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1. Introduction. Recently S. Tanno has classified connected almost
contact Riemannian manifolds whose automorphism groups have the
maximum dimension [9]. In his classification table the almost contact
Riemannian manifolds are divided into three classes: (1) homogeneous
normal contact Riemannian manifolds with constant 0-holomorphic sec-
tional curvature if the sectional curvature for 2-planes which contain ξ,
say K(X, ξ), > 0, (2) global Riemannian products of a line or a circle and
a Kaehlerian manifold with constant holomorphic sectional curvature, if
K(X, ξ) = 0 and (3) a warped product space L xfCEn, if K(X, ζ)<0.
It is known that the manifold of the class (1) in the above statement is
characterized by some tensor equations; it has a Sasakian structure.

The purpose of this paper is to characterize the warped product space
LxfCEn by tensor equations (§2) and study their properties. From the
definition by means of the tensor equations it is easily verified that the
structure is normal, but not quasi-Sasakian (and is hence not Sasakian).
In § 2, we define a structure closely related to the warped product which
is studied by Bishop-O'Neill [1] and prove the local structure theorem.
In § 3 we study some properties of the structure. § 4 is devoted to a
study of ^-Einstein manifolds. In the section 5 we show one of the main
theorems in this paper. In the last section we study invariant submani-
folds.

We follow here the notations and the terminology of the Volume 1
of Kobayashi-Nomizu [4].

2. Definition and examples. It is well-known that the structure
tensors (<f>, ζ, η, g) of the almost contact Riemannian maifold M satisfy

(2.1) φξ = 0 , η{φX) = 0 , η(ξ) = 1 ,

(2.2) φφX=-X+ -η{X)ζ , g(X, ξ) = η(X) ,

(2.3) g(φX, φY)= g(X, Y) - η{X)η{Y) ,

for any vector fields X and Y on M. It is known that the (φ, ξ, Ύ], g)-
structure is normal if and only if
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(2.4) φVxφ Y - Vφxφ Y - (Vxη)(Y) . £ = 0 ,

where V denotes the Riemannian connection for g [8].
Throughout this paper we study a class of almost contact Rieman-

nian manifolds which satisfy the following two conditions, say (*),:

zΦ Y = -y(Y)φX - g(x,

REMARK TO (*). S. S. Eum studied the integrability of invariant
hypersurfaces immersed in an almost contact Riemannian manifold which
satisfies

(2.5) g(Vxφ -Y,Z) = (VxV) (V(Y)ΦZ - 7){Z)φY) .

If we assume (*)2 in an almost contact Riemannian manifold, then (*)x

is equivalent to (2.5).

From (2.4), (φ, ξ, η, ^-structure with (*) is normal and since ξ is not
a Killing vector field the structure is not quasi-Sasakian (cf. [2]). Thus
we have

PROPOSITION 1. Let M be an almost contact Riemannian manifold
with (*). Then M is normal but not quasi-Sasakian and hence not
Sasakian.

Taking the Lie derivative of g, φ and rj along ξ we see

PROPOSITION 2. Under the same assumption as Proposition 1,

(2.6) Wxη){Y) = g(X, Y) - 7]{X) η(Y) ,

(2.7) L(ς)g = 2(g-η®y),

(2.8) L(ξ)φ = 0 ,

(2.9) L(ξ)-η = 0 ,

where L(ξ) denotes the Lie derivative along ξ.

Since the proof of Proposition 2 follows by a routine calculation, we
shall omit it. We give here examples of almost contact Riemannian
manifolds which satisfy the condition (*). These examples are closely
related to the warped product space defined by Bishop-O'Neill [1]: Let
B and F be Riemannian manifolds and / > 0 a differentiate function on
B. Consider the product manifold Bx F with its projection p: Bx F-*B
and π: BxF-+F. The warped product M=BxfF is the manifold
B x F furnished with the Riemannian structure such that
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\\X\\* = \\p*X\\* +

for every tangent vector Xe TX{M). We have

PROPOSITION 3. Let F be a Kaehlerian manifold and c a nonzero
constant. Let f(t) = ce* be a function on a line L. Then the warped
product space M = L xfF have an almost contact metric structure which
satisfies (*).

PROOF. (G, J) denotes the Kaehlerian structure of F and D denotes
the Riemannian connection for the Kaehlerian metric G. Let (ί,α?i, ,a?a»)
be a local coordinates of M where t and (xl9 , x2n) denotes the local
coordinates of L and F, respectively. We define a Riemannian metric
tensor g, a vector field ζ and a 1-form η on M as follows:

f\t)Gj '

(2.H) ε = (-jr)> v(x)=9(x,ξ)

By a direct calculation or Lemma 7.3 of [1] we have easily (*)2 because
of £ ( / ) = / . By (*), we see

(2.12) L{ζ)f) = 0 .

A (1, l)-tensor field φ is defined φ by φ,t x) = (Λ r ), where

(2.13) φ{Ux) = (exp (*f))*J,(exp(-φ)* .

(2.13) is well-defined by (2.12). We can easily verify that (φ, ξ, η1 g) defines
an almost contact metric structure on M = L xf F by (2.10) ~ (2.13).
By (2.13) we see

(2.14) (exp 8ξ)*φ = ̂ (exp s?)* .

Making use of (*)a and (2.14), we have easily

(2.15) L(ς)g = 2(g-η®η),

(2.16) L{ξ)φ = 0 .

By virtue of (*), and (2.16) we have

(2.17) Vξφ = L(ζ)φ *= 0 .

By (2.10), we have

(2.18) VXoYo = DXoYo - g (Xo, Yo) ξ ,

where Xo and Yo are vector fields with rj(X0) = 0 and η(Y0) = 0, respec-
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tively. We see the almost contact structure in consideration satisfies (*)lβ

Let Xo and Yo denote the F-components of X and Y. Then we have

VZ0 Y = VXo+v{x)ξ(φYo) - φVXo+ηmξ(Yo + η(Y)ξ)

= DXo(JYo) - g(XOJ φY0)ζ

-φ{DXoYo + y(Y)Xo +

(because of (2.18) and (*)2)

- DXo(JYo) - φDXoYo - g(X0, φY0)ξ - η(Y)φX0

(because of (2.17))

= -g(X,φY)ξ-y(Y)φX,

since exp tξ is a homothety with respect to the distribution η = 0 and
DJ = 0. q.e.d.

Conversely we have the following structure theorem.

THEOREM 4. Let M be an almost contact Riemannian manifold with
(*). Then, for any peM, some neighborhood U(p) of peM is identified
with a warped product space (—ε, +ε) x fV such that (—ε, +ε) is an open
interval, f{t) = cet and V is a Kaehlerian manifold.

PROOF. We define a distribution b by η = 0. It is completely inte-
grable by (2.6). Let M(p) be the maximal integral submanifold through
p. M(p) is a totally umbilical hypersurface of M because of (*)2. J and
G denote the restriction of φ and g to M(p) respectively. Then M(p) is
an almost Hermitian manifold for (J, G).

Moreover, by (*)„ M(p) is a Kaehlerian manifold. By virtue of
Proposition 2, exp tξ leaves φ and rj invariant for each t and exp tξ are
homotheties on b, whose propotional factor is monotonously increasing as
t. Thus the metric are written by

A o
S(Um) \0 f\t)Gx

From (2.9) the differential equation for / is / ' - / = 0. We have f(t) =
ceι and M is locally a warped product space. q.e.d.

3. Some Properties. In the theory of Sasakian manifolds the fol-
lowing result is well-known: K(X, ξ) = 1 and if a Sasakian manifold is
locally symmetric, then it is of constant positive curvature + 1 . On the
other hand an almost contact Riemannian manifold with (*) is not compact
because of div ξ — 2n and we get

PROPOSITION 5. Under the same assumption as Proposition 1,
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(3.1) R(X, Y)ξ = η(X) Y - η(Y)X ,

(3.2) K(X,ξ) = - 1 ,

(3.3) (VZR)(X, Y; ξ) = g(Z, X)Y - g(Z, Y)X - R(X, Y)Z .

PROOF. (3.1) follows directly from (*)2, (2.6) and the definition of R.
(3.2) is a result of (3.1). By virtue of (*)2, (2.6) and (3.1) we get (3.3):

(VZR)(X, Y; ξ) = VZ(R(X, Y) ξ) - R(VZX, Y) - R(X, VZY)

-R(X, Y)(Vzξ)

= g(Z, X)Y- g(Z, Y)X - R(X, Y)Z . q.e.d.

COROLLARY 6. If M is locally symmetric, then it is of constant
negative curvature —1.

PROOF. Corollary 6 follows from (3.3).

We can generalize Corollary 6 slightly as follows:

PROPOSITION 7. Under the same assumption as Proposition 1, if M
satisfies the Nomizu's condition, i.e., R(X, Y)R = 0, then it is of constant
negative curvature —1.

Since the proof of this Proposition is done by the same method as M.
Okumura proved the Theorem 3.2 in [7], we shall omit it.

4. ^-Einstein manifold. In an almost contact Riemannian manifold,
if the Ricci tensor Rt satisfies Rί = ag + bη(£)η, where a and b are
scalar functions, then it is called an ^-Einstein manifold. If a Sasakian
manifold is ^-Einsteinian and the dimension > 3, then a and 6 are
constant.

PROPOSITION 8. Let M be an almost contact Riemannian manifold
with (*) of dimension (2n + 1). If M is η-Einsteinian, we have

(4.1) a + b = -2n ,

(4.2) Z(b) + 26 η(Z) = 0 , if n > 1 , for any vector field Z on M.

PROOF. (4.1) follows from Rt(X, ξ) =—2nη(X) which is derived from
(3.1) and R,(X, Y) = the trace of the map [W->R(W, X)Y]. As M is
an ^-Einstein manifold, the scalar curvature S is 2n(a — 1). We define a
(1, l)-tensor field R1 as follows: g(Rι(X), Y) = R,{X, Y). By the identity
VYS = 2 (trace of the map [X-> {VXR')Y]), we have

Zip) + ξ(b)η(Z) + 2nb η{Z) = nZ(a) .

Setting Z = f, we get ξ(b) = -26. Therefore we have Z{b) + 2bη{Z) = 0
if n>l. q.e.d.
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COROLLARY 9. Under the same assumption as the Proposition 8, if
b = constant (or a = constant), then M is an Einstein one.

PROOF. Corollary 9 is a direct consequence of (4.2).

5. Curvature tensor. At first we shall prove

PROPOSITION 10. Let R be the Riemannian curvature tensor of M
with (*). Then

(5.1) R(X, Y)φZ - φR(X, Y)Z = g(Y, Z)φX - g(X, Z)φY

+ g(X, φZ)Y- g(Y, φZ)X,

(5.2) R(φX, φY)Z = R(X, Y)Z + g(Y, Z)X - g(X, Z)Y

+ g(Y, φZ)φX - g(X, φZ)φY .

PROOF. (5.1) follows from (*) and the Ricci's identity:

VxVγφ - VγVxφ - V[x,r]φ = R(X, Y)φ - φR(X, Y) .

We verify (5.2): By (5.1), we have

g(R(X, Y)φZ, φW)- g(φR(X, Y)Z, φW)

= g(Y, Z) g(φX, φW)- g(X, Z)g(φY, φW)

+ g(X, φZ)g(Y, φW) - g(Y, φZ)g{X, φW) .

Using η{R{X, Y)Z) = η(Y)g{X, Z) - y{X)g{X, Z), the above formula is

g(R(φZ, φW)X, Y) = g(R(Z, W)X, Y) + g(Y, Z)g(X, W)

- g(X, Z)g(Y, W) + g(X, φZ)g(Y, φW)

- g(Y, φZ)g(X, φW) . q.e.d.

As an application of Proposition 10, we show

PROPOSITION 11. Let M be an almost contact Riemannian manifold
with (*) of dimension > 3. If M is conformally flat, then M is a space
of constant negative curvature —1.

PROOF. Since M is conformally flat, the Riemannian curvature tensor
of M is written by

(5.3) R(X, Y)Z

1 Z)X- R,{X, Z)Y+ g(Y, Z)R\X) - g(X, Z)R\Y)}

Let us calculate R(ξ, Y)ξ by the above formula. Using (3.1) and
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Rι(X,ξ) = -2nη(X),

we get

(5.4) 2nRί = (S + 2n) g - (S+An2 + 2n)η <g) η .

By virtue of (5.1), (5.3) and (5.4), we have

(5.5) (S+4n2 + 2n){g(Y, φZ)X - g(X, φZ)Y + g(X, Z)φY

- g(Y, Z)φX + η(X)g(Y, φZ) ξ - y(Y)g(X, φZ) ξ

- 7]{Y) 7){Z)φX + η{X) η{Z)φY) = 0 .

Let {ξ, Elf φElf •••, Enf φEn) be an orthonormal basis of TX{M), xeM.
Setting X = El9 Y = E2 and Z = φE2 in (5.5), we see S= -2n(2n+ΐ).
Thus we have Rι = —2ng. Proposition 11 follows from (5.3). q.e.d.

In a Sasakian manifold with constant ^-holomorphic sectional curva-
ture, say H, the curvature tensor has a special feature [6]: The neces-
sary and sufficient condition for a Sasakian manifold to have constant φ-
holomorphic sectional curvature H is

4Λ(X, Y)Z = (H+2>)(g(Y, Z)X - g(X, Z)Y) + (H-l)(η(X) η{Z)Y

- 7]{Y) 7]{Z)X + η(Y)g(X, Z) ξ - η(X)g(Y, Z) ξ

+ g(X, φZ)φY - g(Y, φZ)φX + 2g(X, φY)φZ) .

In our case we have

PROPOSITION 12. Let M be an almost contact Riemannian manifold
with (*). The necessary and sufficient condition for M to have constant
φ-holomorphic sectional curvature H is

(5.6) 4fi(X, Y)Z = (H-S)(g(Y, Z)X - g(X, Z)Y) + (H+l)(V(X)v(Z)Y

- V(Y) η{Z)X + y(Y)g(X, Z) ξ - η(X)g(Y, Z) ξ

+ g(X, φZ)φY- g(Y, φZ)φX + 2g(X, φY)φZ) .

PROOF. For any vector fields X and Yeb, we have

(5.7) g(R(X, φX)X, φX) = -Hg(Xf Xf .

By (5.1) we get

(5.8) g(R(X, φY)X, φY) = g(R(X, φY)Y, φX) - g(X, φYf - g(X, Yf

+ g(X, X)g(Y, Y) ,

(5.9) g(R(X9 φX) Y, φX) = g(R(Xt φX)X, φY) , for X, Ye b .

Substituting X + Y in (5.7), we see
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-H(2g(X,Yy + 2g(X,X)g(X,Y) + 2g(X, Y)g{Y,Y) + g{X,X)g{Y,Y))

= ±-g(R(X+ Y, ΦX+ΦY)(X+ Y), ΦX+ΦY) + i H(9(X, Xf + 9(Y, Yf)
Δ Δ

= g(R(Y, φX)X, φX) + g(R(X, φX)X, φY) + g(R(Y, φY)X, φX)

+ g(R(Y, φY)Y, φX) + g(R(X, φY)Y, φX) + g(R(X, φY)Y, φY)

+ g(R(X, ΦY)X, ΦY) (because of (5.1))

= 2g(R(X, ΦX)X, φY) + 2g(R(Y, φY)Y, φX) - g(R(φY, X)Y, φX)

- g(R(X, Y)φY, φX) + g(R(X, ΦY)Y, ΦX) + g(R(X, φY)X, φY) ,

because of (5.9) and the Bianchi identity. It then turns to

= 2g(R(X, φX)X, φY) + 2g(R(Y, φY)Y, φX) + 2g(R(X, φY)Y, φX)

+ g(R(φX, ΦY)X, Y) + g(R(X, φY)X, φY)

= 2g(R(X, φX)X, φY) + 2g(R(Y, φY)Y, φX) + 3g(R(X, φY)Y, φX)

+ g(R(X, Y)X, Y) ,
because of (5.2) and (5.8). Thus we get

(5.10) 2g(R(X, φX)X, φY) + 2g(R(Y, ΦY)Y, φX)

+ Zg{R{X, φY)Y, φX) + g(R(X, Y)X, Y)

= -H(2g(X, YY + 2g(X, X)g(X, Y) + 2g(X, Y)g(Y, Y)

+ g(X, X)g(Y, Y)) .

Replacing Y by — Y in (5.10) and summing it to (5.10) we have

(5.11) MR(X, ΦY)Y, ΦX) + g(R(X, Y)X, Y)

= -H(2g(X, YY + g(X, X)g(Y, Y)) .

By virtue of (5.11) we see

(5.12) 4fif(i2(X, Y)X, Y)

= (H-3)(g(X, YY - g(X, X)g(Y, Y)) - S(H+l)g(X, φYY .

We verify (5.12):

-H(2g(X, φYY + g(X, X)g(φY, φY))

= -Zg(B(X, Y)ΦY, ΦX) + g(R(X, ΦY)X, ΦY)

= 3g(R(φX, φY)X, Y) + g(R(X, ΦY)X, ΦY)

= Sg(R(X, Y)X, Y) + g(R(X, φY)Y, φX) + 2g{X, YY - 2g(X, X)g(Y, Y)

+ 2g(X, φYY (because of (5.2) and (5.8))

= 3g(R(X, Y)X, Y)-\g{R{X,Y)X,Y)-^-{2g{X, YY + g(X,X)g(Y,Y))

+ 2g(X, YY - 2g(X, X)g(Y, Y) + 2g(X, φYY (because of (5.11)).
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After simplication (5.12) follows. Therefore by a standard calculation we
have

(5.13) 4R(X, Y)Z = (H-Z)(g(Y, Z)X - g(X, Z)Y) + (H+l)(g(X, φZ)φY

- g(Y, φZ)φX + 2g{X, φY)φZ) ,

where X, Y and Zeb.

We verify (5.13) for completeness: We calculate g{R(X+Z, Y+W)
(X+Z),Y+W). Using (5.12) we see

(5.14) 4g(R(X, Y)Z, W) + 4g(R(X, W)Z, Y)

= (H-3)(jg(X, Y)g{Z, W) + g(X, W)g(Y, Z) - 2g(X, Z)g(Y, W))

- S(H+l)(g(X, φY)g(Z, φW) + g(X, φW)g(Z, φY))

and we have

(5.14)' -4g(B(X, Z)Y, W) - Ag(R{X, W)Y, Z)

= -(H-Z)(g(X, Z)g(Y, W) + g(X, W)g(Y, Z) - 2g(X, Y)g{Z, W))

+ S(H+l)(g(X, φZ)g{Y, φW) + g(X, φW)g(Y, φZ)) .

Making (5.14) + (5.14)' we get by virtue of the Bianchi identity

4g(R(X, W)Z, Y) = (H-$)(g(X, Y)g(Z, W) - g(X, Z)g(Y, W))

, φY)g(Z, φW) - g(X, φZ)g(Y, φW)

, φW)g{Z, φY)) ,

where X, Y, Z and PΓeb. For any vector fields X, Y, Z, using (3.1), we
get (5.6). q.e.d.

THEOREM 13. Let M be an almost contact Riemannian manifold
with (*)• If M is a space of constant φ-holomorphic sectional curvature
H, then M is a space of constant curvature and H = — 1.

PROOF. By virtue of Proposition 12, M is an ^-Einstein space:

(5.15) B, = \ (n(H-S) + H+l)g - i - (n + l)(H+l) V® V -
Δ Δ

Since the coefficients of Rγ is constant on M, we see H = — 1 by Corollary
9. q.e.d.

OBSERVATION 14. Let F[k] be a Kaehlerian manifold with constant
holomorphic sectional curvature. Then the curvature tensor of the warped
product space L xfF[Jc], where f(t) = ce\ is expressed by
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(5.16) R(X, Y)Z = H&MY, W)X - g(X9 Z)Y) + (Hx(t) + l){η{X)η{Z)Y

- η{Y)η{Z)X + y(Y)g(X, Z)ξ - η{X)g{Y, Z)ξ

+ g(X, φZ)φY - g(Y, φZ)φX + 2g(X, φY)φZ) .

PROOF. (5.16) follows directly from Lemma 7.4 in [1].

REMARK. From the Tanno's Theorem [9], the maximum dimension of
the automorphism group of L x fF[k], where F[k] is connected, is attained
if and only if F [k] = CEn (and hence Hx{t) = -1) .

6. Invariant submanifold. Invariant submanifolds in a Sasakian
manifold are also Sasakian and minimal. In this section we study in-
variant submanifolds in an almost contact Riemannian manifold M with
(*). Let N be an almost contact manifold and (φ0, %, ξ0) denote its
structure tensor. An invariant immersion, say i, of N into M is an im-
mersion which satisfies

(6.1) i*φ0 = φi* , ί*£0 = ξ

Then we can easily see that i is a minimal immersion for the induced
metric g0 and (φ0J £0, ηQJ g0) is an almost contact metric structure with (*)
on N. Moreover by the local structure theorem 4, it is easy to show that

PROPOSITION 15. Let F[c] be a complex projectίve space CPn+1 with
a Fubini-Study metric or a complex Euclidean space CEn+1 or an open
ball CDn+1 with a homogeneous Kaehlerian structure of negative constant
holomorphic sectional curvature, and let N be an invariant submanifold
of codimension 2 in M = L x f F [c\. If N is an η-Einstein manifold for
the induced metric, then N is totally geodesic or N is locally isometric
to L xfQ

n, where Qn is a hypersphere in CPn+1(n I> 2).

PROOF. Since N is an invariant submanifold of M, the distribution
defined by ηQ = 0 is completely integrable. Let N(p) be the maximal
integral submanifold through peN. By Theorem 4, N(p) is a Kaehlerian
hypersurface in M and an Einstein manifold for the restricted metric
since N is an ^-Einstein one. Therefore N(p) is totally geodesic or
locally holomorphically isometric to Q*(see [5]). Thus N is totally geodesic
or locally isometric to L x f Qn. q.e.d.

Let JV be an almost complex manifold with an almost complex
structure J. When an immersion j of N into M satisfies j*J = φj* and
j*η = 0, we call j(N) an invariant hypersurface. Such an immersion is
studied by S. Eum [3], etc. If j(N) is an invariant hypersurface of M,
j(N) is umbilical by (*)2.
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