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A Class of Accelerated Conjugate Direction Methods
for Linearly Constrained Minimization Problems*

By Michael J. Best and Klaus Ritter

Abstract.   A class of algorithms are described for the minimization of a function of
n variables subject to linear inequality constraints.   Under weak conditions convergence
to a stationary point is demonstrated.   The method uses a mixture of conjugate di-

rection constructing and accelerating steps.   Any mixture, for example alternation,
may be used provided that the subsequence of conjugate direction constructing steps
is infinite.   The mixture of steps may be specified so that under appropriate assump-
tions the rate of convergence of the method is two-step superlinear or (n - p + 1)-

step cubic where p is the number of constraints active at a stationary point.   The

accelerating step is always superlinearly convergent.   A condition is given under which

the alternating policy is every step superlinear.   Computational results are given for

several test problems.

1.  Introduction.  In [3] a conjugate direction method is described for minimiz-
ing a nonlinear function subject to linear inequality constraints.  An accelerating step
is always performed after the construction of (« - p) conjugate directions, where n is
the number of variables and p is the number of constraints active at the limit point of
the sequence of points constructed by the method.  Under appropriate assumptions
this results in an (n - p + l)-step cubic rate of convergence.

The idea of accelerating the rate of convergence of methods of conjugate direc-
tions for unconstrained optimization has further been pursued in [2] and [9].  In [2]
the construction of conjugate directions is based on Zoutendijk's projection method
[11], and the accelerating direction is obtained using an approximation to the solution
of certain linear equations involving differences of gradients at previous iterations.  In
[9], conjugate directions are obtained by always choosing the descent direction orthog-
onal to n — 1 differences of gradients; and therefore, a set of n conjugate directions
is available at every iteration.  This allows an accelerating direction to be used more
frequently than every n iterations.

It is the purpose of this paper to extend these methods to minimization problems
with linear inequality constraints. The algorithm allows considerable flexibility in the
mixture of accelerating and conjugate direction constructing steps.  If the algorithm
does not terminate in a finite number of steps it is only required that the number of
conjugate direction constructing steps be infinite.  Under appropriate assumptions then
each accelerating step is a superlinear step, and this results in an /-step superlinear rate
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ACCELERATED CONJUGATE DIRECTION METHODS 479

of convergence where / and the rate of /-step superlinear convergence depend on the
policy used.

As a special case we obtain the rate of convergence characteristic of [3].  An-
other special case is obtained by alternating accelerating and conjugate direction con-
structing steps.  In most cases this policy gives a one-step superlinear convergence rate
and in all cases the rate of convergence is at least two-step superlinear.

2.  Notation, Formulation of the Problem.   Let * £ E" and assume that F{x) is
a given real .valued function.  If F(x) is differentiable at a point *■, we denote its gra-
dient at *• by VF(*.) or g..  If F(x) is twice differentiable at *•, we denote the Hessian
matrix of F(x) at *■ by G(*) or G-.  For any column vector * and any matrix M the
transpose is denoted by *' and M', respectively.  For any vectors * and y, L [*, y] =
{w; w = 0* + (1 - 9)y,  0 < 0 < 1} denotes the set of points on the line segment
joining * and y.

Let A be an m x n matrix with rows a\, a'2, . . . , a'   and let b be an zrz-di-
mensional column vector with components bl, b2, . . . , bm.  Define

R = {* e FT I Ax </>}.

We consider the problem of determining a point z £ R such that F(z) < F(x) for all
x&R.

A point * £ R is said to be stationary if there exist numbers Xj, X2, . . . , ^
satisfying

m

VF(*) = £ ty.,
¿=i

\.(a'.x - b.) = 0,      X. < 0   for i = 1, 2, . . . , m.

The Kuhn-Tucker Theorem states that every local minimizer of F(x) over R is a
stationary point; and that if F(x) is a pseudo-convex function, then every stationary
point minimizes F(x) over R.

It is the purpose of this paper to describe a class of algorithms which either termi-
nate with a stationary point after a finite number of steps or produce a sequence of
points {*} with the properties:

(1) under a differentiability assumption (F(*.)} is strictly decreasing; every
cluster point of {*•} is stationary; and if {*•} has an isolated cluster point, then {*•}
converges.

(2) if the sequence {*■} has a cluster point z and in a neighborhood of z, G(x)
exists and has certain other properties, then {*•} converges to z. The rate of conver-
gence will be /-step superlinear where / and the rate of superlinear convergence depend
on the algorithm specified.

For later reference we formulate:
Assumption I.  F(x) is twice continuously differentiable and there are constants

0 < u < 1? such that /ill*ll2 < x'G(y)x < nllyll2 for all * and y.
For ease of presentation the convergence and convergence rate results of Sections
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480 MICHAEL J. BEST AND KLAUS RITTER

4 and 5, respectively, are obtained using the rather restrictive Assumption I.  In Sec-
tion 6 a modified class of algorithms is presented for which the convergence and con-
vergence rate results apply under much weaker assumptions (Assumptions II and III).
Some computational results are presented in Section 7.

3.  General Description of the Algorithm.   At iteration / the point *■ is known.
The next point in the sequence is obtained by constructing a descent direction s,, a
stepsize a. and setting*.+ j = *■ — as-.

Let Dj = [dXj, d2-, . . . , cf ■] be an (n x n) nonsingular matrix and let DJ1 —
[Cj -, c2-, . . . , c •].  Suppose for simplicity that the first p constraints are active at
Xj. If it is appropriate that these same p constraints be active at * + j, then s- must
be orthogonal to a\, a'2, . . . , a .  A simple way to do this is to require that d¡- = a\
for i = 1,2,. . . , p and then to take s- parallel to any of the last n — p columns of
DJl.  By definition of the inverse matrix the required orthogonality property will be
satisfied.  Choosing s- in this manner also results in s- being orthogonal to n - p - 1
of the last n - p columns of Z)'.  If these columns are required to be normalized dif-
ferences of gradients at previous points, then s'j(gj_i+1 - £._,) = 0 so that s- will be
approximately conjugate to n - p - 1 previous search directions s,_t, thus assuring a
rapid rate of convergence.

The columns of £>• will in general consist of gradients of active constraints a'¡
and normalized differences of gradients (g.. - gy_í+1)/lffi_fSy_íl. To record the
origin and type of each column we use the index a,-, where

a.. =ii
tfVfr*-W/«v*»>
if d.. = «;.

An infinite subset of iteration indices J is assumed to have been specified at the
beginning of the algorithm.  For / £ / we initially consider any column c„ of DJ   to
be a potential search direction and compute the n directional derivatives (vA —
c'ijgJiCfA. We compute (vA, the largest derivative in a direction which will drop an
active constraint and l(u.)fcl the largest derivative in a direction which will maintain the
active constraints.  In the first few iterations any direction with a large directional
derivative can be used to reduce F. Eventually, however, the search direction should be
chosen in such a way as to guarantee convergence to a stationary point and to obtain
a rapid rate of convergence.  If (vA is considerably larger than \(Vj)k\, then it is clear
that an active constraint should be dropped.  To ensure that zigzagging does not occur,
we require that if at iteration / — 1, a new constraint became active then no constraint
may be dropped at iteration / unless there is no other usable direction.  The information
required to enforce this rule is contained in the indicator 0. which was set equal to one
if a new constraint became active at the previous iteration.

If no active constraint is to be dropped, let r be the column number of £)'• cor-
responding to the oldest difference of gradients.  Since the rate of superlinear conver-
gence of the algorithm will be determined by the oldest gradient difference information,
the sharpest results will be obtained if we use s- = crj(vX and then replace d • by more
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ACCELERATED CONJUGATE DIRECTION METHODS 481

recent information. In the first few iterations, if |(i».)rl is larger than some fixed posi-
tive constant j3, it is quite reasonable to do this. On the other hand, if \(vX\ < ß but
|(u.)fe| is larger than some other fixed positive number 7, it seems more appropriate to
search along ckj(v-)k to obtain a large local decrease in F.

When Xj is close to a stationary point, then both \(Vj)r\ and \(vj)k\ will be small.
If c ■ tends to become orthogonal to g- so that l(u.)rl tends to zero and in addition
|(u-)fc| remains bounded away from zero, then it is clear that convergence to a station-
ary point cannot be guaranteed using crAp)r as a search direction.  To avoid this situ-
ation we introduce the test \(v)r\ > ß\(Vj)k\2 and use crj(Vj)r only if it passes this test.
As/ increases, l(u.-)fcl becomes small and the test becomes weaker, making it increasingly
more likely that c (vX can be used as the search direction.  If the test is not satisfied,
then in order to maintain convergence, s- must have a component parallel to c ..   Fur-
thermore, it may occur infinitely often that the test has failed.  In this case if s, is
constructed so that it converges to a direction parallel to c -, then the strongest con-
vergence rate results will still apply. Choosing s;. = (sign(vj)rcri + ck.(Vj)k)\iVj)k\ when
the test fails ensures that both these properties are satisfied. Jx is the set of iteration
indices for which s¡ is chosen by this rule.

For /' Í / a special search direction of the form s. = ¿^a..<owicij is constructed
to accelerate the rate of convergence of {*•}.  Assuming that *• is close to a stationary
point z, Taylor's theorem gives F(x¡ - Sj) — F(*) - Sn^g'-c,.. + WEwfc'qGCjj since it
will be shown in Theorem 2 that the c«'s are approximately conjugate directions.  An
appropriate way to choose the coefficients w¡ is to minimize this quadratic approxi-
mation to F. This gives w¡ = gjcJc'jGctj.  In Theorem 2 it will be shown that Gc„ —
dfjWcyt. Thus it is appropriate to set wf. = g'jcJWc^W = (uA..

In Step II of the algorithm the determination of the stepsize is based on the re-
sult (Lemma 6) that for; ^ Jx the optimal stepsize converges to unity.  If a unit step-
size gives a feasible point, then the Armijo test is applied; and the stepsize is repeatedly
reduced until an acceptable stepsize is obtained.  It will be shown in Lemma 6 that
after a finite number of steps the Armijo test will always be satisfied with a unit step-
size.   For / £ Jx, the optimal stepsize converges to

l(U/)rl \\cklW
Wj\\ + Kv>)k{VJ

I K r)

and the procedure is similar to the above.
In Step III of the algorithm £> + j is obtained from £)• by replacing one of its

columns with a new vector.  The column to be replaced is either one which contains
the gradient of a constraint which has just become inactive or the column correspond-
ing to the oldest gradient difference information. The new column is either the gradi-
ent of a newly active constraint or the normalized gradient difference d- =

(gj - gi+1)ßOjSjl If s, = (úgn(Vj)rcrj + ^.(1^)1(^1 and \c'rjdj\ < \c'kjdj(Vj)k\, then
it is not possible to ensure that WDJ^W will remain bounded.  In this case and when
7 ^ /, the update is not performed; and we set Df~+\ = Dr1.  It will be shown, how-
ever, in Lemma 5 that after a finite number of steps D- is always updated for / £ /.
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482 MICHAEL J. BEST AND KLAUS RITTER

Since D+x differs from D¡ by exactly one column, it is straightforward to compute
D~+x from D^1 using a standard simplex transformation.  Finally, it should be empha-
sized that only DJ1 is required for the computations of the algorithm; and that since
D'. is not required, it need not be stored.

An important property of the algorithm is that under the assumption of strict
complementary slackness for all / sufficiently large the constraints active at *;. are pre-
cisely those which are active at z.  Suppose these constraints are p in number.  The
algorithm is designed in such a way that the mixture of conjugate direction construct-
ing and accelerating steps is flexible.  Performing n - p consecutive regular steps and
using an appropriate approximation to the optimal stepsize gives an n - p-step super-
linear or quadratic convergence rate (Theorem 5).  Following these steps with an ac-
celerating step always gives a superlinear rate (Theorem 3) and this rate depends on
the oldest gradient difference information in D'-.  An important feature of the algo-
rithm is that regular and accelerating steps can be performed alternately.   This policy
results in a two-step superlinear rate (Theorem 4); and in addition, if the accelerating
step does not converge faster than expected, then both regular and accelerating steps
are superlinear steps (Theorem 6).

4.  Detailed Description of the Algorithm and Convergence.  In the algorithm we
use constants a > 0, ß > 0, y > 0, and 0 < 5 < lh.  Furthermore, we require an in-
finite subsequence / C (0, 1, 2, . . . }.  For every / ^ / we choose a special search
direction s, which is designed to accelerate the convergence of the sequence {*•} gen-
erated by the algorithm.

Let *0 £ R be the initial point and suppose that

a'.xQ =b.,      i = 1, . . . , q;      a'.xQ < b.,      i - q + 1.m.

Set

d.0=a.,      i=l,...,q,

and, if q < n, let dq + , 0, . . . , dn0 be any set of vectors such that with D'0 =
(d10, . . . , dnQ) the matrix D~l = (c10, .... c„0) exists.  Finally, set ß0 = 1, Jx =
{0} and, /(*0) = (a]0, . . . , ot„0} with ai0 = z",  i = 1, . . . , q, and ai0 =0, i =
q + 1, . . . ,«.

A general cycle of the algorithm consists of three steps which are described below.
At the beginning of the /th cycle the following data are available: *. £ R, g. = VF(*.),
ßj, J(Xj) = {axj, ..., an¡} and DJ1 = (cxj, ..., cnj).

Step I:  Computation of the Direction of Descent s-.  Let u- =g'D~1,  u- =
((Uj)x, . . . ,(Uj)n)and set

^-(UjyWc.l,      /=!,...,„.

Define / = /;. and k = kf such that

(u.)z > (v.).     for all i with a   > 0,

\(v) | > |(u ) |    for all i with a.. < 0.
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ACCELERATED CONJUGATE DIRECTION METHODS 483

If a.. < 0 for all i, set (v.), = 0; and if a.. > 0 for all i, set (u,k = 0.»/ '      v i i 'i i K
(i) / ^ J, i.e., a special direction s- is chosen.
Set

and

s.=   T]  c..(v.).,I ~„   'Zv /V
a..«0

S. =
I

S. ÍfgjSj>0,
cévPl   if«/5} < 0   and   (v.\>0,
0 otherwise.

(ii) ; ElJ, i.e., a regular direction s- is chosen.
Set

s. = c^ty),   if (ty), > al(ü.)fc I  and 0. = 0) or

((v.)k = 0 and iVj), > 0);

otherwise determine r such that

a . < - a.,    for all i with a.. < 0,n ii ij
and set

cr¡(Vj)r     if l(u,.)rl > ß or (|(i>.)rl > 0|(u.)kl2 and |(u.)fc| < 7),
ck.(v.)k    if ^|<i and |(u.)fc| > 7,
(cr/ sign(ü.)r + ^/»yVKwPfcl    otherwise.

If Sj = (sign(Vj)rcr). + ckj(Vj)k)\(Vj)k\, set /,»/,U {/}.  Go to Step II.
■Step II:   Computation of the Stepsize o;..  If g'sy- < 0, stop, otherwise let

Sa.x. - b.
—^5- for all z with a!i. < 0

as. ' /

and

Set
Kxf, o)

HXj) - P(xf - as.)

ogñ

min {l,o*}

min-
(v.)y yr

(»/)*
+ l(u,)

liekT
/'*' lie .1n

a>0.

if/e/j,

** If, for / = I,.., m, ajs- > 0, set oy* = °°.   If the minimal vlaue o* is attained for more than
one index, we apply a small perturbation to b in such a way that for the perturbed constraints,
o* is attained for exactly one index.
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484 MICHAEL J. BEST AND KLAUS RITTER

and let v, be the smallest nonnegative integer for which h(Xj, oyOi)"/') > 8.
Set a- = 'Oj(lA)vi and *-+, = *y — as,. Compute g + j and go to Step HI.
Step III:  Computation of DJ+X, /(*.-+ x ), and p\+ x.
Case 1.  o, < a*, i.e., no new active constraint occurs at *+ x.
Set ßj+ j = 0 and if; £ /, d¡ = (g¡ - gj+x)l\\ajSj\\.  Let

/    if s. = c,.(v.)„i      ir i'i
k   if s. = c, .(v.).,I        fc/v i'k'
r    if s. = c .(v.), or ;' £ J,    and    \c'.d.\ > \c, .d.(v.), \.I        r/v i'k       ' 1 ' 17   /'        '  kj   iK ]'k

If ; £ / or ; £ /, and \cr¡df\ < \c'kjdÁV,)k I, set Dj+\ = DJ » and /(*/+, ) = /(*;.);
otherwise, replace the z4h column of D'- by d-, denote the new matrix by D'j+X and
determine Dj~+\ from DJ1.  Set

■/(*•+l) = {«!,;+!-• ••>"„,/+1}'

where aiJ+, = a¿/, i ¥= »», and 0^^+, - - /.
Case 2.  a- = a*, i.e., a new constraint becomes active at *.+ 1.
Set J3.+ 1 = 1 and

/     if s. =ty(i;.);,
"-    *   ifs; = cÄ    or   S/ = <i0C«f(ü/)i'

r    ifSj = crjivi)r    or   ;£/1.

Let | = £• be the index for which the minimum a* is attained.   Suppose

|c'.at|>7llc .11.***

Replace the uth column of £)'■ by a^, denote the new matrix by D'+x and deter-
mine DJ+1X from DJ1.

Set
•^/+l)-i«iy+1.<V,+ i}.

where aij+, = af/, z" ̂ z', and avJ+ x = %¡.
Proposition 1.    Let Assumption I be satisfied, *;- £ R and suppose Sj, a- and

Dj are determined by the algorithm.   Then
(i) Dj is nonsingular, i.e., DJ1 exists.
(ii) gjSj < 0 if and only if x- is a stationary point.
(iii) //*• is not a stationary point, then Oj is well defined, */+ j = *• - oySy £ R

andF(xj+x)<F(Xj).
Proof,   (i)  By assumption D0 is nonsingular.  For every ;', D'j and ö'+ j are either

identical or differ in exactly the Kh column, i.e., d ■ =£ d  -, ,.  It suffices, therefore,
to show that dv + x c ■ # 0.  If a- = a*, this follows immediately from the assumption
in Case 2 of Step III of the algorithm.  If o, < a*, Assumption I and Lagrange's for-

*** The case that this assumption is not satisfied is discussed in Remark 1.
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mula [10] imply that there is ^ ££[*,-, */+J such that

«*♦ « = SH= s'i SoTT " w M > M" ' "> °-
/ z /

It follows now from the definition of v in Step III of the algorithm that s;. is parallel
to c ■ and, therefore, d' ,. xcvi =£ 0.

(ii) Writing gj in the form
n

Sj = Z W
f=i

we observe that *• is a stationary point if and only if X¿/- < 0 for z with af/- > 0 and
X,-. = 0 for i with a¡j < 0.  Since Xiy = cjjgj = \ctjH))J)p Xj is a stationary point if and
only if (Vj)k = 0 and (u), < 0.  By Step I of the algorithm this is equivalent to s;- = 0.

(iii)  Since a'jS, > 0 for all z with a,-- > 0, it follows that a;* > 0 and *;. - aSj £
R for 0 < a < o*.  By Taylor's theorem there is |;. £ Z,[*;-, *• - as] such that

F(*.) - F(*. - as.) = og'js. - aigj - VF(!.))s!.

This implies that

h(x.; a) = 1 - igj - vF(ï.))'s./g'.s.,

where /z(*-; a) is defined in Step II of the algorithm.  It follows that lima^.0/z(*-; a) =
1 so that Vj is well defined and F(*/+ x ) < F(x]).

Remark 1.  In the convergence proof we need that the sequence {llDr'H} is
bounded. This is shown in Lemma 1 provided k'-a^| > y\\c -II for some y > 0.  If
this assumption is not satisfied in Case 2 of Step III of the algorithm, the matrix
Dj+ j is reset in the sense that all columns d¡ + x such that a,- -+x < 0 are replaced
by unit vectors orthogonal to all other columns of D'+ x.  The details of this procedure
are discussed in [7].

The proof that the sequence {*y} generated by the algorithm converges to the
global minimizer of F(x) over R is rather lengthy. Since the algorithm given in this
paper is a generalization of a method described in [8], we shall not give a new con-
vergence proof but show that the algorithm has the properties upon which the con-
vergence proof given in [8] depends.  First, we need

Lemma 1.   Let Assumption I be satisfied.   Then the sequences {Dj}, {DJ1},
and {Sj} are bounded.

Proof.   Using the arguments given in the proof of Lemma 1 in [7], we see that
{Dj} is bounded and that it suffices to show that there is some co > 0 such that for
all;'£/

(i) ivW^K/11'
where v is defined as in Step III of the algorithm.

If Gj = a?, it follows from Case 2 in Step III of the algorithm that (1) is satisfied
for every co < y.  If Oj < o*, we see as in the proof of part 1 of Proposition 1 that
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486 MICHAEL J. BEST AND KLAUS RITTER

s'jdv ,+ 1 > p\\Sj\\, which in conjunction with the definition of v and s;. implies (1) if

For; £/, we have sf = (crj signfy), + ckj(Vj)k)\(Vj)k\ and, therefore,

s'.d  ... = s.d. = (d'.c . sign(u.)  + d'.c..(v ).)\(v.). I > /ills. II,/   «V+l /  / Z  >7 rr I  kjK iJkJ,y i'k'      ^   j  '

or

d'.crj ûgn(Vj)r + d'.ckj(Vj)k > pU'fcrf sign(u¿ + d'.ck.(Vj)h\\.

Since {0} is bounded, the right-hand side of this inequality is bounded away from
zero; i.e., there is a constant 5 > 0 such that

(2) d'.c . sign(v.)  + d'.c.{v). > 8    for all ;'£/,,v » j  ri    °^ v }'r ]  k]K i'h ' 1 '

which implies (1).
The algorithm given in [8] always uses as search direction either ckj(v)k or

cAvA.  The stepsize o, is the optimal stepsize, i.e., the solution to

min{F(*. - os)|0 < a. < a*},

where a* is the maximal stepsize defined in Step II of the algorithm.
For Sj =£ cJVj)l the property of s- which is used in the convergence proof given

in [8] is the following:   (Lemma 5 in [8]).
Let {*-, ;' £ /} be a subsequence of {*■} which converges to z such that for all

/€/,
a'.x. = b.,      /£/  ;      a.x.<b,      i <£ I ,i  i        v m i  / r   m

where Im is some subset of {1, ... , m}.   If the orthogonal projection of SjF(z) onto
{x\a'¡x = 0, i £ Im } is different from zero, then there is e > 0 such that g's- > e for
;' £ / sufficiently large.

The critical properties of the stepsize a, are established in Proposition 1 and
Lemma 3 of [8].  The main property used is the following:   For every e > 0 there is
6(e) > 0 such that gjSf > e and of > e imply F(xj+X) < F(*;) - 6(e).

In the following two lemmas we shall show that the search direction s- and the
stepsize Oj generated by the new algorithm have these properties too.

Lemma 2.   Let Assumption I be satisfied and let {s} and {*•} be determined by
the algorithm.  Let Im = 0 or Im C {1, . . . , m}. Suppose {xjt j £ /} is a subsequence
°f{Xj} which converges to some z GE".  If, for every j £ /,

a'.x. = b.,      /£/      and   a'.x.<b.,      i&I  ,i  I i m i  i i r   m<

and the orthogonal projection of W(z) onto {x\a¡x = 0, i £ Im} is different from
zero, then there is e > 0 such that for j £ / sufficiently large

\(v})k\ > e   and   s. =£ e^u,),   implies g'.s. > e.

Proof.   Let Px denote the orthogonal projection of* onto {*|a,'* = 0, i £ /}.
It follows from Lemma 2 in [8] that, for ;' £ /, px llifyll < \(Vj)k\.  Hence, PW(z) # 0
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implies that there is e > 0 such that \(Vj)k\ > e for ;' £ / sufficiently large.
Since {Dj} is bounded above, there is a constant co > 0 such that llcJI > co for

all i and ;'.
Thus, if Sj = ck(Vj)k, we have

^j = ^%^j)k-K^^2>^^2-

If Sj = (crj sign(Vj)r + ckj(Vj)k)\(Vj)k\, we have

(1) g^ = (\g'jCrj\ + kkfKiv^)2Mv,)k\ > ü\(v.)k\3.

Finally, if s¡ = 2aí/<oc,/(ü/)/'then

ë''s'= aL<0 W * "%J|(W2 > ««»A)2.
'/

which completes the proof of the lemma.
Lemma 3.   Let Assumption I be satisfied, and let {s-} and {a} be determined

by the algorithm.  For every e > 0 there is 8(e) > 0 such that for all ;",

g'jSj > e and o* > e   imply F(x.+ l) < F(x.) - 6(e),

ll*/+ j - *.ll > e        implies g'.s. > 8(e),

g'.s > e and a < a* imply ll*.+ j - *.ll > 8(e).

Proof.   By Taylor's theorem there is £;- £ L [x¡, *;- - 0Sj] such that for a > 0,

„ v F(* ) - Fix - OS ) ( VF(f.) - g )'s
(1) -1--J--'—  = 1 +-'--'—L.

OgjSj gjSj

Because VF(*) is uniformly continuous and {s} is bounded, there is t > 0 such
that for all ;',

(2) IIVF(£.) - g.ll lls.ll < e/2    for 0 < a < t.

If g'jSj > e, it follows, therefore, from (1) and (2) that for 0 < o < r,

f3l F(x)-F(x-os) llvF(£.)-*.llllsll      ,
w —'--rJ-—>\--'——'-—'->i:>8.

og.s. g.s. 2
6l I 6l I

By inequality (1) in the proof of Lemma 2 we have

(4) \iv.)k\ >ei>0   for all ; £ /, with g'.s. > 0.

Hence, g'jSj > e and o;* > e imply that Oy > e2 > 0 for some e2.  By (3) and
the definition of v- we have, therefore,

(5) a > ^min{T, e2} > 0

and
F(Xj) - P(xj+X) > o.8gjSj > &ôe min{T, e2} > 0.
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If ¿¡Sj > e and a. < of, it follows from <?• < a*, (3), and the definition of p.
and a- that of > r.  Thus, (5) holds in this case too.  Furthermore, g'-s- > e implies
Us.II > e3 for some e3 > 0, which proves the last part of the lemma.

Since {a-} is bounded, it suffices now to show that lls.ll > e implies g'jS- > 8(e).
By the definition of s;. and the boundedness of {DJ1} we have, for some e4 > 0,

|(u.)fc|>e4    if SjïCyiVj),

and
(v),>e.    if s. = c,.(v),
K l'l 4 / Ip }'l

As in the proof of Lemma 2, it follows then that g'.s. > toe2 where co is a lower bound
for {kyl}.

Based on the results of Lemmas 1 —3 we can now use the convergence proof given
in [8] to derive the following.

Theorem 1. Suppose Assumption I is satisfied. Then, there is a unique z £ R
such that F(z) < F(x) for every x £ R, x i= z. The algorithm either terminates after
a finite number of iterations with z or generates an infinite sequence {*•} which con-
verges to z.

Assume that a\z = b¡,  i = 1, . . . , p, and a\z < b¡,  i = p + 1, . . . , m.   By the
Kuhn-Tucker Theorem there are \x, . . . , X   such that

p
^F(z) = Z\a.,      X <0,  i=\,...,p./=i   '

If X¡ < 0, i = 1, . . . , p, the strict complementary slackness condition is said
to be satisfied at z. In this case, it can be shown that after a finite number of itera-
tions, the set of constraints active at the elements of {*•} does not change.

Proposition 2.   Suppose Assumption I and the strict complementary slackness
condition is satisfied.   Then, there is ;0 such that, for j > ;'„,

a'.x. = b.,      i = 1, . . . , p   and   a'.x. <b.,      i = p + 1, . . . , m.i j       i iff i i       ï r

The proof of this proposition is identical with the proof of Proposition 2 in [8]
and, therefore, omitted.

5.  Superlinear Rate of Convergence.  In this section we demonstrate the rate of
convergence associated with several important specifications of the index set / of reg-
ular or conjugate direction constructing steps.  To obtain these results it is reasonable
to require that for all; sufficiently large the set of constraints which are active at *•
are precisely those which are active at z.  Therefore, we assume throughout this section
that Assumption I and the strict complementary slackness assumption are satisfied so
that Proposition 2 applies.

For notational convenience we assume without loss of generality that for all
;' > ;0 the columns of D'j have been ordered so that the last p columns contain the
gradients a\, a'2, . . . , a'p of active constraints and the first q = n - p columns contain
normalized differences of gradients.

The convergence rate results will be based on upper bounds on errors associated

and    lls.ll > e,i

and    lls.ll > e.
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with various approximations.  The following lemma demonstrates the relationship
among several of these error estimates.  The matrix F- of part (c) occurs when Taylor's
theorem is used to express g,+ 1 in terms of g- and G = G(z).

Lemma 4.   (a) For any integer I > 0, il*.+i - zll = 0(11*. - zll).
(b)       ll*y   -   Zll   =   0(\\gj   -    VF(Z)II),    llgy   -    VF(Z)II   =   0(ll*y   -   Zll).
(c) Define E¡ = ¡¿ G(x. + t(xj+, - xjj)dt - G; then llFyll -* 0 as ; —»• °°.  If

G(x) satisfies a Lipschitz condition in a neighborhood of z, then IIF-II = 0(11* - zll).
Proof,  (a)  Let; > j0.  Since by Proposition 2, (*• - z) is orthogonal to VF(z),

it follows from Taylor's theorem that

F(x.) - F(z) = K(x. - z)'G(£.)(*. - z)    where £. £ L [*., z].

Thus, from Assumption I,

|ll*. - zll2 < F(*.) - F(z) < hxj - zll2.

Since / > 0, by Proposition 1, F(*.+/) < F(x).  Therefore,

|ll*/+/-zll2<F(*.+z)-F(z)<5|l*.-zll2
and

Wx._,,-z\\<sfqTp:\\x.-z\\.l+l v '"*   /

(b) From the Lagrange formula [10] and Assumption I,

llg. - vF(z)ll II*. - zll > (g. - vF(z))'(*. - z) = (Xj - z)'Gi%f)(x - z)

> /ill*, -zll2,
where %f £ L[x¡, z].  Therefore, ll*y - zll < (l//i)Hgy - VF(z)ll.  Again from the La-
grange formula and Assumption I,

llg. - VF(z)ll2 = (g;. - VF(z))'Qr. - VF(z)) = (*. - x)'€K3é¡J(gf - VF(z))

<tjIx. -zlig - VF(z)ll,

where & £L[*y, z], so that llgy - vF(z)ll < r¡\\Xj - zll.
(c) Since F(x) has continuous second derivatives and since by Theorem 1 *. —*

z as ;' —► °°, it follows that HzTyll —► 0 as ;' —> °°.  If G(x) satisfies a Lipschitz condition
in a neighborhood of z, then there is a number L > 0 such that for all ;' sufficiently
large

IIF.IK   sup     IIG(*. + t(x., ,-*.))- G(z)ll
7 0<Í<1 ' ' '

< L    sup    llr(*., , - z) + (1 - t)(x. - z)\\
0<f<l 7 '

<L{II*.J.1 -zll+ II*.-zll}.1      Z+l I '

It now follows from part (a) that II£".11 = 0(ll*y - zll).
Lemma 5.  (a) For i = 1,2, ... ,q, \(Vj)¡\ = 0(\\x¡ - zll).
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(b) For any integer l > 0,

ll*/+/ - zll = 0(max{Lg;+/c..|, i = 1, 2, . . . , q}).

(c) For all j £ J sufficiently large, Dj+lx =£ DJx.
Proof   (a)  For ;' > ;0 and i = 1,2, ... ,q,by definition of the inverse matrix

c¡- is orthogonal to a'x, a'2, . . . , a   and is thus also orthogonal to VF(z).  Therefore,

^•=iâi=^-v^»'o¡i ¡i
and by Lemma 4(b), tyy).) < k¡ - VF(z)ll = 0(ll*y - zll).

(b) Let T = {t £ E", r = 2f=1 $¡at}.  First, we show that

(1) for any t £ T,    II*. - zll = 0(lg¡ - tí).

To verify (1) choose any t £ T and let ;' > ;0.  By Proposition 2, (*• - z) is orthogonal
to both t and VF(z).  Thus from the Lagrange formula and Assumption I,

llg. - t\\ II*. - zll > (g. - t)'(x. - z) = (g. - VF(z))'(*. - z)

= (*. - z)'G(£.)(*. - z) >/ill*. -zll2,

where £• £ L[*., z] -  Therefore, II*. - zll < llg- - fll/u which proves (1).
Now let / be any fixed nonnegative integer, ;' > ;0, and define w'- = Sj+i^J ' •  !t

follows that
iWj), = z'j+icij    for i = 1,2, ... ,q,   and

i
g.^, = D.w. = y (w).d.. + t.,bi+i       ii     /L, v pi i/      /'

i= i

where by Proposition 2, /■ £ T.   From Lemma 1, D is bounded so that by (1),

ll*.+/ - zll = 0(max{|(w.).|, i = 1, 2.<?})

= 0(max{|g^.+/c¡7l, 1-1,2,..., ?})•

(c) From part (a) and Lemma 1 it follows that \d'jCkj(v)k I —> 0 as ;" —► °°.
Therefore, from Eq. (2) of Lemma 1 and for all ;' £ /, sufficiently large \d'jC | > S/2 >
0 so that from Step III of the algorithm for all ;' £ / sufficiently large, Dj+lx # DJ!.

The following theorem relates column i of DJ ' to the search direction used when
column i of Dj was last replaced. In addition, it shows that the first q columns of Dr1
are conjugate directions.

Theorem 2.  (a) For every j > ;0 and i = 1, 2, . . . , q,

ctjllctjl -s_aJls_a¡i + 4
Ge.. = WcJd.f + w2.,   ató

|e;.Gc..| = 0(llw2.ll)   fori<k<q,

where Iwil, II w?-ll —> 0 as j —■* °°.
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(b) In addition, if G(x) satisfies a Lipschitz condition in a neighborhood of z,
then

llwMl, Hh>2II - 0(1*        - zll).

Proof Let ;' >j0 and 1 < i < q be arbitrary but fixed. Let v = - a(.;., ev =
ev(i) = signi/u,,),-), and let k be such that l(u„)kl > [(vv)¡\ for / = 1, 2, . . . , q. We
first show that when column i of D~l is updated it is true that c¡ v+xIWcl v+x II —
sv/\\sv\\ and that the following updates do not substantially change this z'th column.

From Step I of the algorithm, Lemma 5(a), and Proposition 2,

0)
v'*1 ' "1

Column i of £)"+, is obtained from the update formula

iv        ,        ,      °v ~ °v+lc.   , , = -;—   where d   = —-:—•>v+l     c'.d "        Was
IV    V V   V

Therefore,

/   s    /    Ils II     \

(2)
S      /        IIS IIvl v

IIS   ..v   \ v K v'k   iv v

For v ^ Jx it follows from (1), the Lagrange formula and Assumption I that

(v ).c. d       s Gtt )s

hjl WsJ2 M       '

Similarly, for v &JX,

(4) ejoaKA m W», + 0(\(v )A)>n>0.Ils II Ils II'
V V

2 "Wp'k'

From (2), (3), (4) and Lemma 5(a) it follows that

C s

<5> k—Ï = ï7Ti + 0(II^-zII)-
i,v+i       f

In general D~l may not be updated for several iterations so that

Uv+l       Uv + 2 Ul      ^U%+V

where \ is the iteration at which the next update occurs.  It follows that £ = — a •
where

- CLr. = minf-ty - Ofy >>, / = 1, 2,. . . ,q},
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and 0£+ j is obtained from D'^ by replacing column r by d^ = (gt - gç+ x)¡\o^s^.
Column i of 07+ ¡ is obtained from the update formula

c' dy
(6) Ca+.=i/rr7^

r%   %

We next show that Ic^tftl is appropriately small so that column i is left approximately
unchanged after one update.

From Taylor's theorem,

cLd. = c'   (g A, + F, -l(7) vt=c« r h¡¡+^ ¡sç

where Zv. is defined in Lemma 4(c).  By definition of §, c^ = c¡ „+1 so that from (5),

Since d(. M+ x = d¡ ^+x = dv, we have from Taylor's theorem,
s s

C     V    = d -F      "
IsJ      '.í+1       "llsJT

Thus,

(8) e^G - He. p+, II ̂t+1 - i f) + 0(11*, - zll).

Furthermore, from (5),

(9) Äl=Ie^I + 0(ll^-Zll)-

Substituting (8) and (9) into (7), applying Lemma 1 and Lemma 4(a) and observing
that since i # r, d'¡ t+xcr t+x =0 gives

(10) \c'i%d%\ = 0(max{ll*v - zll, IIZMI, IIZ^II}).

From (1), (3) and (4) it follows that \crtid^\ > p.  Finally, since c,^ = c¡ v+x it follows
from Lemma 1, (5), (6) and (10) that

(11) ^j = ^ + 0(max{ \\xv - zll, IIFJI, IIF^II}).
',5+1 v

From iteration v = - a¡. to iteration ;' each column of D'v will have been replaced
at most once.  These updates will occur at iterations;') </, </3 < • • • <;. <;',
where ;'j = - a^ = v, j2 = - ol, = «*, ..., etc. Repeating the arguments which yielded
Eqs. (6) to (11) at most <7 - 1 times, it follows that

r S    «,
(12) ^L_=^il_+Wi

Bell       Ils      II        '/'
V -«,.y
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where
Iwî.l = 0(max{ll*.   - zll, IIF. II, IIF. II, ... , IE. II})

'I ix ix        i2 i¡

Since / is infinite, — ov. —> °° as ;' —> °°. Therefore, from Lemma 4(c), for i = 1, 2,
. . . , q, llwjyll —► 0 as ;' —* °°.

Furthermore, from (12) and Taylor's theorem,

O3) Gc. = Wc.Wd.. + w2.,ii        ti   i/       ¡i'
where

w2. = IcJ (w). + E r-^Y;•i n  V "        Mis    7
V     '

and thus, llw2.ll —> 0 as ;' —► °°.
Finally, from (13), since for k > i, c'kd¡j = 0, it follows that leLGcJ =

0(llw?ll), which completes the proof of part (a).
The proof of part (b) is immediate from (12), (13) and Lemma 4 parts (a) and

(c).
In Step II of the algorithm if ;' ^ J, the stepsize procedure first attempts to use

a unit stepsize.  If necessary, this stepsize is reduced by a factor of Vi until an Armijo-
Goldstein test is satisfied.  The importance of beginning with a unit step is that the
optimal stepsize converges to unity for j $ Jx, and that as a consequence after a cer-
tain number of iterations the unit stepsize will always be accepted.  For ; £ /, similar
remarks apply but with the unit stepsize replaced by

v i'r

oy>*
He. .11

n

The precise results are contained in the following lemma.
Lemma 6.   There is a jx such that for all j > jx, v. = 0 and a- < of. In parti-

cular, this means that for j > jx,  a. = 1 for j ^ Jx and

a. =i
(Vjh
op*

lie. .

rj

Furthermore, if â;- is such that F(*;. - ays) < F(Xj - as) for all 0 < a < of, then
ô —* 1 as j —> °°, j' ^ Jx and a¡j/o- —► 1 as j —► °°, j £ Jx.

Proof.   From Lemma 5(a), the definition of s- and Proposition 2 it follows that
of —-► oo as f —> oo. Thus, from the definition of Oj in Step II of the algorithm it
follows that for all ;' sufficiently large, ó\- < of.

We next show that

s'.Gs.
(0 ^r^=l+e.   where |e.| —> 0 as; —*<»,/fit /

gs. i i 16i i

Let ;' £ / - Jx and ; > ;0. Then s;- = cri(Vj)r for some r,   1 < r < q. Therefore, g'jSj =
WcrjW((Vj)r)2.  From Theorem 2,
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s'.Gs. = ((v.)r)2c'r¡Gcr). = ((u.)r)2(llcr/ll + 0(llw2.ll)).

Therefore,

(2) s'jGs./g'.s. = 1 + 0(llw2.ll).

Next let j ^ J and ; > ;0.  From Step I of the algorithm s- = Z?_ cJvX and g'jSj =
2?=i l^ylla«;),-)2-  Let k be such that \(Vj\\ > Kuy),-!, i = 1, 2, . . . , q.  Then, ¿¡Sj >
\\ck\\((v)k)2.  Furthermore, from Theorem 2(a),

s'.Gs. = (± (vjA '(±fiWdij + (»A*})

I
1=1

Therefore,

= £((v.).)2Wc..W + 0(((u.)k)2max{llwJ.II, llvv2.ll, . . . , Ww2J}).

s'.Gs.
(3) ^^Í+Gímaxfllwyjlwy,...,!!^.!!}).

s/7

Equation (1) now follows from (2), (3) and Theorem 2(a).
From Taylor's theorem,

F(*. - s.) = F(x.) - g'jSj + Hs;G(?.)s.,

where |. £ Z- [*y, *• - s.].  Thus, for j $ Jx,

F(X) - Fix   - O 1 #?«,)*;
h(x., a.) = A(jc., 1) = —'-r^-'- = 1 - Ö     •

*/ 7 Vz

We have from (1) and Assumption I,

s'p(Qs      s'G(t)s I     s'.(G(|)-G)s
-L-rL-L =-h^~± O + e) = (1 + e)   1 + -1-j--'-gs. s.Gs. i i   \ s.Gs.

6i i il \ /   /

= 1 +0(max{|e.|, IIG(£.) - Gil}).

Since Sj —► 0, ?. —► z as ; —> °°, j $ Jx, and since F(*) has continuous second deriva-
tives it follows that h(Xj, Sy) = h(Xj, 1 ) —► # as ;' —► °°, ;'^ Zj.  Since Ô < Vi, we
have for all ;' ÇÉ Jx sufficiently large that h(xjt S'y) = /?(*-, 1) > ô and thus, z>. = 0 and
Oy=l.

Let ô- be defined as in the statement of the lemma.  It follows from the Lagrange
formula that for all ;' sufficiently large

r

(4) à> = s1iïks.   *—t,e&f*,-W-s'jG^s.
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As in the previous argument,

Ô. = 1 + 0(max{|e.|, IIG(?.) - Gil}).

From (1) and Assumption I, g'jSj < 2T?llsyll2 so that |ô.| < 4tj/u for all ;' ^ Jx sufficiently
large. Since Sj —► 0, it then follows that £. —*z as ;' —* °°, j ^ Jx. Therefore, ô-—► 1
as ; —*°°,j$Jx.

Now let ;' £ Jx and ;' > ;0.  Let k = k(j) and r = r(j) be such that l(u.)kl >
\(Vj)¡\ and -ar. < -a¡j for / - 1, 2,. . . ,q. We have sf = (sign(kj)r)crj + (ck/(Uy)k) ■
|(Uy)k| so thatgy^. = (|(zzy)r| + Uck/ll((Uy)k)2)|(Uy)fc|.  From Theorem 2,

Gs. = (ûgn((u.)r)krjWdrj + (Vj)kWckjWdk. + 0(max{llw2.ll, \(V/\\ llw2.ll}))IO,.)fc|.

Therefore,

s'.Gs. = ((V)k)2(llcryll + 0(max{llW2.ll, Kp,)k\ Ih£,I, (0>-)k)2}))

and

g's       /\(v\\ Ile   II\

(5) '/*/     wp*1       /fc   K/11/ '
= a.(l + e.),   where by Lemma 5(a) and Theorem 2(a),

e. —> 0 as; —+ °°, j Ç/,.

From Taylor's theorem,

F(*. - O.S.) = F(*.) = a^Sy + )£}¿f<Wfa,

where £• £ Z-[*., *■ - ô\s].  Therefore,

h(x.,'5j)=\~täjS'.G(%j)sllg'jS..

It follows from (5) that

~ W'/ _ W'/        i   /. , W - GH- \
/     g¿. s;Gs.(l+e.)      1+eyV s'fr J

= 1 + 0(max{|e.|, \G®j) - Gil}),

where the last equality follows from Assumption I.  Since ó\- is bounded and s- —► 0,
it follows that %j —> z; and thus, llG(£y) - Gil —* 0 as ; —*"»,} S Jv Therefore,
h{Xj, aJ)—*Vi\ and since S < Vi, we have for all ; £ Jx sufficiently large that /z(*., a)
> 5; and thus, p, = 0 and a- = ô\-.

From (4) and (5), as in the above arguments

0./Ô. = 1 + Ofmaxi^.l, iGty - Gil}),

where & £ L[*y, *;- - a}sj\. Since IdySyl —» 0, it follows that |y —> z as j —*■<*>, i £
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Jx.  Therefore aJô —► 1 as ; —► °°, ; GJX, which completes the proof of the lemma.
The following theorem shows that the rate of convergence of the subsequence of

points constructed by the accelerating step is superlinear. The rate of superlinear con-
vergence depends on the oldest gradient difference information contained in0!.

Theorem 3.

I*.., -zll

i

(b) Zzz addition, if G(x) satisfies a Lipschitz condition in a neighborhood of z,
then

\x... -zll
/        .   =0(H*r -zll).     it*,II*. - zll rj

where r- - rdiïi{—o^j 1 < z < q}.
Proof,   (a) We first show that for all ;' ̂  / and i = \,2, . . . , q,

(1) \c'.jgi+ x I = 0(11*. - zll max{llw2.ll, IIF.II}),

where w2- and F- are as defined in the statements of Theorem 2(a) and Lemma 4(c),
respectively.  Let 1 < z < q and ; ^ J, j\> ;1.   From Lemma 6, a- = 1 so that *+ x -
*• = - Sj.  From Taylor's theorem,

r r r s-, r j-,O) g... c. = g.c. — s.Gc. — s.b.c...
\L> 6/+i   II      6i u       I     'I       II II

From Theorem 2(a), Gei;- = WcJldy + w?-; and since Sj = l,f=x(clj/\\cJ\)c'ljgj and further-
more since d¡- is orthogonal to cx -, c2-, . . . , ct_x -, e(+1 •,..., c -, it follows that

r s-, r i      '     2s.Gc. = g.C. + S.W...I       '1 I   ¡I I     l¡

Substituting this expression into (2) gives
r i    2 r r-,a        c . = - S.W.. - S.E.C...«7+1  ij i   ¡i      i  I il

Since ll*y+1 - *yll = IISyII < H*/+i - zll + H*; - zll, it follows from Lemma 4(a) that
lls-ll = 0(11*- - zll).  By Lemma 1, HeJ is bounded.  Therefore,

Lg;+1e..| = 0(11*. - zll max{IIF.II, llw2ll}),

which verifies (1).
Finally, from (1) and Lemma 5(b),

(3) X\\x"l-z\\   = Of*****!11' "<"' llw2/"' ■ • • ' Hil]})
i

and part (a) follows from Lemma 4(c) and Theorem 2(a).
(b)  Part (b) follows immediately from (3), the definition of r-, Theorem 2(b) and

Lemma 4, parts (a) and (c).
A particular member of the class of algorithms described in this paper is obtained
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by specifying the index set / of regular steps.  The convergence rate properties of any
particular algorithm will depend to a large extent on the choice of /.  The following
theorems give specific convergence rate results for a number of important special cases.

One way of mixing regular and accelerating steps is by alternating them.  This
results in a two-step superlinear convergence rate; and the rate of superlinear convergence
depends on the information of the previous 2q iterations, this being the number of
iterations to update all of the first q columns of DJ '.

Theorem 4. Let J = {;'; ;' = 2z, i = 0, 1, 2, . . . }.  Then

"*2/+2  - '' -
(a) ll*2.-zll    ^°   aS}-*~

(b) if G(x) satisfies a Lipschitz condition in a neighborhood of z, then

ll*2y+2-Zll/ll*2.-Zll   =   0(ll*2/_2(? + 2-zll).

Proof.   Part (a) follows from Theorem 3(a) and Lemma 4(a).  To demonstrate
part (b) we observe that from Lemma 5(c) and the definition of /,

{-«, 2/+1; i = 1,2,...,?}= {2;, 2; - 2, . . . , 2/ - 2q + 2},

so that in the statement of Theorem 3(b), z-2/+, = 2j - 2q + 2. The present theorem
now follows directly from Theorem 3(b).

Each regular step generates a new conjugate direction.  Performing q such steps
consecutively in a space of dimension q leads us to expect a <7-step superlinear or
quadratic rate of convergence.  These steps may then be followed by a superlinearly
convergent accelerating step to achieve a cubic rate over the entire q + 1 iterations.
The precise result which is similar to that obtained in [2] and [9] for the unconstrained
case and [3] for the linearly constrained case is contained in the following theorem
and its corollary.

Theorem 5. Let J0 = {/'; j - 1, ;' - 2, . . . , ;' - q £ /} and suppose J0 is in-
finite.  In addition, if d- denotes the optimal stepsize at iteration j and for j £ J0,
Oj_x = dj_x,  Oj_2 = Ôj_2, ..., Oj_q = 8j_q, then

(a) II*. - zll/II*._    — zll —> 0    as/->°o, ;£/0;

(b)  z'zz addition, if G(x) satisfies a Lipschitz condition in a neighborhood of z,
then ll*y - zll = 0(WXj_q - zll2).

Proof.   Let ;' and / be such that ;' £ J0, ;' > ;0 and 1 < / < q. To simplify nota-
tion we assume without loss of generality that the columns of Z)' have been ordered
so that

-alj=i-l,-a2.=j-2,...,-aqj=j-q.

From the identity
z-i

g. = — y d..Wx. . - *. . ,ii+g. ,J_,
°l Í-I   II    1-1        l-l-l       °}-l+l

1=1

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



498 MICHAEL J. BEST AND KLAUS RITTER

and the definition of an inverse matrix, it follows that g'cj- = g'j_i+xc¡j. Since o-_¡ =
ôy_;, we have g.-_/+ \h-i = 0- Also, from Proposition 2, both c,. and s-_¡ are orthog-
onal to vF(z) so that

Y,j = (Sj-,+ i-^»'[cij-*c,jïl 7-/
Ils.i-i

From Lemma 4 parts (a) and (b) and Theorem 2(a), |g^eZ/| = 0(ll*;_   - zll llw^ll); and
therefore, from Lemma 5(b),

II*. - zll
,    '    _z|| = 0(max{llw; .11, llw2/ll, . . . , \\wqfW}) ^ 0   as ; — °°, / e JQ.

i-q

This completes the proof of part (a). Part (b) follows from Theorem 2(b) and Lem-
ma 4(a).

Corollary.   Suppose for ;' £ J0 as defined above, j $ J and for ;' £ /, a- = a-.
In addition, suppose that G(*) satisfies a Lipschitz condition in a neighborhood of z.
Then for jEJ0, ll*/+1 - zll = OOI*,-^ - zll3).

Proof.   From part (b) of Theorem 3 for ;' £ J0,

II*.,., - zll = 0(11*. - zll II*.      - zll)    where r.=j - q.¡+l v     / ]-q ' I

Remark.   Theorem 5 and its corollary also apply if for ; £ / instead of using
a- = &• the optimal stepsize, a- is obtained using a quadratic interpolation procedure
described in [8].  Although a- as computed in Step II of the algorithm converges to
unity, the rate of convergence is not sufficiently rapid to be compatible with the super-
linear, quadratic or cubic rates of Theorem 5.

For the policy of alternating regular and accelerating steps if s- is an accelerating
direction, then Theorem 4(b) shows that ll*.+ 1 - zll/II*. - zll = 0(Wxj_2 +x - zll).
If the subsequence of points determined by the accelerating step does not converge
faster than this upper bound predicts, then the following theorem shows that {*•} is
every step superlinearly convergent.  The rate of superlinear convergence is sharper for
the accelerating step than for the regular step.

Theorem 6. Let J be as in Theorem 4.  Assume that G(x) satisfies a Lipschitz
condition in a neighborhood of z and there is an e > 0 such that

11*.^, -zllz+i

77zezz

and

tjL_~lT>ellxj-2a + i-^   & all j ÎJ.

II*      -zll
¿. _ ñ    - °0\Xj_2q+x - zll)   for all ; ÇÈ /,

II*.,    - zll
£-zl   =Q('V^^"Z|)   foralljej.

/
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Proof.   Let ;' ^ J such that ;' > jx ; and thus by Lemma 6, a- = 1. We assume
without loss of generality that the columns of 0- have been ordered so that

-aif =; - 1, -a2.=j - 3, ... , -otqj=j - 2q + 1.

Let 1 < v < q.  Since s;- = EjLjCyfü.),, it follows from Taylor's theorem and Theorem 2
that

Or,*, = c' ■%■ - c G\Y c..(v)) - C.E.S.viai +1 V]b] vi    \jL.    ip pi) I   II

a
= c .g. - lie .ll<Z'. V e..(u.). - w2'.s. - c .E.s.vibi vi     VI ¿-é    if pi vi i vi   i i

2' '      T= — w .s. - c .E.s.
i=i

_.s.."II vi   i i

Since Us-II = 0(ll*y - zll), it follows from Theorem 2 and Lemma 4 that

O) |e;Ä+1l = 0(11*.-zll lliv2.ll);

and therefore,

maxilc^j |; i = 1, 2, . . . , q} = 0(11*. - zll lx._Jq+ x - zll).

From Lemma 5(b), lbc.-+1 - zll/II*- - zll = 0(H*;_2q + i - zll).
From (1) and the assumption in the statement of the theorem,

P)       J<&±iL_ A   ■<■"   \ _ >,-..+.-*\

Thus from Theorem 4, for z» = 1, 2, . . . , q — 1, \c'Vjg¡+ x 1/ll*;+ x - zll —► 0 as ;' —>■ «
;" ̂  /.   However, by Lemma 5(b),

so that there is a constant 9 > 0 which, for all ;' <$. J sufficiently large, satisfies
\c'qjSj+i\IWxj+x - zll > 9.  Since; $J, C¡¡ = e,-/+1.  Therefore, \(v/+1)q\ > K»/+iW
1=1,2,...,?; and from Step I of the algorithm, s/+ x = cqi(vj+x)q.

From Taylor's theorem, Lemma 6 and Theorem 2,

Vv+2 = <Ä+i - S/S/VA " CÄ-»7+i

Therefore, from (2), Lemma 4, parts (a) and (c),and Theorem 4(b)

(Of>/+1*'k,
zllll*._4£? + 3 -zll),      v= 1,2, . .. ,q- 1,

-zllllV2(/+i-zl|)>   " = ?•

Finally, from Lemma 5(b),
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ll*/+2 -zll/ll*/+1-zll = 0(ll*._4i/ + 3-zll);

and since j ^ J implies ;' + 1 £ /, the theorem follows.

6.  A Modified Algorithm.   All convergence results in the previous sections are
based on Assumption I.  Since it is in general difficult, if not impossible, to verify this
assumption it is desirable to try to obtain convergence results under weaker assump-
tions.  It is the purpose of this section to show that for a simple modification of the
algorithm, convergence can be proven without assumptions on second order derivatives.
Furthermore, it will be shown that, if the sequence generated by the modified algo-
rithm has a cluster point in a neighborhood of which G(x) exists and has certain prop-
erties, the results of Section 5 on the rate of convergence are applicable.

We shall use the following
Assumption II. Let *0 £ R be the starting point of the algorithm. Then there

exists a compact convex S such that {* £ Z?|F(*) < F(*0)} C S, and F(x) is continu-
ously differentiable on some open set containing S.

It is clear that under this assumption an optimal solution z exists.  By the Kuhn-
Tucker Theorem, z is a stationary point.  We cannot expect that the sequence {*•} gen-
erated by the modified algorithm converges to z if we only have Assumption II.   How-
ever, we would like to show that every cluster point of {*•} is a stationary point, i.e.
satisfies the necessary conditions for an optimal solution.

The proof of this result requires that the sequences {D-} and {DJ ' } be bounded.
This has been shown in Lemma 1.  The proof is based on the inequalities

(1) d'.s.>pWs.\\   and    lid I > tj,

which follow from Assumption I.   Without this assumption, (1) need not be true.   There-
fore, we have to modify the algorithm in such a way that we test whether (1) is satis-
fied and update DJ1 only if the answer is affirmative.

We describe now a general iteration of the modified algorithm.  The quantities
DJ1, J(x) and ß- are defined as before.  In addition, we use two constants 0 < yx < y2.

Step I: Computation of the Direction of Descent s-. Same as in previous algo-
rithm.

Step II:   Computation of the Stepsize.   Same as in previous algorithm.
Step III: Computation of DJ+V J(Xj+l), and /3/+ x.
Case 1.   Oj < of, i.e., no new active constraint occurs at *.-+,.
Set j3.+ 1 = 0, d- = (gj - g-+j)/llas..ll if ;' £/ and let u be defined as in the pre-

vious algorithm.  If;' ^ / or (j £ Jx and lcJ.yd-1 < |ckdy(u)kl) or

\d\s.\< yl lldl    or    lld.ll>72,

set DJ+X = DJ1 and J(x-+1) = /(*.); otherwise, proceed as in the previous algorithm.
Case 2.  Oj = of; i.e., a new constraint becomes active at *.+ ¡.
Same as in previous algorithm.
It is easy to verify that Lemma 1 holds.   Since the first two steps of the algo-

rithm are unchanged, Lemmas 2 and 3 remain valid.  Therefore, we can again use the
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convergence results of [8] to prove the following.
Theorem 7. Let Assumption II be satisfied.   The modified algorithm either ter-

minates after a finite number of iterations with a stationary point or generates an infinite
sequence {*•} with the following properties:

(i)   ll*/+1 - *ll —► 0 as j —> °°.
(ii) Every cluster point o/{*•} is a stationary point.

(hi) Z/{*} has an isolated cluster point z, then {*•} converges to z.
Proof.   Because of Lemmas 1 -3 the second statement of the theorem follows

from Theorem 1 in [6].  If there is e > 0 and a subsequence {*., ; £ J} of J such that
"*/+1 ~ */" ^ e f°r / e Í tnen i* follows from Lemma 3 that

g'.s. > 8(e)   for ;' £ / and some S(e) > 0.

By the definition of s-, this implies that any cluster point of this subsequence is not a
stationary point in contradiction to part (ii) of the theorem.  The last statement of the
theorem follows from the fact that ll*-+ x - *-II —► 0 as ;' —► °°.

In order to derive results concerning the rate of convergence we need the follow-
ing.

Assumption III.  Let z be a cluster point of the sequence {*•} and let a\z = b¡,
i = 1, . . . , p, and a'jZ <b¡, i = p + 1, . . . , m.  Then

(1) There are numbers X,- such that

VF(z) = y X.a.   and   X. < 0,   i = 1, . . . , p.
i=1  ' '

(2) F(x) is twice continuously differentiable in some neighborhood of z.
(3) There are numbers 0 < u < 17 such that

pWxW2 <*'G(z)* <t?II*II2

for all * £ F" with a\x = 0, i = 1, . . . , p.
Since by Theorem 7 every cluster point of {*■} is a stationary point, the first part

of Assumption III states that the strict complementary slackness condition is satisfied
at z.  Furthermore, it is easy to see that Assumption I implies Assumption II and the
last two parts of Assumption III.

As a first consequence of Assumption III we have
Proposition 3.   Let Assumptions II and III be satisfied.   Then *. —> z and there

is ;'q such that for j > j'Q,

a'.x. = b.,      i = 1, . . . , p    and   a'.x. <b.,      i — p + 1, . . . ,m.l¡l' ' .'r 1   1 ¡' .

Proof. It follows from Assumption III that z is an isolated stationary point. By
Theorem 7 this implies that z is an isolated cluster point of {*•}. Thus, again by The-
orem 7, *• —► z. The last statement follows then from Proposition 2.

By Assumption III and Proposition 3, there is a convex neighborhood u(z) of z
with the following properties:

(1) *■ £ u(z) for ;' sufficiently large.
(2) /iH*H2 < x'G(y)x < t?II*II2 for all y £ u(z) and all * £ F" with ape = 0,1 =

1, .... p.
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Because a¡Sj = 0,  i = 1, . . . , p, for ;' sufficiently large, it follows then from
Taylor's theorem that, for ;' sufficiently large,

|d!s.| > /ills.ll    and    lld.ll < t?,
ill i

i.e., the test in Step III of the modified algorithm is satisfied for ;' sufficiently large
provided yx < p and 72 > t?.  But then the two algorithms are identical for ;' suffi-
ciently large and it follows from (1) and (2) that all the results of Section 5 are appli-
cable.  We formulate the result as

Theorem 8. Let Assumptions II and III be satisfied and suppose that yx < p
and y2 > r\.   Then the convergence results of Section 5 also apply to the sequence
{*•} generated by the modified algorithm.

7.  Computational Results.  In this section we give the results of some computa-
tional tests in which the method presented in this paper was used to solve four test
problems.  Two of the problems are taken from the Colville study [5]   (Nos. 1 and 7)
and another two, the Chemical Equilibrium and Weapons Assignment problems, are
taken from [4].  Table 1 gives the timing results in standardized units (see [5] ).  For
the Colville problems, timing results are also given for the revised reduced gradient
method (RRG).  This method was chosen for comparison because it gave the fastest
time among the methods considered by Colville.  The times reported for RRG are
taken from [5].

The computations were performed on a Honeywell 6050 computer at the Uni-
versity of Waterloo.  Colville's standard timing programme executed in an average
time of 53.8466 seconds on this system, and the standard times in Table 1 were com-
puted using that figure.

The mixture of accelerating and conjugate direction constructing steps was de-
termined as follows.  The first n iterates were obtained using only conjugate direction
constructing steps since the accelerating step is based on the availability of a complete
set of conjugate directions.  After n iterations, an alternating policy was used since, by
Theorem 6, this gives the sharpest convergence rate.

Step II of the algorithm uses a unit stepsize provided that it is feasible and passes
certain tests required for convergence.  Lemma 6  shows that after a certain number of
iterations the unit stepsize will always be used.  Examination of the intermediate out-
put showed that the unit stepsize was used for 76% of the iterations for the four test
problems.

The Weapons Assignment problem is of particular interest because of its size of
n = 100 variables.  Although this problem has considerable structure no account was
taken of this structure when solving it with the method described in this paper.  It is
interesting to note that an accurate solution was obtained after approximately 1 .In
iterations.

Theorem 6 predicts that the rate of convergence of the accelerating steps will
be faster than the rate for the conjugate direction constructing steps.  This prediction
is verified computationally in Table 2 which shows some of the intermediate results
for the Weapons Assignment problem.
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Table 1
Numerical Results for Four Test Problems

Colville
No. 1

Colville
No. 7

Chemical
Equilibrium

Weapons
Assignment

Variables
Constraints
Standardized inew method
Exc. Time      (RRG.
Iterations
Function Evaluations
Gradient Evaluations
Final Objective Value

5
15

0.0042
0.0061

11
12
12

-32.34867897

16
40

0.0220
0.0290

14
17
15

-244.8996975

10
13

0.0219

36
65
37

-47.706109086

100
112

5.3828

168
208
169

-1735.569579

Table 2

Intermediate Results for Weapons Assignment Problem

Iteration     Objective     Step

0
10
20
30
40
50
60
70
80
90

100
110
120
130

- 624
-1153.
-1306.
-1424.
-1539.
-1610
-1661
-1693
-1713
-1719
-1726
-1734
-1735.17
-1735.56

C
C
C
c
c
c
c
c
c
c
c
c
c

Iteration Objective Step

140
141
142
143
144
145
146
147
148
149
150
151
152
168

-1735.5684
-1735.568519
-1735.568523
-1735.568572
-1735.568590
-1735.568992
-1735.568992
-1735.569228
-1735.569230
-1735.569313
-1735.569383
-1735.569447
-1735.569450
-1735.56957933

C
A
C
A
C
A
C
A
C
A
C
A
C
A

'A" = accelerated step, "C" = conjugate direction constructing step
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