}}{\partial x}=0, \quad \frac{\partial k_{2}}{\partial x}=2 \lambda, \quad \frac{\partial k_{3}}{\partial x}=0 \tag{27}
\end{gather*}
$$

Moreover, we know that

$$
\begin{equation*}
\frac{\partial \lambda}{\partial x}=0, \quad \frac{\partial \lambda}{\partial y}=0 \tag{28}
\end{equation*}
$$

Differentiating the equation $\frac{\partial k_{3}}{\partial x}=0$ with respect to $\frac{\partial}{\partial y}$, and using $\frac{\partial k_{3}}{\partial y}=\frac{A}{2 \lambda} k_{3}$, we find

$$
0=\frac{\partial^{2} k_{3}}{\partial y \partial x}=\frac{\partial^{2} k_{3}}{\partial x \partial y}=\frac{1}{2 \lambda} \frac{\partial A}{\partial x} k_{3}+\frac{1}{2 \lambda} A \frac{\partial k_{3}}{\partial x}=\frac{1}{2 \lambda} \frac{\partial A}{\partial x} k_{3}
$$

So,

$$
\begin{equation*}
\frac{\partial A}{\partial x}=0 \tag{29}
\end{equation*}
$$

Differentiating $\frac{\partial k_{2}}{\partial x}=2 \lambda$ with respect to $\frac{\partial}{\partial y}$, and using $\frac{\partial k_{2}}{\partial y}=\frac{1}{2 \lambda}\left[A k_{2}-B-1\right]$ and Eq. (29), we prove that

$$
\frac{\partial^{2} k_{2}}{\partial y \partial x}=0=\frac{\partial^{2} k_{2}}{\partial x \partial y}=\frac{1}{2 \lambda}\left[\frac{\partial A}{\partial x} k_{2}+A \frac{\partial k_{2}}{\partial x}-\frac{\partial B}{\partial x}\right]
$$

So,

$$
\begin{equation*}
\frac{\partial B}{\partial x}=2 \lambda A \tag{30}
\end{equation*}
$$

From Eq. (28) we have the following solution:

$$
\begin{equation*}
\lambda(z)=f(z)+d \tag{31}
\end{equation*}
$$

where d is constant. For the sake of shortness, we will use $\tilde{f}(z)$ instead of $f(z)+d$. Using $e(\lambda)=$ $k_{1} \frac{\partial \lambda}{\partial x}+k_{2} \frac{\partial \lambda}{\partial y}+k_{3} \frac{\partial \lambda}{\partial z}=1$ and Eq. (28), we get

$$
\begin{equation*}
\frac{\partial \lambda}{\partial z}=\frac{1}{k_{3}}, \quad k_{3} \neq 0 \tag{32}
\end{equation*}
$$

If we differentiate Eq. (32) with respect to $\frac{\partial}{\partial y}$ because of the equation $\frac{\partial \lambda}{\partial y}=0$, we obtain

$$
\begin{equation*}
0=\frac{\partial^{2} \lambda}{\partial z \partial y}=\frac{\partial^{2} \lambda}{\partial y \partial z}=-\frac{1}{k_{3}^{2}} \frac{\partial k_{3}}{\partial y} \tag{33}
\end{equation*}
$$

Since $k_{3} \neq 0$, Eq. (33) reduces and then we obtain

$$
\begin{equation*}
\frac{\partial k_{3}}{\partial y}=0 \tag{34}
\end{equation*}
$$

Combining Eqs. (26) and (34), we deduced that

$$
\begin{equation*}
A=0 \tag{35}
\end{equation*}
$$

Using Eqs. (30) and (35), we have

$$
\begin{equation*}
\frac{\partial B}{\partial x}=0 \tag{36}
\end{equation*}
$$

It follows from Eq. (36) that

$$
\begin{equation*}
B=F(y, z) . \tag{37}
\end{equation*}
$$

By virtue of Eqs. (35), (26), and (27), we easily see that

$$
\begin{equation*}
k_{1}=r(z) \tag{38}
\end{equation*}
$$

where $r(z)$ is an integration function.
Combining Eqs. (27) and (34), we get

$$
\begin{equation*}
k_{3}=t(z)+\delta \tag{39}
\end{equation*}
$$

where δ is constant.
If we use Eqs. (27), (31), (35), and (37) in Eq. (26),

$$
\begin{equation*}
\frac{\partial k_{2}}{\partial x}=2 \tilde{f}(z), \quad \frac{\partial k_{2}}{\partial y}=\frac{-(B+1)}{2 \lambda}=\frac{-(F(y, z)+1)}{2 \tilde{f}(z)} . \tag{40}
\end{equation*}
$$

It follows from this last partial differential equation that

$$
\begin{equation*}
k_{2}=2 x \tilde{f}(z)-\frac{(H(y, z)+y)}{2 \check{f}(z)}+\beta(z), \tag{41}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{\partial H(y, z)}{\partial y}=F(y, z) \tag{42}
\end{equation*}
$$

Because of Eq. (32), there is a relation between $\lambda(z)=\tilde{f}(z)$ and $k_{3}(z)$ such that $\tilde{f}(z)=\int \frac{1}{k_{3}(z)} d z$. We will calculate the tensor fields η, ϕ, g with respect to the basis $\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}$. For the components $g_{i j}$ of the Riemannian metric g, using Eq. (25) we have

$$
\begin{aligned}
& g_{11}=1, \quad g_{22}=1, \quad g_{12}=g_{21}=0, \quad g_{13}=g_{31}=\frac{-k_{1}}{k_{3}} \\
& g_{23}=g_{32}=\frac{-k_{2}}{k_{3}}, \quad g_{33}=\frac{1+k_{1}^{2}+k_{2}^{2}}{k_{3}^{2}}
\end{aligned}
$$

The components of the tensor field ϕ are immediate consequences of

$$
\begin{aligned}
\phi(\xi) & =\phi\left(\frac{\partial}{\partial x}\right)=0, \quad \phi\left(\frac{\partial}{\partial y}\right)=-k_{1} \frac{\partial}{\partial x}-k_{2} \frac{\partial}{\partial y}-k_{3} \frac{\partial}{\partial z} \\
\phi\left(\frac{\partial}{\partial z}\right) & =\frac{k_{1} k_{2}}{k_{3}} \frac{\partial}{\partial x}+\frac{1+k_{2}^{2}}{k_{3}} \frac{\partial}{\partial y}+k_{2} \frac{\partial}{\partial z} .
\end{aligned}
$$

The expression of the 1-form η immediately follows from $\eta(\xi)=1, \eta(e)=\eta(\phi e)=0$.

$$
\eta=d x-\frac{k_{1}}{k_{3}} d z
$$

Now we calculate the components of tensor field h with respect to the basis $\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}$.

$$
\begin{aligned}
h(\xi) & =h\left(\frac{\partial}{\partial x}\right)=0, \quad h\left(\frac{\partial}{\partial y}\right)=-\lambda \frac{\partial}{\partial y} \\
h\left(\frac{\partial}{\partial z}\right) & =\lambda \frac{k_{1}}{k_{3}} \frac{\partial}{\partial x}+2 \lambda \frac{k_{2}}{k_{3}} \frac{\partial}{\partial y}+\lambda \frac{\partial}{\partial z} .
\end{aligned}
$$

Case 2: Now we suppose that $p \in U^{\prime \prime}$. As in Case 1, we can assume that $(\phi e)(\lambda)=1$. The Eqs. (15), (16) ,(17), and (13), Eq. (14) reduces to

$$
\begin{align*}
{[e, \phi e] } & =-b e+c \phi e \tag{43}\\
{[e, \xi] } & =0 \tag{44}\\
{[\phi e, \xi] } & =-2 \lambda e \tag{45}\\
b=\frac{A+1}{2 \lambda}, & c=\frac{B}{2 \lambda}, \quad a=\lambda \tag{46}
\end{align*}
$$

respectively. Because of Eq. (44), we find that there exists a chart $\left\{V^{\prime},(x, y, z)\right\}$ at $p \in U^{\prime \prime}$ such that

$$
\begin{equation*}
\xi=\frac{\partial}{\partial x}, \quad \phi e=k_{1}^{\prime} \frac{\partial}{\partial x}+k_{2}^{\prime} \frac{\partial}{\partial y}+k_{3}^{\prime} \frac{\partial}{\partial z}, \quad e=\frac{\partial}{\partial y}, \tag{47}
\end{equation*}
$$

where $k_{1}^{\prime}, k_{2}^{\prime}$, and $k_{3}^{\prime}\left(k_{3}^{\prime} \neq 0\right)$, are smooth functions on V^{\prime}.
Using Eqs.(43), (45), and (47), we get the following partial differential equations:

$$
\begin{gathered}
\frac{\partial k_{1}^{\prime}}{\partial y}=\frac{B}{2 \lambda} k_{1}^{\prime}, \quad \frac{\partial k_{2}^{\prime}}{\partial y}=\frac{1}{2 \lambda}\left[B k_{2}^{\prime}-A-1\right], \quad \frac{\partial k_{3}^{\prime}}{\partial y}=\frac{B}{2 \lambda} k_{3}^{\prime} \\
\frac{\partial k_{1}^{\prime}}{\partial x}=0, \quad \frac{\partial k_{2}^{\prime}}{\partial x}=2 \lambda, \quad \frac{\partial k_{3}^{\prime}}{\partial x}=0 .
\end{gathered}
$$

Moreover, we know that

$$
\begin{equation*}
\frac{\partial \lambda}{\partial x}=0, \quad \frac{\partial \lambda}{\partial y}=0 \tag{49}
\end{equation*}
$$

As in Case 1, if we solve the partial differential equations Eq. (48) and Eq. (49), then we find

$$
\begin{gather*}
B=0, \quad A=F^{\prime}(y, z) \tag{50}\\
\lambda(z)=f^{\prime}(z)+d^{\prime}=\tilde{f}^{\prime}(z), \quad k_{1}^{\prime}=r^{\prime}(z), \quad k_{3}^{\prime}=t^{\prime}(z)+\delta^{\prime} \tag{51}\\
k_{2}^{\prime}=2 x \tilde{f}^{\prime}(z)-\frac{\left(H^{\prime}(y, z)+y\right)}{2 f(z)}+\beta^{\prime}(z) \tag{52}\\
\frac{\partial H^{\prime}(y, z)}{\partial y}=F^{\prime}(y, z) \tag{53}
\end{gather*}
$$

where d^{\prime} and δ^{\prime} are constants.
By the help of Eq. (51), the equation $(\phi e)(\lambda)=1$ implies

$$
\lambda(z)=\tilde{f}^{\prime}(z)=\int \frac{1}{k_{3}^{\prime}(z)} d z
$$

As in Case1, we can directly calculate the tensor fields g, ϕ, η, and h with respect to the basis $\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}$.

$$
\begin{aligned}
& g=\left(\begin{array}{ccc}
1 & 0 & -\frac{k_{1}^{\prime}}{k^{\prime}} \\
0 & 1 & -\frac{k_{2}^{\prime}}{k_{3}^{\prime}} \\
-\frac{k_{1}^{\prime}}{k_{3}^{\prime}} & -\frac{k_{2}^{\prime}}{k_{3}^{\prime}} & \frac{1+k_{1}^{\prime 2}+k_{2}^{\prime 2}}{k_{3}^{\prime 2}}
\end{array}\right), \quad \phi=\left(\begin{array}{ccc}
0 & k_{1}^{\prime} & -\frac{k_{1}^{\prime} k_{2}^{\prime}}{k_{3}^{\prime}} \\
0 & k_{2}^{\prime} & -\frac{1+k_{2}^{\prime 2}}{k_{3}^{\prime}} \\
0 & k_{3}^{\prime} & -k_{2}^{\prime}
\end{array}\right) \\
& \eta=d x-\frac{k_{1}^{\prime}}{k_{3}^{\prime}} d z \quad \text { and } \quad h=\left(\begin{array}{ccc}
0 & 0 & -\lambda \frac{k_{1}^{\prime}}{k_{3}^{\prime}} \\
0 & \lambda & -2 \lambda \frac{k_{2}^{\prime}}{k_{3}^{\prime}} \\
0 & 0 & -\lambda
\end{array}\right)
\end{aligned}
$$

Example 3.2

$$
M=\left\{(x, y, z) \in R^{3}, z \neq 0\right\}
$$

and the vector fields

$$
\xi=\frac{\partial}{\partial x}, \quad e=\frac{\partial}{\partial y}, \quad \phi e=z \frac{\partial}{\partial x}+(2 x z-1) \frac{\partial}{\partial y}+\frac{\partial}{\partial z} .
$$

The 1-form $\eta=d x-z d z$ is closed and the characteristic vector field is $\xi=\frac{\partial}{\partial x}$. Let g, ϕ be the Riemannian metric and the $(1,1)$-tensor field given by

$$
\begin{aligned}
g & =\left(\begin{array}{ccc}
1 & 0 & -a_{1} \\
0 & 1 & a_{2} \\
-a_{1} & a_{2} & 1+a_{1}^{2}+\left(a_{2}\right)^{2}
\end{array}\right), \phi=\left(\begin{array}{ccc}
0 & a_{1} & a_{1} a_{2} \\
0 & -a_{2} & -\left(1+a_{2}^{2}\right) \\
0 & 1 & a_{2}
\end{array}\right), \\
h & =\left(\begin{array}{ccc}
0 & 0 & -\lambda a_{1} \\
0 & \lambda & 2 \lambda a_{2} \\
0 & 0 & -\lambda
\end{array}\right), \quad \lambda=z
\end{aligned}
$$

with respect to the basis $\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}$, where $a_{1}=z$ and $a_{2}=1-2 x z$.

$$
\begin{aligned}
\eta & =d x-z d z, \quad d \eta=0 \\
\Phi & =-d y \wedge d z, \quad d \Phi=0
\end{aligned}
$$

By a straightforward calculation, we obtain

$$
\nabla_{\xi} h=2 z h \phi, F(y, z)=-1,\|\operatorname{grad} \lambda\|=1
$$

Remark 3.3 Let $M(\phi, \xi, \eta, g)$ be an almost cosymplectic manifold. A D_{α}-homothetic transformation [19] is the transformation

$$
\begin{equation*}
\bar{\eta}=\alpha \eta, \quad \bar{\xi}=\frac{1}{\alpha} \xi, \quad \bar{\phi}=\phi, \quad \bar{g}=\alpha g+\alpha(\alpha-1) \eta \otimes \eta \tag{54}
\end{equation*}
$$

of the structure tensors, where α is a positive constant. It is well known [19] that $M(\bar{\phi}, \bar{\xi}, \bar{\eta}, \bar{g})$ is also an almost cosymplectic manifold. When 2 contact structures (ϕ, ξ, η, g) and $(\bar{\phi}, \bar{\xi}, \bar{\eta}, \bar{g})$ are related by Eq. (54) , we will say that they are D_{α}-homothetic. We can easily show that $\bar{h}=\frac{1}{\alpha} h$ so $\bar{\lambda}=\frac{1}{\alpha} \lambda$.
(a) As a result, an almost cosymplectic manifold with $\|$ grad $\lambda \|_{g}=d \neq 0$ (const.) is D_{α}-deformed in another almost cosymplectic manifold with $\|$ grad $\bar{\lambda} \|_{\bar{g}}=d \alpha^{-\frac{3}{2}}$ and choosing $\alpha=d^{\frac{2}{3}}$, it is enough to study those almost cosymplectic manifolds with $\|$ grad $\lambda \|=1$.
(b) If $d=0$, then λ is constant. As a result, if $\lambda=0$, then M is a cosymplectic manifold.

Remark 3.4 There are no compact 3-dimensional almost cosymplectic manifolds with $\|$ grad $\lambda \|=$ const $\neq 0$. In fact, if such a manifold is compact, then the smooth function λ will attain a maximum value at some point p of M. Then grad λ vanishes at p, contrary to the requirement that grad λ is a nonzero constant.

Remark 3.5 Using Theorem 3.1, we can produce infinitely many possible examples about 3-dimensional almost cosymplectic manifolds. If we add the condition $F(y, z)=0$ to Theorem 3.1, we have $A=0$ and $B=0$. Thus, by Lemma 2.3, we can state that a 3-dimensional almost cosymplectic manifold under the same conditions of Theorem 3.1 is a 3-dimensional almost cosymplectic (κ, μ) manifold.

Now we will give an example satisfying Remark 3.5.

Example 3.6 We consider the 3-dimensional manifold

$$
M=\left\{(x, y, z) \in R^{3} \mid z>0\right\}
$$

and the vector fields

$$
\xi=\frac{\partial}{\partial x}, \quad \phi e=\frac{\partial}{\partial y}, \quad e=z^{2} \frac{\partial}{\partial x}+\left(2 x z-\frac{z+y}{2 z}\right) \frac{\partial}{\partial y}+\frac{\partial}{\partial z} .
$$

The 1 -form $\eta=d x-z^{2} d z$ is closed and the characteristic vector field is $\xi=\frac{\partial}{\partial x}$. Let g, ϕ be the Riemannian metric and the $(1,1)$-tensor field given by

$$
\begin{aligned}
& g=\left(\begin{array}{ccc}
1 & 0 & -\frac{a_{1}}{a_{3}} \\
0 & 1 & -\frac{a_{2}}{a_{3}} \\
-\frac{a_{1}}{a_{3}} & -\frac{a_{2}}{a_{3}} & \frac{1+a_{1}^{1}+a_{2}^{2}}{a_{3}^{2}}
\end{array}\right), \quad \phi=\left(\begin{array}{ccc}
0 & -a_{1} & \frac{a_{1} a_{2}}{a_{3}} \\
0 & -a_{2} & \frac{1+a_{2}^{2}}{a_{3}} \\
0 & -a_{3} & a_{2}
\end{array}\right), \\
& \eta=d x-\frac{a_{1}}{a_{3}} d z, \quad \text { and } \quad h=\left(\begin{array}{ccc}
0 & 0 & \lambda \frac{a_{1}}{a_{3}} \\
0 & -\lambda & 2 \lambda \frac{a_{2}}{a_{3}} \\
0 & 0 & \lambda
\end{array}\right)
\end{aligned}
$$

with respect to the basis $\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}$, where $a_{1}=z^{2}, a_{2}=2 x z-\frac{z+y}{2 z}, a_{3}=1, \lambda=z$.

$$
\begin{aligned}
\eta & =d x-z^{2} d z, \quad d \eta=0 \\
\Phi & =d y \wedge d z, \quad d \Phi=0
\end{aligned}
$$

By direct computations, we get

$$
\|\operatorname{grad} \lambda\|=1, \nabla_{\xi} h=-2 z h \phi, F(y, z)=0
$$

and

$$
R(X, Y) \xi=\left(-z^{2}\right)(\eta(Y) X-\eta(X) Y)-2 z(\eta(Y) h X-\eta(X) h Y)
$$

for any vector field X, Y on M.

Acknowledgments

The authors are grateful to the referee for valuable comments and suggestions.

References

[1] Blair, D.E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics 203. Boston-Basel-Berlin. Birkhauser (2002).
[2] Blair, D.E., Koufogiorgos, T., Papantoniou, B.: Contact metric manifolds satisfying a nullity condition. Israel J. Math. 91, 189-214 (1995).
[3] Boeckx, E.: A full classificitaion of contact metric (κ, μ)- spaces. Ill. J. Math., Vol. 44, 212-219 (2000).
[4] Chinea, D., de Leon, M., Marrero, J.C.: Coeffective cohomology on almost cosymplectic manifolds. Bull. Sci. Math. 119, 3-20 (1995).
[5] Cordero, L.A., Fernandez, M., De Leon, M.: Examples of compact almost contact manifolds admitting neither Sasakian nor cosymplectic structures. Atti Sem. Mat. Fis. Univ. Modena 34, 43-54 (1985/86).
[6] Dacko, P., Olszak, Z.: On almost cosymplectic ($-1, \mu, 0$)-spaces. CEJM 3(2), 318-330 (2005).
[7] Dacko, P., Olszak, Z.: On conformally flat almost cosymplectic manifolds with Kahlerian leaves. Rend. Sem. Mat. Univ. Pol. Torino, Vol. 56, 89-103 (1998).
[8] Dacko, P., Olszak, Z.: On almost cosymplectic ($\kappa, \mu, \nu)$-spaces. Banach Center Publications, Vol. 69, 211-220 (2005).
[9] Goldberg, S.I., Yano, K.: Integrability of almost cosymplectic structures. Pacific J. Math. 31, 373-382 (1969).
[10] Gouli-Andreou, F., Karatsobanis, J., Xenos, P.J.: Conformally flat 3- $\tau-a$ manifolds. Diff. Geom. Dynam. Syst. 10, 107-131 (2008).
[11] Janssens, D., Vanhecke, L.: Almost contact structures and curvature tensors. Kodai Math. J. 4, 1-27 (1981).
[12] Koufogiorgos, T., Markellos, M., Papantoniou, V.J.: The harmonicity of the Reeb vector field on contact metric 3-manifolds. Pacific J. Math 234, 325-344 (2008).
[13] Koufogiorgos, T., Markellos, M., Papantoniou, V.J.: The (κ, μ, ν)-contact metric manifolds and their classification in the 3-dimensional case. Diff. Geom. Appl. 293-3003 (2008).
[14] Koufogiorgos, T., Tsichlias, C.: Generalized (κ, μ)-contact metric manifolds with $\|$ grad $\kappa \|=$ constant. J. Geom. 78, 83-91 (2003).
[15] Olszak, Z.: On almost cosymplectic manifolds. Kodai Math. J. 239-250 (1981).
[16] Olszak, Z.: Almost cosymplectic manifolds with Kahlerian leaves. Tensor N. S. 46, 117-124 (1987).
[17] Öztürk, H., Aktan, N., Murathan C.: Almost α-cosymplectic (κ, μ, ν)-spaces. arXiv:1007.0527v1 [math.DG] (2010).
[18] Pak, H.K., Kim, T.W.: Canonical foliations of certain classes of almost contact metric structures. Acta Math. Sin. (Engl. Ser.) 21, 841-846 (2005).
[19] Tanno, S.: The topology of contact Riemann manifolds. Illinois J. Math. 12, 700-717 (1968).

[^0]: *Correspondence: cengiz@uludag.edu.tr
 2000 AMS Mathematics Subject Classification: Primary 53B20, 53B25, 53B50; Secondary 53C15, 53C25.

