
A class of almost unbiased estimators in systematic sampling

Sheela Misra

S. K. Pandey

Department of Statistics

Lucknow University

Lucknow 226 007

India

Abstract

In this paper, a general class of almost unbiased estimators is proposed for estimating
population mean Ȳ of the characteristic under study y when auxiliary information is
available using systematic sampling plan. Explicit expressions for the variance of class of
estimators is obtained to the first order of approximation. Minimum variance unbiased
estimators (optimum estimators) in the class are also found. The class of estimators proposed
by Kushwaha and Singh (1989) comes out to be a particular case of this class estimators.
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1. Introduction

Many biased ratio type, product type transformed estimators
obtained through linear combination of ratio or product and usual
unbiased estimators are available for estimating the population mean
when auxiliary information is available on auxiliary variable using simple
random sampling. The classical ratio and product estimators under
systematic sampling scheme were proposed by Swain (1964), and Shukla
(1971) respectively and their properties were studied which was later
generalized to a class of estimators by Kushwaha and Singh (1989). In
the present paper a more general class of almost unbiased estimators is
——————————–
Journal of Interdisciplinary Mathematics

Vol. 9 (2006), No. 2, pp. 363–371

c© Taru Publications



364 S. MISRA AND S. K. PANDEY

proposed. The class of estimators proposed by Kushwaha and Singh
(1988) and many others are the special cases of this class, using systematic
sampling. The condition for unbiasedness and variance formula for this
class of estimators are derived under large sample approximation.

2. Class of estimators

Assumes that a population consists of N units, serially numbered
from 1 to N . Further assumes that N = nk where n and k are integers.
Now a systematic sample of size n is selected and both the characteristics
x and y for each and every unit selected in the sample are observed. Here
y and x denotes characteristics under study and auxiliary characteristic
respectively. Let (xi j · yi j) i = 1, 2, . . . , k , j = 1, 2, . . . , n denote the pair of
the observed values of the j th unit in the sample. The systematic sample
means are

ȳsy =
1
n

n

∑
j=1

yi j

x̄sy =
1
n

n

∑
j=1

xi j

where i = 1, 2, . . . , k .

The generalized estimator representing a class of estimators for
estimating population mean (Ȳ) of the variable ‘ y ’ under study is
proposed as

ȳsp = Ȳsp = ȳsy · h
(

x̄sy

X̄

)

= ȳh(u) (2.1)

where X̄ is the population mean of the auxiliary variable x and u =
x̄sy

X̄
· h(u) , such that h(1) = 1, is a function of u , satisfying the following

conditions:

i. whatever be the sample chosen, u assumes values in bounded
closed interval I of the real line containing the point unity.

ii. In I , the function h(u) is continuous and bounded.

iii. The first, second and third partial derivatives of h(u) exist and are
continuous and bounded in I .



UNBIASED ESTIMATORS 365

Expanding h(u) about u = 1 in the third order Taylor’s series, we
have from (1.1)

ȳSp = ȳsyh(1)+h(1) · (u−1)+
(u−1)2

2
h′′(1)+

(u−1)3

3
h′′(u∗) (2.2)

where u∗ = 1 + θ(u − 1) , 0 < θ < 1, and θ may depend on u · h′(1) ,
h′′(1) , h′′′(u∗) denote the first, second and third partial derivatives of h(u)
at the point u = 1, 1 and u∗ , respectively.

Now take n = gm and split the systematic sample of size following
class of estimators based on sub-samples

ȳspt =
1
g

g

∑
t=1

ȳth(ut) (2.3)

where ut =
x̄syt

X̄t
and h(1) = 1.

3. Biases of ȳSp and ȳspt

The expressions for biases of ȳsp and ȳspt population correction for
large nk to the first order of approximation are obtained as

Bias(ȳsp) =
Ȳ
n
{1 + (n− 1)ρw}C2

x

{
h′(1)

ρyx · Cy

Cx
+

h′′(1)
2

}
(3.1)

and

Bias(ȳspt) =
Ȳ
n
{g + (n− g)ρw}C2

x

{
h′(1)

ρyx · Cy

Cx
+

h′′(1)
2

}
(3.2)

where ρyx is the correlation coefficient between y and x variables in the
population, and ρw is the intra class correlation coefficient, assumed to be
same for both the characteristic x and y . It has also been assumed to be
known. Cx and Cy are the coefficient of variation for the characteristic x
and y , respectively.

4. Weighted class of estimator for Ȳ

A weighted class of estimators for Ȳ is proposed as

TSp = `1 ȳsy + `3 ȳSp + `2 ȳspt (4.1)

where `1 + `2 + `3 = 1, and are suitably chosen weights given to different
estimators.
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Theorem 4.1. The weighted class of estimators TSp proposed in (4.1) is unbiased
for population mean Ȳ if and only if

p`2 + `3 = 0

where

p =
g + (n− g)ρw

1 + (n− 1)ρw
. (4.2)

Taking `1 = ` , `2 = `′ and `3 = 1 − ` − `′ , the unbiasedness
condition reduces to

`′ = −
(

1− `

p− 1

)

where ` and `′ are constants to be chosen suitable. Thus a general class of
almost unbiased estimators may be obtained as

TSpv = ȳsy +
(

1− `

p− 1

)
p · ȳsp −

(
1− `

p− 1

)
ȳspt . (4.3)

5. Properties of the class

The variance of the proposed class TSp given in (4.1) is given by

Var(TSp) = `2
1 ·Var(ȳsy) + `2

2 ·Var(ȳsp) + `2
3 ·Var(ȳspt)

+ 2`1`2Cov(ȳsy, ȳSp) + 2`2`3Cov(ȳsp, ȳspt)

+ 2`1`3Cov(ȳsy, ȳspt) . (5.1)

To the first order approximation the variance and covariance
expressions for various estimators and class of estimators in (5.1) are cited
and proved in the lemma (5.1).

Lemma 5.1.

Var(ȳSy) =
Ȳ2

n
{1 + (n− 1)ρw}c2

y

Var(ȳSpt) = Var(ȳSp) = Cov(ȳSp, ȳSpt) (5.2)

=
Ȳ2

n
{1 + (n− 1)ρw}

{
C2

y + h′(1)C2
x ·

(
h′(1) +

2ρyxCy

Cx

)}

Cov(ȳSy, ȳSpt) = Cov(ȳSy, ȳsp)

=
Ȳ2

n
{1 + (n− 1)ρw}

{
C2

y + h′(1)
2ρyxCy

Cx

}
.
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Proof. It may easily be verified that

V(ȳspt) = V(ȳsp) = Cov(ȳspt, ȳsp)

and

Cov(ȳsy, ȳspt) = Cov(ȳsy, ȳsp) .

To find the expressions for Cov(ȳSpt > ȳsp) and Cov(ȳsy, ȳsp) under
large sample approximation, let

ȳsy = Ȳ(1 + e0) or e0 =
ȳsy − Ȳ

Ȳ
,

x̄sy = X̄(1 + e1) or e1 =
x̄sy − Ȳ

x̄
.

From (1 .2) we have

ȳSp − Ȳ = Ȳ
{

h′(1)e1 + e0 +
h′′(1)

2
e2

1 + e0e1h′(1)
}

. (5.3)

To the first order of approximation.

Again let

ȳsyt = Ȳ(1 + e′0) ,

x̄syt = X̄(1 + e′1) .

Expanding h(ut) about ut = 1 in the third order Taylor’s series in
(2.2) and ignoring terms of power higher than two in ei ’s, we obtain

ȳSpt − Ȳ = Ȳ

{
h′(1)e′1 + e′0 +

h′′(1)e′21
2

+ h′(1)e′0e′1

}
. (5.4)

Using (5.3) and (5.4), we have

Cov(ȳSp, ȳSpt) = E(ȳSp − Ȳ)(ȳspt − Ȳ)

= Ȳ2E[h′(1)2e1e′1 + e0e′0 + h′(1)(e1e′0 + e0e′1)]

(to the first order of approximation)

= Ȳ2E
[
(h′(1))2e1E2

(
e′1
t

)
+ e0E2

(
e′0
t

)

+ h′(1)
{

e1E2

(
e′0
t

)
e0E2

(
e′1
t

)}]
(5.5)
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where E2

(
e′0
t

)
=

E2

(
ȳsyt

t

)
− Ȳ

Ȳ
is the conditional expectation for a

given t th (t = 1, 2, . . . , 9) split and E1 is the expectation on i th (i =
1, 2, . . . , k) systematic sample of size n . Here, it should be noted that ȳsyt

is a systematic sample mean of size m drawn from a population of size n
and therefore,

E
(

ȳsyt

t

)
= ȳsy

or

E2

(
e′0
t

)
= e0

and similarly

E2

(
e′1
t

)
= e1 .

Hence from (5.5), we have

Cov(ȳsp, ȳSpt) = Ȳ2E1{(h′1(1))2e2
1 + e2

0 + h′(1) · (e1e0 + e0e1)}

= Ȳ2

[
(h′(1))2 Var(x̄sy)

X̄2 +
Var(ȳsy)

Ȳ2

+ h′(1) · 2Cov(x̄sy, ȳSy)
X̄Ȳ

]

=
Ȳ2

n
{1 + (n− 1)ρw}

[
C2

yh′(1)C2
x(h′(1)) +

2ρyxCy

Cx

]
. (5.6)

Similarly for Cov(ȳsy, ȳsp) we have,

Cov(ȳsy, ȳsp) = E(ȳsy − Ȳ)(ȳSp − Ȳ)

= ȲE
[

e0 ·
{

h′(1)e1 + e0 +
h′(1)

2
e2

1 + h′(1)e0e1

}]

(Using (2.2) to the 1st order of approximation)

= Ȳ2E1{h′(1)e0e1 + e1
0}

= Ȳ2
{

Var(ȳsy)
Ȳ2 + h′(1) · Cov(ȳsy, x̄sy)

X̄Ȳ

}

=
Ȳ2

2
{(1 + (n− 1)ρw}[C2

y − h′(1)ρyxCyCx] . (5.7)
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Substituting the result (5.2) and `1 = ` , `2 = `′ and `3 = 1 − ` − `′ in
(4.1), we obtain the variance formula for the class of estimators TSp given
as

Var(Tsp) =
Ȳ2

n
{1 + (n− 1)ρw}

×
[

C2
y + (1− `)h′(1)C2

x

{
(1− `)h′(1) + 2ρyx

Cy

Cx

}]
(5.8)

The variance of TSp in (4.8) will be min for

` = 1 +
ρyxCy

(h′(1))Cx
= `∗ (say) . (5.9)

Thus, the minimum variance of TSp is given by

Min Var(TSp) =
Ȳ2

n
{1 + (n− 1)ρw}[C2

y − ρ2
yxC2

y]

=
Ȳ2

n
{1 + (n− 1)ρ′w}(1− ρ2

yx)C2
y (5.10)

which is equivalent to the approximate variance of usual biased linear
regression estimator ȳer in systematic sampling given as

ȳer = ȳSy + byx(X̄− x̄sy)

where byx is the sample regression coefficient of y on x .

Substituting g ,

`1 = `∗ = 1 +
(

ρyx · Cy

h′(1)Cx

)
;

`2 = `′∗ =
ρyx · Cy

Cxh′(1)(p− 1)

and

`3 = 1− `∗ − `′∗ = −ρyx · Cy

h′(1)Cx

(
p

p− 1

)





(5.11)

in (4.1), we obtain an optimum estimator in the class TSp given as

TSpo =
(

1 +
ρyxCy

h′(1)Cx

)
· ȳSy +

ρyxCy

Cxh′(1)(p− 1)
· ȳspt

− ρyx · Cy

h′(1)Cx

(
p

p− 1

)
· ȳsp (5.12)
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6. Concluding remarks

Take function h(u) such that

H(u) = u ; u =
x̄sy

X̄
.

First and second partial derivatives of h(u) with respect to u at u = 1,
will be

h′(1) = 1

and

h′′(1) = 0

Putting these values in (1.1) and (1.2) we have

ȳSp =
ȳsy · x̄sy

X̄
(6.1)

and

ȳspt =
1
g

g

∑
t=1

ȳsyt ·
x̄syt

X̄
. (6.2)

ȳSp given by (6.1) comes out to be estimator proposed by Shukla
(1971). Its variance can be found from (5.2).

Substituting (6.1) and (6.2) in (4.1) we get the class of product type
estimators proposed by Kushwaha and Singh (1989). Now, let us take

h(u) = u−1

then first and second partial derivatives of h(u) with respect to ‘u ’ at point
u = 1 will be

h′(1) = −1 , h′′(1) = 2 .

Putting these values in (1.1) and (1.2) we have

ȳSp = ȳsy

(
X̄

x̄sy

)
(6.3)

and

ȳspt =
1
g

g

∑
t=1

(
ȳsyt

x̄syt

)
· X̄ . (6.4)

Substituting (6.3) and (6.4) in (4.1) we obtain class of Ratio type
estimators proposed by Kushwaha and Singh (1989).
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